請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪立本 | zh_TW |
| dc.contributor.advisor | Li-Pen Wang | en |
| dc.contributor.author | 江照新 | zh_TW |
| dc.contributor.author | Chao-Hsin Chiang | en |
| dc.date.accessioned | 2025-08-18T16:15:04Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | [1] IEA. Renewables 2024. https://www.iea.org/reports/renewables-2024, 2024. IEA, Paris. Licence: CC BY 4.0.
[2] Nurul Jannah,Teddy Surya Gunawan, Siti Hajar Yusoff, Mohd Shahrin Abu Hanifah, and Siti Nadiah Mohd Sapihie. Recent advances and future challenges of solar power generation forecasting. IEEE Access, 12:168904–168924, 2024. [3] Naylene Fraccanabbia and Viviana Cocco Mariani. Evaluating machine learning in short-term forecasting time series of solar power. Brazilian Journal of Applied Computing, 13(2):105–112, May 2021. [4] Jae Heo, Kwonsik Song, SangUk Han, and Dong-Eun Lee. Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting. Applied Energy, 295:117083, 2021. [5] Tao Fan, Tao Sun, Hu Liu, Xiangying Xie, and Zhixiong Na. Spatial-temporal genetic-based attention networks for short-term photovoltaic power forecasting. IEEE Access, 9:138762–138774, 2021. [6] Rakesh Mondal, Surajit Kr Roy, and Chandan Giri. Solar power forecasting using domain knowledge. Energy, 302:131709, 2024. [7] Dazhi Yang, Jan Kleissl, Christian A. Gueymard, Hugo T.C. Pedro, and Carlos F.M. Coimbra. History and trends in solar irradiance and pv power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168:60–101, 2018. Advances in Solar Resource Assessment and Forecasting. [8] Jun Qin, Hou Jiang, Ning Lu, Ling Yao, and Chenghu Zhou. Enhancing solar pv output forecast by integrating ground and satellite observations with deep learning. Renewable and Sustainable Energy Reviews, 167:112680, 2022. [9] Shuting Zhao, Lifeng Wu, Youzhen Xiang, Jianhua Dong, Zhen Li, Xiaoqiang Liu, Zijun Tang, Han Wang, Xin Wang, Jiaqi An, Fucang Zhang, and Zhijun Li. Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models. Renewable Energy, 198:1049–1064, 2022. [10] P. G. Kosmopoulos, S. Kazadzis, M. Taylor, Alkiviadis F. Bais, K. Lagouvardos, V. Kotroni, I. Keramitsoglou, and C. Kiranoudis. Estimation of the solar energy potential in greece using satellite and ground-based observations. In Theodore Karacostas, Alkiviadis Bais, and Panagiotis T. Nastos, editors, Perspectives on Atmospheric Sciences, pages 1149–1156, Cham, 2017. Springer International Publishing. [11] Yi-Fan Feng. Mapping solar power potential using artificial intelligence with ground observation and reanalysis dataset: A case study of taiwan. Master's thesis, National Taiwan University, Taipei, Taiwan, 2023. [12] Central Weather Administration. Central weather dministration observation data inquire system. https://e-service.cwb.gov.tw/HistoryDataQuery/index. jsp, 2022. Accessed on May 6, 2023; The dataset is no longer available. [13] Central Weather Administration. Central weather administration agricultural meteorological observation network monitoring system. https://agr.cwb.gov.tw/NAGR/history/station_day, 2022. Accessed on May 6, 2023; The dataset is no longer available. [14] J. Muñoz Sabater. Era5-land hourly data from 1950 to present. https://doi.org/10.24381/cds.e2161bac, 2019. