Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀乾zh_TW
dc.contributor.advisorYao-Chien Alex Changen
dc.contributor.author葉育哲zh_TW
dc.contributor.authorYu Che Yehen
dc.date.accessioned2025-08-18T16:16:36Z-
dc.date.available2025-09-17-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation第一章
沈再木、邱永正、徐善德、莊畫婷. 2006. 蝴蝶蘭育種. 花卉育種研討會專刊. 國立中興大學園藝學系編印. p. 18-36.
沈再木、莊畫婷、徐善德、古森本、邱永正. 2009. 臺灣蝴蝶蘭育種方向與策略. 國際植物品種權保護研討會論文集. 種苗改良繁殖場編印. p. 1-19.
莊畫婷、徐善德、沈再木. 2008. 黃花蝴蝶蘭育種障礙之表現. 臺灣園藝. 54:59–66. https://doi.org/10.6964/JTSHS.200803.0059.
農業部. 2025. 蘭花外銷資訊。主要花卉外銷商情資訊管理子系統。 <https://www.togacloud.org.tw/InfoCenter>.
Balilashaki K, Dehghanian Z, Gougerdchi V, Kavusi E, Feizi F, Tang X, Vahedi M, Hossain MM. 2023. Progress and prospect of orchid breeding: An overview, p 261-283. In: Pragya Tiwari and Chen J-T (eds.). Advances in Orchid Biology, Biotechnology and Omics. Springer, Berlin, Germany.
Brewbaker JL, Kwack BH. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot. 50:859-865. https://doi.org/10.2307/2439772.
Calzoni GL, Speranza A, Bagni N. 1979. In vitro germination of apple pollens. Sci Hortic. 10:49-55. https://doi.org/10.1016/0304-4238(79)90068-2.
Iiyama CM, Vilcherrez-Atoche JA, Germanà MA, Vendrame WA, Cardoso JC. 2024. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century. Heredity. 132:163-178. https://doi.org/10.1038/s41437-024-00671-8.
Lee Y-I, Tseng YF, Lee Y-C, Chung M-C. 2020. Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci Hortic. 262:109089. https://doi.org/10.1016/j.scienta.2019.109089.
O'Kelley JC. 1955. External carbohydrates in growth and respiration of pollen tubes in vitro. Am J Bot. 42:322-327. https://doi.org/10.1002/j.1537-2197.1955.tb11125.x.
O'Kelley JC. 1957. Boron effects on growth, oxygen uptake and sugar absorption by germinating pollen. Am J Bot. 44:239-244. https://doi.org/10.1002/j.1537-2197.1957.tb08236.x.
Srivastava S, Kadooka C, Uchida JY. 2018. Fusarium species as pathogen on orchids. Microbiol Res. 207:188-195. https://doi.org/10.1016/j.micres.2017.12.002.
Tiwari P, Sharma A, Bose SK, Park K-I. 2024. Advances in orchid biology: biotechnological achievements, translational success, and commercial outcomes. Horticulturae. 10:152. https://doi.org/10.3390/horticulturae10020152.

第二章
李茂榮、陳崇宇、李祖光. 2005. 固相微萃取技術於微量分析之應用. 化學. 63:329-342. https://doi.org/10.6623/chem.2005027.
周建金、曾瑞珍、劉芳、易懋升、黎揚輝、張志勝. 2009. 不同倍性蝴蝶蘭雜交後代染色體倍性研究. 園藝學報. 36:1491-1497.
林婉婷 2003. 生長素刺激蝴蝶蘭柱頭關閉反應的蛋白質體分析及結合性IAA水解酵素的基因選殖. 國立屏東科技大學生物科技系碩士論文.
胡正榮. 2001. 文心蘭類花粉發芽、花粉活力、結實及無菌播種之研究. 國立台灣大學園藝學系碩士論文. 臺北.
涂美智、李哖. 1987. 蝴蝶蘭授粉適期與果莢成熟度對種子發芽之影響. 中國園藝. 33:190-200. https://doi.org/10.6964/JCSHS.198709.0190.
莊畫婷、徐善德、沈再木. 2008. 黃花蝴蝶蘭育種障礙之表現. 臺灣園藝. 54:59–66. https://doi.org/10.6964/JTSHS.200803.0059.
莊畫婷、黃光亮、徐善德. 2013a. 採用切蕊柱授粉法克服蝴蝶蘭Taipei Gold 'STM'之育種障礙. 臺灣園藝. 59:103-111.
莊畫婷、黃光亮、徐善德. 2013b. 蝴蝶蘭雜交障礙克服. 提昇臺灣花卉國際競爭力研討會專刊. 行政院農業委員會農業試驗所編印. p. 1-20.
陳人瑋. 2009. 輸美蝴蝶蘭園之真菌相調查暨蝴蝶蘭黃葉病菌Fusarium solani之研究. 國立中興大學植物病理學系碩士學位論文. 台中.
陳福旗. 2004. 研習蘭花香氣成份分析及生物技術應用. 公務出國報告資訊網. <https://report.ndc.gov.tw/ReportFront/ReportDetail/detail?sysId=C09300009>.
葉志新. 2012. 香味蝴蝶蘭育種之現況. 臺灣蘭訊. 3:33-37.
葉育哲、蔡月夏、施清田、黃鵬. 2013. 蝴蝶蘭香花之育種. 台灣蘭花之育種研討會. 台灣蘭花育種者協會編印. p. 86-94. .
廖國均、謝廷芳、陳宏榮. 2012. 蝴蝶蘭貯運前藥劑處理對黃葉病發生之影響. 台灣農業研究. 61:124-131. https://doi.org/10.6156/JTAR/2012.06102.05.
趙治平、蔡雲鵬. 1995. 香蕉病害 p. 58-65. 刊於:葉瑩主編. 台灣農家要覽 (三)農作篇 (三). 行政院農業委員會. 臺北.
蔡奇助、翁一司. 2012. 遠緣雜交與胚拯救技術在蝴蝶蘭育種上之開發應用. 農業生技產業季刊. 29:46-55. https://doi.org/10.29657/ABIQ.201207.0007.
蔡奇助、莊畫婷. 2009. 遠緣雜交與分子遺傳鑑定技術在蝴蝶蘭育種之應用潛力. 農業生技產業季刊. 17:37-45.
蔡金池、曾德賜、謝式坢鈺. 2008. 木黴菌Trichoderma asperellum TA菌秣在台灣金線連莖腐病防治上之應用. 植物病理學會刊. 17:243-254. https://doi.org/10.6649/PPB.200809_17(3).0007.
蔡雅竹、張正. 2010. 紅鶴頂蘭及其近緣屬花卉特性、染色體與花粉活力之調查. 興大園藝. 35:99-112.
蕭郁芸. 2008. 大葉蝴蝶蘭(Phalaenopsis bellina)香味生合成及其相關基因之研究. 國立成功大學生物學系研究所博士論文. 台南.
謝廷芳、安寶貞、黃晉興、黃㯖昌. 2007. 蝴蝶蘭病蟲害管理. p. 41-84. 刊於:沈再木、徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學. 嘉義.
謝廷芳、黃晉興. 2005. 蝴蝶蘭黃葉病 p. 13-19. 蝴蝶蘭園病蟲害管理手冊. 行政院農業委員會動植物防疫檢疫局. 臺北.
謝奉家. 2012. 澱粉芽孢桿菌防治外銷蝴蝶蘭黃葉病之研發. 農政與農情. 237:91-94.
Arditti J. 1992. Fundamentals of Orchid Biology. John Wiley & Sons, New York.
Balilashaki K, Gantait S, Naderi R, Vahedi M. 2015. Capsule formation and asymbiotic seed germination in some hybrids of Phalaenopsis, influenced by pollination season and capsule maturity. Physiol Mol Bio Plant. 21:341-347. https://doi.org/10.1007/s12298-015-0309-z.
Beltrán R, Valls A, Cebrián N, Zornoza C, Breijo FG, Armiñana JR, Garmendia A, Merle H. 2019. Effect of temperature on pollen germination for several Rosaceae species: influence of freezing conservation time on germination patterns. PeerJ. 7:e8195. https://doi.org/10.7717/peerj.8195.
Benyon F, Summerell BA, Burgess LW. 1996. Association of Fusarium species with root rot of Cymbidium orchids. Australas Plant Pathol. 25:226-228. https://doi.org/10.1071/AP96041.
Bolaños-Villegas P, Chin S-W, Chen F-C. 2008. Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J Am Soc Hortic Sci. 133:107-116. https://doi.org/10.21273/jashs.133.1.107.
Brewbaker JL, Kwack BH. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot. 50:859-865. https://doi.org/10.2307/2439772.
Broz AK, Bedinger PA. 2021. Pollen-pistil interactions as reproductive barriers. Annu Rev Plant Biol. 72:615-639.
Calzoni GL, Speranza A, Bagni N. 1979. In vitro germination of apple pollens. Sci Hortic. 10:49-55. https://doi.org/10.1016/0304-4238(79)90068-2.
Chae K, Kieslich CA, Morikis D, Kim SC, Lord EM. 2009. A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization. Plant Cell. 21:3902-14. https://doi.org/10.1105/tpc.109.070854.