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Accessed on October 29, 2024. [15] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J-N. Thépaut. Era5 hourly data on single levels from 1940 to present. https://doi.org/10.24381/cds.adbb2d47, 2023. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Accessed on October 29, 2024. [16] H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, and J-N. Thépaut. Era5 hourly data on pressure levels from 1940 to present. https://doi.org/10.24381/cds.bd0915c6, 2023. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Accessed on October 29, 2024. [17] European Centre for Medium-Range Weather Forecasts. Era5-land: data documentation. https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation#heading-Accumulations, 2024. ECMWF, Accessed on October 8, 2024. [18] Taiwan Power Company. Daily power generation of wind and solar energy. https://data.gov.tw/dataset/17140, 2024. Accessed on August 2024; The dataset no longer available. [19] Taiwan Power Company. Daily solar power generation and average unit capacity statistics. https://data.gov.tw/dataset/29938, 2024. Accessed on July 2024. [20] Taiwan Power Company. Renewable energy site information. https://data.gov.tw/dataset/17141, 2024. Accessed on August 2024. [21] Google Maps. Google maps coordinate lookup. https://www.google.com/maps, 2024. Accessed on September 2024. [22] Georges Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266, 1963. [23] Clayton V. Deutsch. Correcting for negative weights in ordinary kriging. Computers Geosciences, 22(7):765–773, 1996. [24] Gordon Hudson and Hans Wackernagel. Mapping temperature using kriging with external drift: Theory and an example from scotland. International Journal of Climatology, 14(1):77–91, 1994. [25] Scott Sinclair and Geoff Pegram. Combining radar and rain gauge rainfall estimates using conditional merging. Atmospheric Science Letters, 6(1):19–22, 2005. [26] Michel Journée, Richard Müller, and Cédric Bertrand. Solar resource assessment in the benelux by merging meteosat-derived climate data and ground measurements. Solar Energy, 86(12):3561–3574, 2012. Solar Resources. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98726 | - |
| dc.description.abstract | 在太陽能全球化發展的趨勢下,太陽能潛勢預測面臨日益差異化的地面天氣資料觀測條件。地面觀測資料為傳統上最準確的天氣資料來源,然而其空間分布不均,使作為預測主要輸入的天氣資料在可靠性上產生疑慮。本研究旨在探討氣象輸入資料的品質如何影響預測結果,進而提升太陽能潛勢預測的整體可靠性。
本研究採用兩種天氣資料來源:中央氣象署地面觀測資料 (點資料) 與 ERA5 重分析資料 (格點資料),並設計八種天氣輸入組合,涵蓋單一來源、雙資料來源使用策略 (包含平行化輸入、Kriging with External Drift 與 Kriging with Radar-Based Error Correction 兩種資料融合技術) 及關鍵地面變數的納入與否。預測模型採用長短期記憶 (LSTM) 神經網路,並在相同模型架構與訓練流程下進行系統性比較分析。為模擬全球不同地區的觀測資源差異,進一步設計十三種地面觀測密度情境,並評估各輸入組合於不同情境下之預測表現。 研究結果指出,在使用單一資料來源的情況下,地面觀測資料於太陽能潛勢預測的優勢範圍約為氣象站距離小於 75 公里;而當觀測資源稀缺時,格點資料則展現出良好的穩定性與應用潛力。在 50–75 公里這一關鍵距離範圍內,雙資料來源策略的表現優於僅使用格點資料,其中以平行化輸入法效果最佳,其次為 KRE 融合方法。此外,研究亦發現三項地面觀測專屬變數:日照率、日照時數與最大紫外線指數,對於提升預測精度具有正面效益。 | zh_TW |
| dc.description.abstract | Under the global trend of solar energy development, solar power potential prediction faces increasingly diverse ground weather observation conditions. Although ground-based weather data are traditionally the most accurate source, their uneven spatial distribution raises concerns regarding the reliability of weather inputs for prediction. This study aims to examine how the quality of weather inputs affects prediction outcomes, in order to improve the overall reliability of solar power potential prediction.
Two sources of weather data were used: point-based observations from the Central Weather Administration (CWA) and gridded ERA5-reanalysis data. Eight input combinations were designed to represent different strategies, including single-source inputs, dual-source approaches (parallel input and two data merging techniques: Kriging with External Drift [KED], and Kriging with Radar-Based Error Correction [KRE]), and inclusion of key ground-based variables. A Long Short-Term Memory (LSTM) neural network was employed as the prediction model, and all combinations were evaluated under the same model architecture and training procedure. To simulate varying observational resource conditions worldwide, 13 weather station density scenarios were further constructed to assess performance under different levels of data availability. The results show that ground-based data outperform gridded data when the distance to the nearest station is less than 75 km. When observational resources are limited, ERA5 gridded data demonstrates better stability and applicability. Within the critical 50--75~km range, dual-source strategies showed better performance than gridded-only inputs, with the parallel input method yielding the best performance, followed by the KRE data merging method. In addition, three CWA-specific variables: sunshine duration, sunshine percentage, and maximum UV index were found to have positive effects on prediction accuracy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:15:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:15:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iv Abstract vi Contents viii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Aim and Objectives 4 Chapter 2 Study Area and Datasets 7 2.1 Study Area 7 2.2 Weather Data Sets 7 2.2.1 Ground Weather Data 7 2.2.2 Gridded Weather Data 9 2.3 Solar Power Generation Data 11 Chapter 3 Methodology 13 3.1 Overview 13 3.2 Weather Variables Input Combinations 16 3.2.1 Weather Variable Estimation Methods 16 3.2.1.1 Kriging Interpolation 16 3.2.1.2 Kriging with External Drift 20 3.2.1.3 Kriging with Radar-Based Error Correction (KRE) 22 3.2.1.4 Directly Using Gridded Data 23 3.2.2 Variables Using and Strategy for Each Combinations 23 3.3 Ground Weather Station Filtering Scenarios 25 3.4 Unified Potential Prediction Model Training Process 26 3.5 Evaluation of Prediction Performance under Different Weather Input Combination 27 3.5.1 Evaluation Metric 28 Chapter 4 Results and Discussion 29 4.1 Overview 29 4.2 Comparison of Single-Source Weather Inputs: S1 vs. S2 30 4.3 Comparison of Dual-Source Weather Input Strategies (S3 vs. S4 vs. S5) 32 4.4 Impact of Key Ground-Only Variables (S3 vs. S6, S4 vs. S7, S5 vs. S8) 34 4.5 Final Comparison: S1 Ground-Only vs. S6—S8 Dual-Source Inputs with Key Ground-Only Variables 35 4.6 Consideration of Model Uncertainty and Data Bias (Extended in Appendix) 37 Chapter 5 Conclusion 39 References 43 Appendix A — Data Bias and Model Uncertainty 47 A.1 Overview 47 A.2 Results from Other Shuffle Seeds for Inputs S1, S3, S4, and S5 49 A.3 Results from Other Shuffle Seeds for Inputs S1, S6, S7, and S8 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 太陽能發電 | zh_TW |
| dc.subject | 發電潛勢 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | 資料融合 | zh_TW |
| dc.subject | 地面氣象資料 | zh_TW |
| dc.subject | 格點天氣資料 | zh_TW |
| dc.subject | 天氣站距離 | zh_TW |
| dc.subject | data merging | en |
| dc.subject | power potential | en |
| dc.subject | prediction model | en |
| dc.subject | weather station distance | en |
| dc.subject | gridded weather data | en |
| dc.subject | ground weather data | en |
| dc.subject | solar power | en |
| dc.title | 探索資料融合技術應用於多元天氣資料預測太陽能發電之潛力 | zh_TW |
| dc.title | Predicting Solar Power Potential Using Multiple Weather Data Sources: Exploring Data Merging Techniques | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝依芸 | zh_TW |
| dc.contributor.coadvisor | I-Yun Lisa Hsieh | en |
| dc.contributor.oralexamcommittee | 張書瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Wei Chang | en |
| dc.subject.keyword | 太陽能發電,發電潛勢,預測模型,資料融合,地面氣象資料,格點天氣資料,天氣站距離, | zh_TW |
| dc.subject.keyword | solar power,power potential,prediction model,data merging,ground weather data,gridded weather data,weather station distance, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202503010 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