Chen J-C, Fang S-C. 2016. The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod. 29:179-88. https://doi.org/10.1007/s00497-016-0280-z.
Chen WH, Tang CY, Kao YL. 2010. Polyploidy and variety improvement of Phalaenopsis orchids. Acta Hortic. 878:133-138.
Cheung AY, Wang H, Wu H-m. 1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell. 82:383-393. https://doi.org/10.1016/0092-8674(95)90427-1.
Chung W, Chen L, Huang J, Huang H, Chung W. 2011. A new ‘forma specialis’ of Fusarium solani causing leaf yellowing of Phalaenopsis. Plant Pathol. 60:244-252. https://doi.org/10.1111/j.1365-3059.2010.02376.x.
De Nettancourt D. 1997. Incompatibility in angiosperms. Sex Plant Reprod. 10:185-199.
Díaz-Gutiérrez C, Arroyave C, Llugany M, Poschenrieder C, Martos S, Peláez C. 2021. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol Control. 155. https://doi.org/10.1016/j.biocontrol.2021.104537.
Fahad S, Ihsan MZ, Khaliq A, Daur I, Saud S, Alzamanan S, Nasim W, Abdullah M, Khan IA, Wu C, Wang D, Huang J. 2018. Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Ssoil Sci. 64:1473-1488. https://doi.org/10.1080/03650340.2018.1443213.
Frowine SA. 2005. Fragrant orchids: a guide to selecting, growing, and enjoying. Timber Press, Portland, OR, USA.
Hou J-Y, Setter TL, Chang Y-CA. 2010. Effects of simulated dark shipping on photosynthetic status and post-shipping performance in Phalaenopsis Sogo Yukidian ‘V3’. J Am Soc Hortic Sci. 135:183-190. https://doi.org/10.21273/JASHS.135.2.183.
Hsiao Y-Y, Tsai W-C, Kuoh C-S, Huang T-H, Wang H-C, Wu T-S, Leu Y-L, Chen W-H, Chen H-H. 2006. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 6:1-14. https://doi.org/10.1186/1471-2229-6-14.
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH. 2011. Research on orchid biology and biotechnology. Plant Cell Physiol. 52:1467-86. https://doi.org/10.1093/pcp/pcr100.
Ichikawa K, Saito H. 1998. Occurrence of dry rot on Cymbidium caused by Fusarium solani. Proc Kanto-Tosan Plant Prot Soc. 45:119-121. https://doi.org/10.11337/ktpps1954.1998.119.
Jagadev PN, Khanna V. 2020. Pollen germination, pollen tube growth and crossability studies in wheat-rye crosses. Intl J Curr Microbiol Appl Sci. 9:1921-1927. https://doi.org/10.20546/ijcmas.2020.912.228.
Kaiser R. 1993. The scent of orchids: olfactory and chemical investigations. Elsevier Science, Amsterdam, Netherlands.
Kao Y-Y, Chang S-B, Lin T-Y, Hsieh C-H, Chen Y-H, Chen W-H, Chen C-C. 2001. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann Bot. 87:387-395. https://doi.org/10.1006/anbo.2000.1348.
Kataoka H, Lord HL, Pawliszyn J. 2000. Applications of solid-phase microextraction in food analysis. J Chromatogr A. 880:35-62. https://doi.org/10.1016/S0021-9673(00)00309-5.
Kim WG, Lee BD, Kim WS, Cho WD. 2002. Root rot of moth orchid caused by Fusarium spp. Plant Pathol J. 18:225-227. https://doi.org/10.5423/PPJ.2002.18.4.225.
Kumarathunge DP, Weerasinghe LK, Samarasinghe RK, Geekiyanage N. 2024. The temperature optima for pollen germination and pollen tube growth of coconut (Cocos nucifera L.) strongly depend on the growth temperature. Exp Agric. 60:e2. https://doi.org/10.1017/S0014479723000248.
Latiffah Z, Hayati MN, Baharuddin S, Maziah Z. 2009. Identification and pathogenicity of Fusarium species associated with root rot and stem rot of Dendrobium. Asian J Plant Pathol. 3:14-21.
Lee B, Kim W, Cho W, Sung J. 2002. Occurrence of dry rot on Cymbidium orchids caused by Fusarium spp. in Korea. Plant Pathol J. 18:156-160. https://doi.org/10.5423/PPJ.2002.18.3.156.
Lee Y-I, Tseng YF, Lee Y-C, Chung M-C. 2020. Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci Hortic. 262:109089. https://doi.org/10.1016/j.scienta.2019.109089.
Lee YI, Chang FC, Chung MC. 2011. Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady's slipper orchids (Paphiopedilum). Ann Bot. 108:113-21. https://doi.org/10.1093/aob/mcr114.
Liang H-X. 1984. Embryological studies of Gastrodia elata Blume. J Integ Plant Bio. 26.
Lin CC, Yao-Huang C, Huei CW, Chi-Chang C, Yen-Yu K. 2005. Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Acad Sin. 46:339-345.
Mòl R, Matthys‐Rochon E, Dumas C. 2002. The kinetics of cytological events during double fertilization in Zea mays L. Plant J. 5:197-206. https://doi.org/10.1046/j.1365-313X.1994.05020197.x.
Moir W. 1995. An orchid database. Wildcatt Database Co., USA.
Morita Y, Arie T, Kawarabayashi S, Suyama K, Namba S, Yamashita S, Tsuchizaki T. 1992. A new disease of Phalaenopsis and Doritaenopsis caused by Nectria haematococca. Jpn J Phytopathol. 58:452-455. https://doi.org/10.3186/jjphytopath.58.452.
Nourozian J, Etebarian HR, Khodakaramian G. 2006. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Technol. 28:29-38.
O'Neill SD. 1997. Pollination regulation of flower development. Annual Review of Plant Biology 48:547-574. https://doi.org/10.1146/ANNUREV.ARPLANT.48.1.547.
O'Neill SD, A. NJ, S. ZX, Q. BA, H. HA. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 5:419-32. https://doi.org/10.1105/tpc.5.4.419.
Ouyang G, Vuckovic D, Pawliszyn J. 2011. Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev. 111:2784-814. https://doi.org/10.1021/cr100203t.
Pacini E. 1997. Tapetum character states: analytical keys for tapetum types and activities. Can J Bot. 75:1448-1459. https://doi.org/10.1139/b97-859.
Pacini E. 2009. Pollination biology: orchids pollen dispersal units and reproductive consequences, p 185-218. In: Kull T, Arditti J and Wong SM (eds.). Orchid Biology: Reviews and Perspectives. Vol. X. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-8802-5_5.
Pacini E, Jacquard C, Clement C. 2011. Pollen vacuoles and their significance. Planta. 234:217-227. https://doi.org/10.1007/s00425-011-1462-4.
Pandolfi T, Pacini E. 1995. The pollinium of Loroglossum hircinum (Orchidaceae) between pollination and pollen tube emission. Plant Sys Evol. 196:141-151. https://doi.org/10.1007/bf00982955.
Pritchard HW, Prendergast FG. 1989. Factors influencing the germination and storage characteristics of orchid pollen, p 1-16. In: Pritchard HW (ed.). Modern methods in orchid conservation. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511551307.002.
Qin Q, Kaas Q, Zhang C, Zhou L, Luo X, Zhou M, Sun X, Zhang L, Paek K-Y, Cui Y. 2011. The cold awakening of Doritaenopsis ‘Tinny Tender’ orchid flowers: The role of leaves in cold-induced bud dormancy release. J Plant Growth Regul. 31:139-155. https://doi.org/10.1007/s00344-011-9226-8.
Schwallier R, Bhoopalan V, Blackman S. 2011. The influence of seed maturation on desiccation tolerance in Phalaenopsis amabilis hybrids. Sci Hortic. 128:136-140. https://doi.org/10.1016/j.scienta.2010.12.019.
Sevilleno SS, Cabahug-Braza RA, An HR, Lim K-B, Park HW, Hwang Y-J. 2025. Morphological and cytogenetic evaluation of Phalaenopsis cultivars. Hortic Environ Biote.1-15.
Sevilleno SS, Cabahug-Braza RA, An HR, Lim KB, Hwang Y-J. 2023. The role of cytogenetic tools in orchid breeding. Korean J. Agric. Sci. 50:193-206.
Shiau Y-J, Sagare AP, Chen U-C, Yang S-R, Tsay H-S. 2002. Conservation of Anoectochilus formosanus Hayata by artificial cross-pollination and in vitro culture of seeds. Bot Bull Acad Sin. 43:123-130.
Shiau YJ, Nalawade SM, Hsai CN, Tsay HS. 2005. Propagation of Haemaria discolor via in vitro seed germination. Biol Plant. 49:341-346. https://doi.org/10.1007/s10535-005-0005-x.
Srivastava S, Kadooka C, Uchida JY. 2018. Fusarium species as pathogen on orchids. Microbiol Res. 207:188-195. https://doi.org/10.1016/j.micres.2017.12.002.
Su JF, Lee YC, Chen CW, Hsieh TF, Huang JH. 2010. Sheath and root rot of Phalaenopsis caused by Fusarium solani. Acta Hortic. 878:49. https://doi.org/10.17660/ActaHortic.2010.878.49.
Tsai W-C, Hsiao Y-Y, Pan Z-J, Kuoh C-S, Chen W-H, Chen H-H. 2008. The role of ethylene in orchid ovule development. Plant Sci. 175:98-105. https://doi.org/10.1016/j.plantsci.2008.02.011.
Tsao W-C, Li Y-H, Tu Y-H, Nai Y-S, Lin T-C, Wang C-L. 2024. Identification and molecular detection of the pathogen of Phalaenopsis leaf yellowing through genome analysis. Front Microbiol. 15:1431813. https://doi.org/10.3389/fmicb.2024.1431813.
Tushabe D, Rosbakh S. 2021. A compendium of in vitro germination media for pollen research. Front Plant Sci. 12:709945. https://doi.org/10.3389/fpls.2021.709945.
Van Tuyl J, Lim K, Ramanna M. 2002. Interspecific hybridization and introgression, p 85-103. In: Vainstein A (ed.). Breeding for ornamentals: classical and molecular approaches. Springer, Berlin, Germany.
Wong TW, Quesada-Ocampo LM. 2024. Sensitivity of Meloidogyne incognita, Fusarium oxysporum f. sp. niveum, and Stagonosporopsis citrulli to succinate dehydrogenase inhibitors used for control of watermelon diseases. Plant Dis. 108:1762-1768. https://doi.org/10.1094/PDIS-12-22-2922-RE.
Yeh CH, Tsai WY, Chiang HM, Wu CS, Lee YI, Lin LY, Chen HC. 2014. Headspace solid-phase microextraction analysis of volatile components in Phalaenopsis Nobby's Pacific Sunset. Molecules. 19:14080-14093. https://doi.org/10.3390/molecules190914080.
Yuan S-C, Chin S-W, Lee C-Y, Chen F-C. 2018. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Botanical Studies. 59. https://doi.org/10.1186/s40529-017-0218-2.
Zhang XS, O'Neill SD. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell. 5:403-418. https://doi.org/10.1105/tpc.5.4.403.
Zhang Y, Lee Y-I, Deng L, Zhao S. 2013. Asymbiotic germination of immature seeds and the seedling development of Cypripedium macranthos Sw., an endangered lady's slipper orchid. Sci Hortic. 164:130-136. https://doi.org/10.1016/j.scienta.2013.08.006.

第三章
何禎元、薛銘童、林書妍. 2020. 木虌果花粉體外發芽培養基配方與花粉懸浮液應用初探. 臺灣園藝. 66:25-35.
李哖. 1988. 蝴蝶蘭之生長與開花生理. 蘭花生產改進研討會專輯. 台灣省台東區農業改良場編印. p. 21–32.
沈再木、莊畫婷、徐善德、古森本、邱永正. 2009. 臺灣蝴蝶蘭育種方向與策略. 國際植物品種權保護研討會論文集. 種苗改良繁殖場編印. p. 1-19.
罗远华、陈燕、方能炎、林榕燕、钟淮钦、黄敏玲. 2023. 文心蘭花粉離體萌發培養基的篩選及萌發率的測定. 福建農業學報. 38:1293-1301. https://doi.org/10.19303/j.issn.1008-0384.2023.11.005.
胡正榮. 2001. 文心蘭類花粉發芽、花粉活力、結實及無菌播種之研究. 國立台灣大學園藝學系碩士論文. 臺北.
徐權君. 2008. 黃道報歲蘭之授粉、種子發育與發芽以及報歲蘭之品種特性比較. 國立中興大學園藝學系碩士論文. 台中.
莊畫婷、徐善德、沈再木. 2008. 黃花蝴蝶蘭育種障礙之表現. 臺灣園藝. 54:59–66. https://doi.org/10.6964/JTSHS.200803.0059.
莊畫婷、黃光亮、徐善德. 2013a. 採用切蕊柱授粉法克服蝴蝶蘭Taipei Gold 'STM'之育種障礙. 臺灣園藝. 59:103-111.
莊畫婷、黃光亮、徐善德. 2013b. 蝴蝶蘭雜交障礙克服. 提昇臺灣花卉國際競爭力研討會專刊. 行政院農業委員會農業試驗所編印. p. 1-20.
陳奕君、 江淑雯. 2014. 柱頭抽出液和培養環境對番荔枝" 臺東二號" 花粉發芽率之影響. 臺東區農業改良場研究彙報. 24:83-94.
陳錦木. 2013. 重瓣日日春之花芽形態、花形遺傳及育種. 國立臺灣大學園藝暨景觀學系博士論文. 臺北.
楊正山、黃明得. 2006. 番荔枝與鳳梨釋迦之花藥稀釋增量劑對著果之影響. 臺東區農業改良場研究彙報. 16:21-38.
楊梨玲、朱建鏞. 1999. 溫度對聖誕紅結實之影響. 興大園藝 24:53-69.
蔡雅竹、張正. 2010. 紅鶴頂蘭及其近緣屬花卉特性、染色體與花粉活力之調查. 興大園藝. 35:99-112.
Abdelgadir H, Johnson S, Van Staden J. 2012. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S Afr J Bot. 79:132-139. https://doi.org/10.1016/j.sajb.2011.10.005.
Arditti J. 1992. Fundamentals of Orchid Biology. John Wiley & Sons, New York.
Bednarska E. 1989. The effect of exogenous Ca2+ ions on pollen grain germination and pollen tube growth. Sex Plant Reprod. 2. https://doi.org/10.1007/bf00190119.
Bellusci F, Musacchio A, Stabile R, Pellegrino G. 2010. Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Ann Bot. 106:769-774. https://doi.org/10.1093/aob/mcq164.
Brewbaker JL, Kwack BH. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot. 50:859-865. https://doi.org/10.2307/2439772.
Brewbaker JL, Majumder SK. 1961. Cultural studies of the pollen population effect and the self‐incompatibility inhibition. Am J Bot. 48:457-464. https://doi.org/10.2307/2439448.
Calzoni GL, Speranza A, Bagni N. 1979. In vitro germination of apple pollens. Sci Hortic. 10:49-55. https://doi.org/10.1016/0304-4238(79)90068-2.
Chen J-C, Fang S-C. 2016. The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod. 29:179-88. https://doi.org/10.1007/s00497-016-0280-z.
Chen Y-F, Matsubayashi Y, Sakagami Y. 2000. Peptide growth factor phytosulfokine-α contributes to the pollen population effect. Planta. 211:752-755.
Cruzan MB. 1990. Variation in pollen size, fertilization ability, and postfertilization siring ability in Erythronium grandiflorum. Evolution. 44:843-856. https://doi.org/10.2307/2409550.
Dafni A, Firmage D. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Sys Evol. 222:113-132. https://doi.org/10.1007/BF00984098.
Fahad S, Ihsan MZ, Khaliq A, Daur I, Saud S, Alzamanan S, Nasim W, Abdullah M, Khan IA, Wu C, Wang D, Huang J. 2018. Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Ssoil Sci. 64:1473-1488. https://doi.org/10.1080/03650340.2018.1443213.
Iiyama CM, Vilcherrez-Atoche JA, Germanà MA, Vendrame WA, Cardoso JC. 2024. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century. Heredity. 132:163-178. https://doi.org/10.1038/s41437-024-00671-8.
Jayaprakash P. 2018. Pollen germination in vitro, p 81-96. In: Mokwala PW (ed.). Pollination in plants. InTech, London. https://doi.org/10.5772/intechopen.75360.
Johnson SD, Edwards T. 2000. The structure and function of orchid pollinaria. Plant Sys Evol. 222:243-269. https://doi.org/10.1007/BF00984105.
Liang C-Y, Rengasamy KP, Huang L-M, Hsu C-C, Jeng M-F, Chen W-H, Chen H-H. 2020. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biol. 20:1-16. https://doi.org/10.1186/s12870-020-02402-7.
Lopez RG, Runkle ES, Heins RD, Whitman CM. 2003. Temperature and photoperiodic effects on growth and flowering of zygopetalum redvale 'Fire Kiss' orchids. Acta Hortic. 624:155-162. https://doi.org/10.17660/ActaHortic.2003.624.20.
Nenadovic-Mratinic E. 1996. The influence of temperature, sucrose concentration and time on pollen germination and pollen tube growth in sour and sweet cherry. Acta Hortic.443-448. https://doi.org/10.17660/ActaHortic.1996.410.71.
Niesenbaum RA. 1999. The effects of pollen load size and donor diversity on pollen performance, selective abortion, and progeny vigor in Mirabilis jalapa (Nyctaginaceae). Am J Bot. 86:261-268. https://doi.org/10.2307/2656941.
O'Kelley JC. 1955. External carbohydrates in growth and respiration of pollen tubes in vitro. Am J Bot. 42:322-327. https://doi.org/10.1002/j.1537-2197.1955.tb11125.x.
O'Kelley JC. 1957. Boron effects on growth, oxygen uptake and sugar absorption by germinating pollen. Am J Bot. 44:239-244. https://doi.org/10.1002/j.1537-2197.1957.tb08236.x.
Pritchard HW, Prendergast FG. 1989. Factors influencing the germination and storage characteristics of orchid pollen, p 1-16. In: Pritchard HW (ed.). Modern methods in orchid conservation. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511551307.002.
Rodriguez-Concepcion M, Boronat A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130:1079-1089. https://doi.org/10.1104/pp.007138.
Rodriguez‐Enriquez M, Mehdi S, Dickinson H, Grant‐Downton R. 2013. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. New Phytologist. 197:668-679.
Sakamoto D, Hayama H, Ito A, Kashimura Y, Moriguchi T, Nakamura Y. 2009. Spray pollination as a labor-saving pollination system in Japanese pear (Pyrus pyrifolia (Burm.f.) Nakai): Development of the suspension medium. Sci Hortic. 119:280-285. https://doi.org/10.1016/j.scienta.2008.08.009.
Sevilleno SS, An HR, Cabahug-Braza RAM, Ahn Y-J, Hwang Y-J. 2023a. Cytogenetic study and pollen viability of phalaenopsis queen beer ‘Mantefon’. Plants. 12:2828. https://doi.org/10.3390/plants12152828.
Sevilleno SS, Cabahug-Braza RAM, An HR, Hwang Y-J. 2023b. Analyzing pollen fertility based on micronuclei presence in yellow aneuploid Phalaenopsis. Korean J Breed Sci. 55:287-295. https://doi.org/10.9787/KJBS.2023.55.4.287.
Sharma N, Shivanna K. 1983. Lectin-like components of pollen and complementary saccharide moiety of the pistil are involved in self-incompatibility recognition. Curr Sci. 52:913-916.
Shiau YJ, Nalawade SM, Hsai CN, Tsay HS. 2005. Propagation of Haemaria discolor via in vitro seed germination. Biol Plant. 49:341-346. https://doi.org/10.1007/s10535-005-0005-x.
Silva LFOd, Zambon CR, Pio R, Oliveira AF, Gonçalves ED. 2016. Establishment of growth medium and quantification of pollen grains of olive cultivars in Brazil's subtropical areas. Bragantia. 75:26-32. https://doi.org/10.1590/1678-4499.213.
Subbaiah CC. 1984. A polyethylene glycol based medium for in vitro germination of cashew pollen. Can J Bot. 62:2473-2475. https:/doi.org/10.1139/b84-337.
Taylor LP, Hepler PK. 1997. Pollen germination and tube growth. Annu Rev Physiol Plant Mol Biol. 48:461-491. https://doi.org/10.1146/annurev.arplant.48.1.461.
Tsai W-C, Hsiao Y-Y, Pan Z-J, Kuoh C-S, Chen W-H, Chen H-H. 2008. The role of ethylene in orchid ovule development. Plant Sci. 175:98-105. https://doi.org/10.1016/j.plantsci.2008.02.011.
Visser T. 1955. Germination and storage of pollen. Dissertation, Wageningen University and Research, Wageningen, Netherlands.
Voyiatzi CI. 1995. An assessment of thein vitro germination capacity of pollen grains of five tea hybrid rose cultivars. Euphytica. 83:199-204. https://doi.org/10.1007/bf01678130.
Weinbaum SA, Parfitt DE, Polito VS. 1984. Differential cold sensitivity of pollen grain germination in two Prunus species. Euphytica. 33:419-426. https://doi.org/10.1007/bf00021139.
Ylstra B, Touraev A, Moreno RMB, Stöger E, Van Tunen AJ, Vicente O, Mol JN, Heberle-Bors E. 1992. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100:902-907.
Yuan S-C, Chin S-W, Lee C-Y, Chen F-C. 2018. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Botanical Studies. 59. https://doi.org/10.1186/s40529-017-0218-2.
Zhan N, Huang L. 2016. Effects of Ca2+ on in vitro pollen germination of three Acacia species. Silvae Genetica. 65:11-16. 10.1515/sg-2016-0012.
Zhang XS, O'Neill SD. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell. 5:403-418. https://doi.org/10.1105/tpc.5.4.403.

第四章
邱阿昌、郁宗雄. 1967. 臺灣夏季高溫期番茄結果現象及利用植物生長素促進結果之研究. 中國園藝 13:84–99. https://doi.org/10.6964/JCSHS.196712.0084.
涂美智、李哖. 1987. 蝴蝶蘭授粉適期與果莢成熟度對種子發芽之影響. 中國園藝. 33:190-200. https://doi.org/10.6964/JCSHS.198709.0190.
張治國. 2005. 台灣盆花產業現況與發展方向. 農政與農情. 153.
莊畫婷、徐善德、沈再木. 2008. 黃花蝴蝶蘭育種障礙之表現. 臺灣園藝. 54:59–66. https://doi.org/10.6964/JTSHS.200803.0059.
莊畫婷、黃光亮、徐善德. 2013a. 採用切蕊柱授粉法克服蝴蝶蘭Taipei Gold 'STM'之育種障礙. 臺灣園藝. 59:103-111.
莊畫婷、黃光亮、徐善德. 2013b. 蝴蝶蘭雜交障礙克服. 提昇臺灣花卉國際競爭力研討會專刊. 行政院農業委員會農業試驗所編印. p. 1-20.
蔡奇助、翁一司. 2012. 遠緣雜交與胚拯救技術在蝴蝶蘭育種上之開發應用. 農業生技產業季刊. 29:46-55. https://doi.org/10.29657/ABIQ.201207.0007.
蔡雅竹、張正. 2010. 紅鶴頂蘭及其近緣屬花卉特性、染色體與花粉活力之調查. 興大園藝. 35:99-112.
Bolaños-Villegas P, Chin S-W, Chen F-C. 2008. Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J Am Soc Hortic Sci. 133:107-116. https://doi.org/10.21273/jashs.133.1.107.
Broz AK, Bedinger PA. 2021. Pollen-pistil interactions as reproductive barriers. Annu Rev Plant Biol. 72:615-639.
Chen J-C, Fang S-C. 2016. The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids. Plant Reprod. 29:179-88. https://doi.org/10.1007/s00497-016-0280-z.
Jagadev PN, Khanna V. 2020. Pollen germination, pollen tube growth and crossability studies in wheat-rye crosses. Intl J Curr Microbiol Appl Sci. 9:1921-1927. https://doi.org/10.20546/ijcmas.2020.912.228.
Jin X-F, Ye Z-M, Amboka GM, Wang Q-F, Yang C-F. 2017. Stigma sensitivity and the duration of temporary closure are affected by pollinator identity in Mazus miquelii (Phrymaceae), a species with bilobed stigma. Front Plant Sci. 8:783. https://doi.org/10.3389/fpls.2017.00783.
Kho YO, Baer J. 1968. Observing pollen tubes by means of fluorescence. Euphytica. 17:298-302. https://doi.org/10.1007/BF00021224.
O'Neill SD. 1997. Pollination regulation of flower development. Annual Review of Plant Biology 48:547-574. https://doi.org/10.1146/ANNUREV.ARPLANT.48.1.547.
O'Neill SD, A. NJ, S. ZX, Q. BA, H. HA. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 5:419-32. https://doi.org/10.1105/tpc.5.4.419.
Pandolfi T, Pacini E. 1995. The pollinium of Loroglossum hircinum (Orchidaceae) between pollination and pollen tube emission. Plant Sys Evol. 196:141-151. https://doi.org/10.1007/bf00982955.
Sevilleno SS, An HR, Cabahug-Braza RAM, Ahn Y-J, Hwang Y-J. 2023. Cytogenetic study and pollen viability of phalaenopsis queen beer ‘Mantefon’. Plants. 12:2828. https://doi.org/10.3390/plants12152828.
Sharma MV, Kuriakose G, Shivanna KR. 2008. Reproductive strategies of Strobilanthes kunthianus, an endemic, semelparous species in southern Western Ghats, India. Bot J Lin Soc. 157:155-163.
Zhang XS, O'Neill SD. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell. 5:403-418. https://doi.org/10.1105/tpc.5.4.403.

第五章
李哖. 1990. 蘭之胚培養. 中國園藝. 36:223-244. https://doi.org/10.6964/JCSHS.199012.0223.
李美娟、陳思吟、蔡瑜卿. 2024. 臺灣特用種小鹿角蘭無菌播種及花期調節. 種苗科技專訊. 127:2-5.
翁一司. 2014. 腎藥蘭切花–栽培管理及採收處理技術. 高雄區農技報導. 121:3-15.
Anghelescu NE, Vafaee Y, Ahmadzadeh K, Chen J-T. 2023. Asymbiotic seed germination in terrestrial orchids: Problems, progress, and prospects, p 221-260. In: Tiwari P and Chen J-T (eds.). Advances in Orchid Biology, Biotechnology and Omics. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-99-1079-3_8.
Arditti J. 1967. Factors affecting the germination of orchid seeds. Bot Rev. 33:1-97.
Chen FC, Chin SW, Huang JZ. 2021. Novel orchid breeding to meet future market demands. Acta Hortic. 1312:1-8. https://doi.org/10.17660/ActaHortic.2021.1312.1.
Chen J, Wang F, Zhou C, Ahmad S, Zhou Y, Li M, Liu Z, Peng D. 2023. Comparative phylogenetic analysis for aerides (Aeridinae, Orchidaceae) based on six complete plastid genomes. Intl J Mol Sci. 24:12473. https://doi.org/10.3390/ijms241512473.
Chen WH, Tang CY, Kao YL. 2009. Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult. 98:229-238. https://doi.org/10.1007/s11240-009-9557-3.
Devi KS, Sanabam R, Singh NS, Devi EJ, Devi HS. 2023. Intergeneric hybridization of two endangered orchids, Vanda stangeana and Phalaenopsis hygrochila, and molecular confirmation of hybridity using SSR and SCoT markers. S Afr J Bot. 161:140-150. https://doi.org/10.1016/j.sajb.2023.07.048.
Guan C, Wang X, Feng J, Hong S, Liang Y, Ren B, Zuo J. 2014. Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis. Plant Physiol. 164:1515-1526. https://doi.org/10.1104/pp.113.234740.
Hsieh C-H, Liang Z-C, Shieh W-J, Chang S-L, Ho W-J. 2022. Effects of nutrients and growth regulators on seed germination and development of juvenile rhizome proliferation of Gastrodia elata in vitro. Agriculture. 12:1210.
Jolman D, Batalla MI, Hungerford A, Norwood P, Tait N, Wallace LE. 2022. The challenges of growing orchids from seeds for conservation: An assessment of asymbiotic techniques. Appl Plant Sci. 10:e11496. https://doi.org/10.1002/aps3.11496.
Kishor R, Sharma GJ. 2009. Intergeneric hybrid of two rare and endangered orchids, Renanthera imschootiana Rolfe and Vanda coerulea Griff. ex L. (Orchidaceae): Synthesis and characterization. Euphytica. 165:247-256. https://doi.org/10.1007/s10681-008-9755-9.
Knudson L. 1922. Nonsymbiotic germination of orchid seeds. Bot Gazette. 73:1-25.
Lee Y-I, Chung M-C, Yeung EC, Lee N. 2015. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum. Ann Bot. 116:403-411. https://doi.org/10.1093/aob/mcv079.
Lee Y-I, Lee N, Yeung EC, Chung M-C. 2005. Embryo development of Cypripedium formosanum in relation to seed germination in vitro. J Am Soc Hortic Sci. 130:747-753. https://doi.org/10.21273/JASHS.130.5.747.
Lee Y-I, Yeung EC, Lee N, Chung M-C. 2006. Embryo development in the lady's slipper orchid, Paphiopedilum delenatii, with emphasis on the ultrastructure of the suspensor. Ann Bot. 98:1311-1319. https://doi.org/10.1093/aob/mcl222.
Mbiyu M, Muthoni J, Kabira J, Muchira C, Pwaipwai P, Ngaruiya J, Onditi J, Otieno S. 2012. Comparing liquid and solid media on the growth of plantlets from three Kenyan potato cultivars. Am J Exp Agric. 2:81-89. https://doi.org/10.9734/AJEA/2012/715.
Miyoshi K, Mii M. 1988. Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Sci Hortic. 35:127-130. https://doi.org/10.1016/0304-4238(88)90044-1.
Pateli P, Papafotiou M, Chronopoulos J. 2003. Influence of in vitro culture medium on Epidendrum radicans seed germination, seedling growth and ex vitro establishment. Acta Hortic. 616:189-192. https://doi.org/10.17660/ActaHortic.2003.616.22.
Qureshi M, Gul Z, Ur A, Khan R. 2014. Comparative growth response of potato plantlets developed on liquid vs solidified (MS) medium using tissue culture technology. Intl J Rec Sci Res. 5:736-739.
Stewart S, Kauth P, Dutra Elliott D, Johnson T, Kane M, Vendrame W. 2008. Techniques and applications of in vitro orchid seed germination, p 375-391. In: da Silva JAT (ed.). Floriculture, Ornamental and Plant Biotechnology. Vol. 5. Global Science Books, London.
Stewart SL, Kane ME. 2006. Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult. 86:159-167. https://doi.org/10.1007/s11240-006-9104-4.
Tsai W-T, Chu C-Y. 2008. Static liquid culture of Doritaenopsis seedlings. HortScience. 43:206-210. https://doi.org/10.21273/HORTSCI.43.1.206.
Wu K, Zeng S, Lin D, Teixeira da Silva JA, Bu Z, Zhang J, Duan J. 2014. In vitro propagation and reintroduction of the endangered Renanthera imschootiana Rolfe. PLoS One. 9:e110033. https://doi.org/10.1371/journal.pone.0110033.
Zhang Y-Y, Wu K-L, Zhang J-X, Deng R-F, Duan J, Teixeira da Silva JA, Huang W-C, Zeng S-J. 2015. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum SC Chen et F. Y. Liu. Sci Rep. 5:16356.

第六章
邱健誠、謝廷芳、戴廷恩. 2017. 不同來源大白花蝴蝶蘭Phalaenopsis Sogo Yukidian 種苗生育特性之比較. 台灣農業研究. 66:53-65. https://doi.org/10.6156/jtar/2017.06601.07.
廖國均、謝廷芳、陳宏榮. 2012. 蝴蝶蘭貯運前藥劑處理對黃葉病發生之影響. 台灣農業研究. 61:124-131. https://doi.org/10.6156/JTAR/2012.06102.05.
劉姿妤. 2009. 光度及肥料對蝴蝶蘭成株生長及儲運後開花品質之影響. 國立嘉義大學園藝學系碩士論文. 嘉義.
謝廷芳、安寶貞、黃晉興、黃㯖昌. 2007. 蝴蝶蘭病蟲害管理. p. 41-84. 刊於:沈再木、徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學. 嘉義.
謝奉家. 2012. 澱粉芽孢桿菌防治外銷蝴蝶蘭黃葉病之研發. 農政與農情. 237:91-94.
蘇俊峯、李怡靜、陳純葳、黃晉興、謝廷芳. 2012. 蝴蝶蘭鐮胞菌病害調查. 植物病理學會會刊. 21:115-130. https://doi.org/10.6649/PPB.201206_21(2).0006.
Ajilogba CF, Babalola OO. 2013. Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci. 18:117-127. https://doi.org/10.4265/bio.18.117.
Bag TK, Dutta P, Hubballi M, Kaur R, Mahanta M, Chakraborty A, Das G, Kataky M, Waghunde R. 2024. Destructive Phytophthora on orchids: current knowledge and future perspectives. Front Microbiol. 14:1139811. https://doi.org/10.3389/fmicb.2023.1139811.
Benyon F, Summerell BA, Burgess LW. 1996. Association of Fusarium species with root rot of Cymbidium orchids. Australas Plant Pathol. 25:226-228. https://doi.org/10.1071/AP96041.
Brustolin R, Zoldan SM, Reis EM, Zanatta T, Carmona M. 2013. Weather requirements and rain forecast to time fungicide application for Fusarium head blight control in wheat. Summa Phytopathol. 39:248-251. https://doi.org/10.1590/S0100-54052013000400003.
Chen FC, Chin SW, Huang JZ. 2021a. Novel orchid breeding to meet future market demands. Acta Hortic. 1312:1-8. https://doi.org/10.17660/ActaHortic.2021.1312.1.
Chen S-Y, Wu Y-J, Hsieh T-F, Su J-F, Shen W-C, Lai Y-H, Lai P-C, Chen W-H, Chen H-H. 2021b. Develop an efficient inoculation technique for Fusarium solani isolate “TJP-2178-10” pathogeny assessment in Phalaenopsis orchids. Bot Stud. 62:1-7. https://doi.org/10.1186/s40529-021-00310-z.
Chen WH, Tang CY, Kao YL. 2009. Ploidy doubling by in vitro culture of excised protocorms or protocorm-like bodies in Phalaenopsis species. Plant Cell Tissue Organ Cult. 98:229-238. https://doi.org/10.1007/s11240-009-9557-3.
Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL. 2008. Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep. 27:1667-75. https://doi.org/10.1007/s00299-008-0591-0.
Chiang K-S, Liu H, Bock C. 2017. A discussion on disease severity index values. Part I: warning on inherent errors and suggestions to maximise accuracy. Ann Appl Biol. 171:139-154. https://doi.org/10.1111/aab.12362.
Christov M. 2014. Contribution of interspecific hybridization to sunflower breeding. HELIA. 36:1-18. https://doi.org/10.2298/hel1358001a.
Chung W, Chen L, Huang J, Huang H, Chung W. 2011. A new ‘forma specialis’ of Fusarium solani causing leaf yellowing of Phalaenopsis. Plant Pathol. 60:244-252. https://doi.org/10.1111/j.1365-3059.2010.02376.x.
De T, Basak A, De L. 2023. Resistance breeding in ornamental plants: An overview. Emerg Iss Agric Sci. 5:78-93. https://doi.org/10.9734/bpi/eias/v5/10545F.
Deng Y, Jiang J, Chen S, Teng N, Song A, Guan Z, Fang W, Chen F. 2012. Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization. PLoS One. 7:e44337. https://doi.org/10.1371/journal.pone.0044337.
Fahey C, Koyama A, Antunes PM. 2022. Vulnerability of non-native invasive plants to novel pathogen attack: do plant traits matter? Biol Invasions. 24:3349-3379. https://doi.org/10.1007/s10530-022-02853-z.
Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39:783-791. https://doi.org/10.2307/2408678.
Goktepe F, Seijo T, Deng Z, Harbaugh BK, Peres NA, McGovern RJ. 2007. Toward breeding for resistance to Fusarium tuber rot in caladium: Inoculation technique and sources of resistance. HortScience. 42:1135-1139. https://doi.org/10.21273/HORTSCI.42.5.1135.
Hibar K, Daami-Remadi M, El Mahjoub M. 2007. Induction of resistance in tomato plants against Fusarium oxysporum f. sp. radicis-lycopersici by Trichoderma spp. Tunis J Plant Prot. 2:47-58.
Hou J-Y, Setter TL, Chang Y-CA. 2010. Effects of simulated dark shipping on photosynthetic status and post-shipping performance in Phalaenopsis Sogo Yukidian ‘V3’. J Am Soc Hortic Sci. 135:183-190. https://doi.org/10.21273/JASHS.135.2.183.
Ichikawa K, Saito H. 1998. Occurrence of dry rot on Cymbidium caused by Fusarium solani. Proc Kanto-Tosan Plant Prot Soc. 45:119-121. https://doi.org/10.11337/ktpps1954.1998.119.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16:111-120. https://doi.org/10.1007/BF01731581.
Kumarathunge DP, Weerasinghe LK, Samarasinghe RK, Geekiyanage N. 2024. The temperature optima for pollen germination and pollen tube growth of coconut (Cocos nucifera L.) strongly depend on the growth temperature. Exp Agric. 60:e2. https://doi.org/10.1017/S0014479723000248.
Latiffah Z, Hayati MN, Baharuddin S, Maziah Z. 2009. Identification and pathogenicity of Fusarium species associated with root rot and stem rot of Dendrobium. Asian J Plant Pathol. 3:14-21.
Lee B, Kim W, Cho W, Sung J. 2002. Occurrence of dry rot on Cymbidium orchids caused by Fusarium spp. in Korea. Plant Pathol J. 18:156-160. https://doi.org/10.5423/PPJ.2002.18.3.156.
Leus L, Van Huylenbroeck J, Van Bockstaele E, Höfte M. 2003. Bioassays for resistance screening in commercial rose breeding. Acta Hortic. 612:39-45. https://doi.org/10.17660/ActaHortic.2003.612.5.
McGrath DG. 1987. The role of biomass in shifting cultivation. Human Ecol. 15:221-242. https://doi.org/10.1007/BF00888381.
Mintu Ram Meena, Ravinder Kumar, Karuppaiyan Ramaiyan, Manohar Lal Chhabra, Arun Kumar Raja, Mohanraj Krishnasamy, Neeraj Kulshreshtha, Pandey SK, Ram B. 2020. Biomass potential of novel interspecific and intergeneric hybrids of Saccharum grown in sub-tropical climates. Sci Rep. 10:21560. https://doi.org/10.1038/s41598-020-78329-8.
Morita Y, Arie T, Kawarabayashi S, Suyama K, Namba S, Yamashita S, Tsuchizaki T. 1992. A new disease of Phalaenopsis and Doritaenopsis caused by Nectria haematococca. Jpn J Phytopathol. 58:452-455. https://doi.org/10.3186/jjphytopath.58.452.
Nourozian J, Etebarian HR, Khodakaramian G. 2006. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Technol. 28:29-38.
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. 2019. Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins. 11:664. https://doi.org/10.3390/toxins11110664.
Smith A, Pinkard E, Hunter G, Wingfield M, Mohammed C. 2006. Anatomical variation and defence responses of juvenile Eucalyptus nitens leaves to Mycosphaerella leaf disease. Australas Plant Pathol. 35:725-731. https://doi.org/10.1071/AP06070.
Song M, Yun HY, Kim YH. 2014. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res. 38:136-145. https://doi.org/10.1016/j.jgr.2013.11.016.
Srivastava S, Kadooka C, Uchida JY. 2018. Fusarium species as pathogen on orchids. Microbiol Res. 207:188-195. https://doi.org/10.1016/j.micres.2017.12.002.
Su JF, Lee YC, Chen CW, Hsieh TF, Huang JH. 2010. Sheath and root rot of Phalaenopsis caused by Fusarium solani. Acta Hortic. 878:49. https://doi.org/10.17660/ActaHortic.2010.878.49.
Tang F, Wang H, Chen S, Chen F, Liu Z, Fang W. 2011. Intergeneric hybridization between Dendranthema nankingense and Tanacetum vulgare. Sci Hortic. 132:1-6. https://doi.org/10.1016/j.scienta.2011.10.003.
Tsao W-C, Li Y-H, Tu Y-H, Nai Y-S, Lin T-C, Wang C-L. 2024. Identification and molecular detection of the pathogen of Phalaenopsis leaf yellowing through genome analysis. Front Microbiol. 15:1431813. https://doi.org/10.3389/fmicb.2024.1431813.
Yan Z, Dolstra O, Prins TW, Stam P, Visser PB. 2006. Assessment of partial resistance to powdery mildew (Podosphaera pannosa) in a tetraploid rose population using a spore-suspension inoculation method. Europe J Plant Pathol. 114:301-308. https://doi.org/10.1007/s10658-005-5995-x.

第七章
李哖、李嘉慧. 1996. 蝴蝶蘭花芽誘引和花序發育時之碳水化合物變化. 中國園藝. 42:262-275.
李哖、林菁敏. 1984. 溫度對白花蝴蝶蘭生長與開花之影響. 中國園藝. 30:223-231. https://doi.org/10.6964/JCSHS.198412.0223.
沈再木、邱永正、徐善德、莊畫婷. 2006. 蝴蝶蘭育種. 花卉育種研討會專刊. 國立中興大學園藝學系編印. p. 18-36.
沈再木、莊畫婷、徐善德、古森本、邱永正. 2009. 臺灣蝴蝶蘭育種方向與策略. 國際植物品種權保護研討會論文集. 種苗改良繁殖場編印. p. 1-19.
陳福旗. 2004. 研習蘭花香氣成份分析及生物技術應用. 公務出國報告資訊網. <https://report.ndc.gov.tw/ReportFront/ReportDetail/detail?sysId=C09300009>.
葉志新. 2012. 香味蝴蝶蘭育種之現況. 臺灣蘭訊. 3:33-37.
葉育哲. 2010. 蝴蝶蘭原生種簡介. 花蓮區農業專訊. 71:5-11.
葉育哲、蔡月夏、施清田、黃鵬. 2013. 蝴蝶蘭香花之育種. 台灣蘭花之育種研討會. 台灣蘭花育種者協會編印. p. 86-94.
蕭郁芸. 2000. 蝴蝶蘭香氣分泌構造之觀察與香氣組成初探. 國立成功大學生物學系研究所碩士論文. 臺南.
蕭郁芸. 2008. 大葉蝴蝶蘭(Phalaenopsis bellina)香味生合成及其相關基因之研究. 國立成功大學生物學系研究所博士論文. 台南.
D’Auria M, Lorenz R, Mecca M, Racioppi R, Romano VA. 2023. Composition of the scent in some Ophrys orchids growing in Basilicata (Southern Italy): A solid-phase microextraction study coupled with gas chromatography and mass spectrometry. Compounds. 3:573-583. https://doi.org/10.3390/compounds3040041.
Devi KS, Sanabam R, Singh NS, Devi EJ, Devi HS. 2023. Intergeneric hybridization of two endangered orchids, Vanda stangeana and Phalaenopsis hygrochila, and molecular confirmation of hybridity using SSR and SCoT markers. S Afr J Bot. 161:140-150. https://doi.org/10.1016/j.sajb.2023.07.048.
Frowine SA. 2005. Fragrant orchids: a guide to selecting, growing, and enjoying. Timber Press, Portland, OR, USA.
Giannetti V, Biancolillo A, Marini F, Mariani MB, Livi G. 2024. Characterization of the aroma profile of edible flowers using HS-SPME/GC–MS and chemometrics. Food Res Intl. 178:114001. https://doi.org/10.1016/j.foodres.2024.114001.
Hsiao Y-Y, Tsai W-C, Kuoh C-S, Huang T-H, Wang H-C, Wu T-S, Leu Y-L, Chen W-H, Chen H-H. 2006. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 6:1-14. https://doi.org/10.1186/1471-2229-6-14.
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH. 2011. Research on orchid biology and biotechnology. Plant Cell Physiol. 52:1467-86. https://doi.org/10.1093/pcp/pcr100.
Kaiser R. 1993. The scent of orchids: olfactory and chemical investigations. Elsevier Science, Amsterdam, Netherlands.
Kliszcz A, Danel A, Pula J, Barabasz-Krasny B, Mozdzen K. 2021. Fleeting beauty-The world of plant fragrances and their application. Molecules. 26:2473. https://doi.org/10.3390/molecules2609247310.3390/molecules26092473.
Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and distribution of floral scent. Bot Rev. 72:1-120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2.
OrchidWiz. 2012. OrchidWiz Encyclopedia Version 9.01 September 2012 Database. Ames, IA: OrchidWiz Database LLC.
Ramya M, Jang S, An HR, Lee SY, Park PM, Park PH. 2020. Volatile organic compounds from orchids: from synthesis and function to gene regulation. Intl J Mol Sci. 21. https://doi.org/10.3390/ijms21031160.
Toh C, Mohd-Hairul AR, Ain NM, Namasivayam P, Go R, Abdullah NAP, Abdullah MO, Abdullah JO. 2017. Floral micromorphology and transcriptome analyses of a fragrant Vandaceous orchid, Vanda Mimi Palmer, for its fragrance production sites. BMC Res Notes. 10:1-10. https://doi.org/10.1186/s13104-017-2872-6.
Vainstein A, Lewinsohn E, Pichersky E, Weiss D. 2001. Floral fragrance. New inroads into an old commodity. Plant Physiol. 127:1383-1389. https://di.org/10.1104/pp.010706.
Yue Y, Yu R, Fan Y. 2015. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics. 16:1-23. https://doi.org/10.1186/s12864-015-1653-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98733-
dc.description.abstract蝴蝶蘭(Phalaenopsis)為台灣重要的經濟花卉作物,蝴蝶蘭與異屬蘭花間之雜交,有潛力引入新性狀,開發具抗病性、香氣與特殊花色等優良性狀之新品種。本研究針對蝴蝶蘭育種過程中常見的問題,包括蝴蝶蘭體外花粉離體培養、異屬雜交障礙克服、優化無菌播種培養基、後代抗病性測試與香氣育種進行一系列之探討。
花粉活力測試能篩選具有稔性之父本,可藉由花粉染色或離體培養進行。本研究發現蘭科植物的花粉活力染色結果易高估其實際的萌發能力及花粉管生長之情形,而離體培養可以更直觀調查花粉之萌發與花粉管生長。然而花粉培養之培養基需針對不同物種進行優化,測試之花粉狀態也會影響培養結果。試驗中以Brewbaker and Kwack培養基為基礎,針對蝴蝶蘭花粉調整蔗糖、H3BO3以及Ca(NO3)2·4H2O濃度,並測試培養溫度、花粉發育階段、花粉發育溫度、花粉密度之影響。培養基配方以0%蔗糖、125 mg·L-1 H3BO3、100 mg·L-1 Ca(NO3)2·4H2O得到最佳之花粉生長結果。在25°C環境,並以鬆蕾期取樣、未受高溫影響之花粉塊配置懸浮液進行培養為最佳培養條件。本研究亦首次證實蝴蝶蘭具有花粉群聚效應,提高離體培養之花粉密度有助於花粉萌發生長。
進一步觀察蝴蝶蘭Phal. Hualien Pink Apple ‘Hualien No. 1-Pink Apple’與異屬蘭花(包含狐狸尾蘭屬Rhynchostylis gigantea var. alba、槽舌狐狸尾蘭屬Holcostylis Pink Yawi)之自交、正反交親和性與稔實性。蝴蝶蘭自交後花粉管可順利生長並成功結實;狐狸尾蘭自交後花粉能順利生長惟81.2%胚發育異常。蝴蝶蘭與狐狸尾蘭雜交後形成的胚有91.7%為異常胚,該組合播種300個種子以上結果發芽數不到10個。試驗亦測試1或3 μM萘乙酸(1-naphthaleneacetic acid, NAA)對柱頭腔閉合之影響,雖能使柱頭腔閉合增加花粉停留於子房內之發育時間,但無法提升花粉活力或克服受精後之雜交障礙。未來異屬雜交之操作,應更著重於品種親和性選配,以提升雜交後代之育成率。
雜交後代種子無菌播種技術優化方面,本研究測試培養基型態及添加細胞分裂素(6-benzylaminopurine, BA)對發芽率提升之影響。蝴蝶蘭Phal. Hualien Pink Apple ×self、槽舌蝶蘭(Phal. Little Gem Stripes ×Holcoglossum amesianum) ×Phal. Hualien Pink Apple、腎藥蘭Renanthera monachica ×self的種子,在液態培養基中均優於固態基質之萌發率,在低發芽率的腎藥蘭上也有顯著的提升。蝴蝶蘭及槽舌蝶蘭以0.1-0.5 mg·L-1 BA表現較佳,而腎藥蘭則偏好不添加BA之培養基。
本研究以自行分離之Fusarium phalaenopsidis C.L. Wang & W.C. Tsao蝴蝶蘭黃葉病株Ph4、Ph5、Ph15及參考菌株TJP 2178 10作為接種菌株,建立蝴蝶蘭黃葉病的抗病評估系統。結果顯示Phal. Hualien Pink Apple抗病性相對較佳,可作為抗病親本。除評估常見蝴蝶蘭品系,亦針對異屬雜交後代作抗病比較,發現部分後代對黃葉病抗病能力明顯提升,顯示異屬遠緣雜交為抗病育種有效途徑,能符合育種策略並提升產業競爭力。
在香氣育種與香氣成分分析方面,在雙親本皆有香氣表現的雜交組合中,有57.1%的後代表現出香味,而僅單親具香氣者,後代低於50%表現香味。當以Phal. schilleriana為父本時,也能傳遞香氣,顯示出香氣不僅是母系的遺傳。進一步分析異屬雜交中香氣的遺傳,發現雜交後代的狐狸尾蝶蘭Rhynchonopsis Karson’s Viola保留了Rhynchostylis coelestis的氣味特徵,而Rhnps. Low Elaine則顯現了雜種優勢,其揮發性化合物的種類與總量均高於親本。本研究評估屬間雜交後代之香氣代謝物與遺傳表現,為香花育種研究提供了基礎資訊。
綜上所述,本研究探討蝴蝶蘭異屬雜交技術,優化花粉離體培養與種子無菌播種技術,並建立雜交後代抗病及香氣性狀之篩選與應用方式。未來可以更精確評估因花粉萌芽困難所造成的雜交障礙,以及抗病、香氣等商業優良性狀加速育種,強化台灣蝴蝶蘭在全球市場的競爭力與產業永續發展。
zh_TW
dc.description.abstractPhalaenopsis is an important economic floriculture crop in Taiwan. The intergeneric hybrid between Phalaenopsis and other orchid genera has the potential to introduce new traits and develop novel varieties with enhanced disease resistance, fragrance, and unique colors. This research investigates successive processes during breeding, including in vitro pollen culture in Phalaenopsis, overcoming intergeneric hybrid barriers, optimization of culture medium for asymbiotic germination, and phenotypic assessment of the progeny, including disease resistance and fragrance performance.
The pollen viability test can evaluate the fertility of the paternal parent through viability staining or in vitro pollen culture. Our results indicate that the staining methods overestimate actual germination and pollen tube growth. In contrast, in vitro culture allows direct observation of pollen germination and tube development. However, the medium required species-specific optimization, and the conditions of the pollen would also affect germination. This study optimized the concentrations of sucrose, H3BO3, and Ca(NO3)2·4H2O for Phalaenopsis pollen based on Brewbaker and Kwack medium, and examined the effects of culture temperature, pollen developmental stage, pollen developmental temperature, and pollen density. The optimal medium contained 0% sucrose, 125 mg·L-1 H3BO3, and 100 mg·L-1 Ca(NO3)2·4H2O, with culture at 25°C using pollen from flower buds at the loose-bud stage, prior to heat exposure. Notably, this study is the first to report the pollen population effect in Phalaenopsis, where higher pollen density significantly promoted germination and growth in vitro.
Compatibility and fertility of the crosses were evaluated between Phal. Hualien Pink Apple ‘Hualien No. 1–Pink Apple’ and intergeneric orchids including Rhynchostylis gigantea var. alba and Holcostylis Pink Yawi. Self-pollination in Phalaenopsis led to successful pollen tube growth and seed development. In Rhynchostylis, self-pollination facilitated pollen tube formation but led to 81.2% abnormal embryo development. Crosses between Phalaenopsis and Rhynchostylis exhibited 91.7% abnormal embryo, and the sowing of over 300 seeds from this cross resulted in fewer than 10 germinated seedlings. Application of 1 or 3 μM naphthaleneacetic acid (NAA) facilitated stigma closure and prolonged pollen retention, but did not overcome infertile pollen or post-fertilization barriers. These findings suggest the need for careful parental compatibility selection and suggest embryo rescue techniques as a potential strategy for overcoming hybridization barriers.
To optimize seed germination protocols, various culture media types and cytokinin concentrations (6-benzylaminopurine, BA) were tested. Seeds of Phal. Hualien Pink Apple ×self, the intergeneric hybrid (Phal. Little Gem Stripes ×Holcoglossum amesianum) ×Phal. Hualien Pink Apple, and Renanthera monachica ×self, all germinated better in liquid media than solidified media, with particularly significant improvement in the low-germinating Renanthera. Optimal BA concentrations for Phalaenopsis and its intergeneric hybrids ranged from 0.1 to 0.5 mg·L-1, whereas Renanthera preferred BA-free media.
For disease resistance assessment, Fusarium phalaenopsidis C.L. Wang & W.C. Tsao isolates Ph4, Ph5, Ph15, and the reference strain TJP 2178 10 were used to establish a disease evaluation system for Phalaenopsis yellow leaf disease. Phal. Hualien Pink Apple showed relatively strong resistance and is considered a potential parent for disease resistance breeding. Some intergeneric progenies exhibited enhanced resistance, indicating that wide hybridization is an effective approach for developing disease-resistant cultivars, aligning with the aim of sustainable production.
In crosses where both parents were fragrant, 57.1% of progeny expressed fragrance, while this proportion was below 50% when only one parent was fragrant. Use of Phal. schilleriana as the male parent, also inherited fragrance to the progeny, indicating a non-maternal inheritance pattern. In intergeneric hybrids, Rhynchonopsis Karson’s Viola retained the scent profile of Rhynchostylis coelestis, while Rhnps. Low Elaine exhibited hybrid vigor, with increased diversity and total quantity of volatile compounds compared to either parent. This study provides preliminary insights into the genetic and metabolic basis of fragrance expression in intergeneric hybrids, laying the groundwork for future breeding of fragrant cultivars.
In summary, this research explores intergeneric hybridization techniques in Phalaenopsis, optimizing pollen culture and seed germination protocols, and establishing evaluation systems for disease resistance and fragrance traits in hybrid progeny. These results provide a foundation for overcoming hybridization barriers and accelerating breeding for disease resistance and fragrance characteristics, thereby enhancing the global competitiveness and sustainability of the Phalaenopsis industry in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:16:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:16:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
目次 VII
表次 XIII
圖次 XV
第一章、 前言 1
參考文獻 4
第二章、 前人研究 6
一、 蘭科植物授粉與受精生理特性 6
二、 蘭科植物花粉發芽特性 8
(一) 蘭科植物的花粉型態 8
(二) 親本染色體型態差異影響子代花粉活力 8
(三) 影響蘭科植物花粉體外培養之因子 9
三、 蝴蝶蘭的育種雜交障礙與克服技術 11
(一) 高溫障礙 11
(二) 雜交不親和性 11
(三) 三倍體減數分裂障礙 11
(四) 染色體型態差異 12
(五) 柱頭腔無法閉合 12
(六) 播種技術 13
四、 蝴蝶蘭黃葉病之研究 13
五、 蝴蝶蘭香氣的研究 15
(一) 蝴蝶蘭的香氣分析方式 15
(二) 蝴蝶蘭的香氣成份 16
(三) 異屬遠源雜交導入香氣特性 17
參考文獻 18
第三章、 培養基硼、鈣濃度與群聚效應與蝴蝶蘭花粉體外萌芽 28
摘要 28
Abstract 29
前言 30
材料與方法 32
一、 花粉TTC活力檢測 32
(一) 試驗材料 32
(二) 試驗方法 32
二、 蔗糖、柱頭腔液添加及培養溫度對蝴蝶蘭花粉體外萌芽之影響 33
(一) 試驗材料 33
(二) 試驗方法 33
(三) 花粉培養基之蔗糖濃度試驗 34
(四) 花粉培養基添加柱頭腔液試驗 34
(五) 花粉培養溫度試驗 35
三、 硼和鈣濃度對蝴蝶蘭花粉萌芽的影響 35
(一) 試驗材料 35
(二) 試驗方法 35
四、 蝴蝶蘭花苞發育過程涼溫日數對花粉萌芽率之影響 36
(一) 試驗材料 36
(二) 試驗方法 36
五、 蝴蝶蘭花粉體外萌芽之群聚效應試驗 37
(一) 試驗材料 37
(二) 試驗方法 37
六、 統計分析 37
結果與討論 38
一、 花粉活力檢測 38
二、 花粉體外萌芽培養 39
三、 改良花粉培養基配方之建立 42
四、 蝴蝶蘭花苞發育過程涼溫日數對花粉萌芽率之影響 44
五、 花粉群聚效應對蝴蝶蘭花粉萌芽之影響 46
參考文獻 48
第四章、 蝴蝶蘭屬間雜交之授粉親和性及稔實性 80
摘要 80
Abstract 81
前言 82
材料與方法 84
一、 蝴蝶蘭與狐狸尾蘭屬間雜交授粉親和性及稔實性 84
(一) 植物材料 84
(二) 試驗設計 84
二、 蝴蝶蘭與槽舌狐狸尾屬間雜交授粉親和性及稔實性 85
(一) 植物材料 85
(二) 試驗設計 85
三、 生長調節劑對蘭科植物屬間雜交授粉及果莢發育之影響 85
(一) 參試材料授粉組合 85
(二) 試驗設計 85
結果與討論 86
一、 蝴蝶蘭及狐狸尾蘭屬間雜交授粉親和性 86
二、 蝴蝶蘭及狐狸尾蘭屬間雜交稔實性 88
三、 蝴蝶蘭及槽舌狐狸尾蘭屬間雜交授粉親和性 89
四、 生長調節劑對蘭科植物屬間雜交授粉及果莢發育之效果 90
參考文獻 92
第五章、 植物生長調節劑對蝴蝶蘭及異屬雜交種子無菌播種之影響 112
摘要 112
Abstract 113
前言 114
材料與方法 116
一、 植物生長調節劑對蝴蝶蘭及異屬雜交種子無菌播種之影響 116
結果與討論 116
一、 BA提升蝴蝶蘭及異屬蘭花種子發芽率之表現 116
參考文獻 120
第六章、 蝴蝶蘭異屬雜交後代對黃葉病耐抗性之評估 131
摘要 131
Abstract 132
前言 134
材料與方法 136
一、 蝴蝶蘭黃葉病菌之分離與篩選 136
二、 蝴蝶蘭對黃葉病Ph1-15菌株抗病性比較試驗 138
三、 黃葉病菌株Ph4、Ph5及Ph15對蝴蝶蘭異屬雜交後代罹病表現之影響 140
四、 黃葉病菌株TJP-2178-10對蝴蝶蘭異屬雜交後代罹病表現之影響 141
結果與討論 141
一、 蝴蝶蘭黃葉病菌之分離與篩選 141
二、 蝴蝶蘭對黃葉病Ph1-15菌株抗病性比較試驗 143
三、 黃葉病菌株Ph4、Ph5及Ph15對蝴蝶蘭異屬雜交後代罹病表現之影響 145
四、 黃葉病菌株TJP-2178-10對蝴蝶蘭異屬雜交後代罹病表現之影響 150
參考文獻 153
第七章、 蝴蝶蘭異屬雜交後代香氣分析 203
摘要 203
Abstract 204
前言 206
材料與方法 208
一、 香氣蝴蝶蘭‘花蓮1號–粉蘋果’之香氣分析 208
二、 香氣蝴蝶蘭之香味遺傳 208
(一) 試驗材料 208
(二) 試驗方法 210
三、 蝴蝶蘭異屬雜交後代香氣分析(附錄ⅡI) 211
結果與討論 211
一、 香氣蝴蝶蘭‘花蓮1號–粉蘋果’之香氣分析 211
二、 香氣蝴蝶蘭之香氣遺傳模式 213
三、 異屬雜交香氣蝴蝶蘭雜交後代香氣分析 215
參考文獻 219
第八章、 結論 228
一、 建立適用於蝴蝶蘭的花粉體外萌芽培養條件與證實花粉群聚效應 228
二、 異屬雜交過程中雜交障礙之克服 228
三、 雜交後代之抗病潛力與種子萌發效率提升 229
四、 研究成果之應用 229
附錄I 230
附錄II 231
附錄III 234
-
dc.language.isozh_TW-
dc.subject蘭花zh_TW
dc.subject授粉zh_TW
dc.subject育種zh_TW
dc.subject遠緣雜交zh_TW
dc.subject花粉培養zh_TW
dc.subject群聚效應zh_TW
dc.subject無菌播種zh_TW
dc.subjectpollinationen
dc.subjectaseptic sowingen
dc.subjectpollen population effecten
dc.subjectin vitro pollen cultureen
dc.subjectdistant hybridizationen
dc.subjectbreedingen
dc.subjectorchiden
dc.title蝴蝶蘭屬間雜交、黃葉病抗病性及香氣分析zh_TW
dc.titleIntergeneric hybridization of Phalaenopsis, leaf yellowing disease resistance, and fragrance analysisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李勇毅;陳福旗;謝廷芳;黃光亮;高建元zh_TW
dc.contributor.oralexamcommitteeYung-I Lee;Fure-Chyi Chen;Ting-Fang Hsieh;Kuang-Liang Huang;Chien-Yuan Kaoen
dc.subject.keyword蘭花,授粉,育種,遠緣雜交,花粉培養,群聚效應,無菌播種,zh_TW
dc.subject.keywordorchid,pollination,breeding,distant hybridization,in vitro pollen culture,pollen population effect,aseptic sowing,en
dc.relation.page245-
dc.identifier.doi10.6342/NTU202503927-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2030-08-11-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-11
9.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved