請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥甫 | zh_TW |
| dc.contributor.advisor | Yan-Fu Kuo | en |
| dc.contributor.author | 張愷容 | zh_TW |
| dc.contributor.author | Kai-Rong Chang | en |
| dc.date.accessioned | 2025-08-18T16:14:38Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Agricultural Statistics Yearbook. (2023). Ministry of Agriculture, Executive Yuan, Taiwan Animal and Plant Epidemics. (2024).
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September). Simple online and realtime tracking. In 2016 IEEE international conference on image processing (ICIP) (pp. 3464-3468). Ieee. Bist, R. B., Subedi, S., Yang, X., & Chai, L. (2023). Automatic detection of cage-free dead hens with deep learning methods. AgriEngineering, 5(2), 1020-1038. Bloch, V., Barchilon, N., Halachmi, I., & Druyan, S. (2020). Automatic broiler temperature measuring by thermal camera. Biosystems Engineering, 199, 127-134. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. Cangar, Ö., Aerts, J. M., Buyse, J., & Berckmans, D. (2008). Quantification of the spatial distribution of surface temperatures of broilers. Poultry science, 87(12), 2493-2499. Chang, C. L., Xie, B. X., & Wang, C. H. (2020). Visual guidance and egg collection scheme for a smart poultry robot for free-range farms. Sensors, 20(22), 6624. Chen, B. L., Cheng, T. H., Huang, Y. C., Hsieh, Y. L., Hsu, H. C., Lu, C. Y., ... & Kuo, Y. F. (2023). Developing an automatic warning system for anomalous chicken dispersion and movement using deep learning and machine learning. Poultry Science, 102(12), 103040. Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(34), 445-453. Dawkins, M. S., Wang, L., Ellwood, S. A., Roberts, S. J., & Gebhardt-Henrich, S. G. (2021). Optical flow, behaviour and broiler chicken welfare in the UK and Switzerland. Applied Animal Behaviour Science, 234, 105180. FAOSTAT. (2024). Food and Agriculture Organization of the United Nations. FAOSTAT. http://www.fao.org/faostat/en/?#data Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Kashiha, M. A., Bahr, C., Vranken, E., Hong, S. W., & Berckmans, D. (2014, July). Monitoring system to detect problems in broiler houses based on image processing. In Proceedings of the International Conference of Agricultural Engineering (pp. 6-10). Li, G., Zhao, Y., Purswell, J. L., Du, Q., Chesser Jr, G. D., & Lowe, J. W. (2020). Analysis of feeding and drinking behaviors of group-reared broilers via image processing. Computers and Electronics in Agriculture, 175, 105596. Lin, C. Y., Hsieh, K. W., Tsai, Y. C., & Kuo, Y. F. (2020). Automatic monitoring of chicken movement and drinking time using convolutional neural networks. Transactions of the ASABE, 63(6), 2029-2038. Liu, H. W., Chen, C. H., Tsai, Y. C., Hsieh, K. W., & Lin, H. T. (2021). Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm. Sensors, 21(11), 3579. Lott, B., Simmons, J., & May, J. (1998). Air velocity and high temperature effects on broiler performance. Poultry science, 77(3), 391-393. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., & Schindler, K. (2016). MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831. Muvva, V. V., Zhao, Y., Parajuli, P., Zhang, S., Tabler, T., & Purswell, J. (2018). Automatic identification of broiler mortality using image processing technology. In 10th International Livestock Environment Symposium (ILES X) (p. 1). American Society of Agricultural and Biological Engineers. Purswell, J. L., Dozier III, W. A., Olanrewaju, H. A., Davis, J. D., Xin, H., & Gates, R. S. (2012). Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. In 2012 IX International Livestock Environment Symposium (ILES IX) (p. 3). American Society of Agricultural and Biological Engineers. Siriani, A. L. R., Kodaira, V., Mehdizadeh, S. A., de Alencar Nääs, I., de Moura, D. J., & Pereira, D. F. (2022). Detection and tracking of chickens in low-light images using YOLO network and Kalman filter. Neural Computing and Applications, 34(24), 21987-21997. Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475). Wang, C. Y., Yeh, I. H., & Mark Liao, H. Y. (2024, September). Yolov9: Learning what you want to learn using programmable gradient information. In European conference on computer vision (pp. 1-21). Cham: Springer Nature Switzerland. Wang, W. (2023) X-AnyLabeling. https://github.com/CVHub520/X-AnyLabeling Yeh, Y. H., Chen, B. L., Hsieh, K. Y., Huang, M. H., & Kuo, Y. F. (2025). Designing an Autonomous Robot for Monitoring Open-Mouth Behavior of Chickens in Commercial Chicken Farms. Journal of the ASABE, 68(1), 25-36. Zhang, X., Zhang, Y., Geng, J., Pan, J., Huang, X., & Rao, X. (2022). Feather damage monitoring system using rgb-depth-thermal model for chickens. Animals, 13(1), 126. Zhuang, X., & Zhang, T. (2019). Detection of sick broilers by digital image processing and deep learning. Biosystems Engineering, 179, 106-116. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98724 | - |
| dc.description.abstract | 雞隻是全球重要的動物性蛋白來源。在臺灣,台灣土雞因其肉質佳而備受青睞,但其長達十二週的飼養期,造成如果在養殖期間發生疾病肆虐或環境問題,可能造成業者重大經濟損失。傳統上,養雞業者依賴人工的方式,觀察雞群散佈情形以及活動狀況,來評估雞隻健康。然而,此方式不僅耗時費力,亦因人員頻繁進出雞舍而增加疾病傳播風險。為解決上述問題,本研究所開發的自動化軌道式監測系統,包含軌道、智慧監視模組、雞隻偵測模型、散佈程度量化演算法、活動力量化演算法以及低溫雞隻偵測演算法。智慧監視模組包含雙通道攝影機,架設於40公尺的軌道上,在每日進行來回移動的過程中,於九個固定停靠點蒐集可見光及熱影像資料。為確保資料穩定傳輸與模組即時通訊,雞舍內建置了Wi-Fi 網狀網路,透過快速且穩定的網路連線,將資料傳輸到雲端伺服器進行儲存。雞隻偵測模型用於偵測可見光影像中的雞隻位置;散佈程度量化演算法整合雞隻偵測結果以及最近鄰演算法量化雞隻散佈程度;活動力量化演算法使用simple online and realtime tracking (SORT)演算法根據影像中雞隻位置量化活動力;低溫雞隻偵測演算法結合同時間拍攝的可見光影像以及熱影像和雞隻偵測結果與動態溫度閾值進行低溫雞隻檢測。結果顯示,軌道式監測系統在雞隻偵測上準確率達到 95.8%,平均精度達94.3%。於多目標追蹤準確率上93.9%,並透過分析量化的散佈程度以及活動力量值發現雞隻行為、環境溫度以及養殖的區域具有明顯相關性。此外,本研究亦成功檢測出體溫異常低下之死亡個體。本研究所提出的軌道式監控系統可於實際飼養環境中進行雞隻以及環境的監控,有助於提升飼養管理效率、促進雞隻福祉,於降低人力需求的同時,可以更有效的管理雞舍。 | zh_TW |
| dc.description.abstract | Chickens are a vital source of animal protein worldwide. In Taiwan, Taiwan Native Chickens (TNCs) are particularly valued for their meat quality but require a long rearing period of up to 12 weeks. Any health or environmental disturbances during this period can result in significant economic losses. Traditionally, chicken farmers conduct manual inspections to monitor flock health through observation of dispersion and activity levels. However, this approach is labor-intensive, inefficient, and increases the risk of disease introduction due to frequent human entry into the chicken houses. To overcome these challenges, this study developed an automated rail-based monitoring system that integrates a smart rail surveillance module with chicken detection model (CDM), dispersion quantification algorithm (DQA), movement quantification algorithm (MQA), and hypothermal detection algorithm (HDA) to monitor chickens in a commercial farming environment. The system operated along a 40-meter monorail and collected RGB and thermal images at nine fixed locations. To ensure data transmission and system communication, a 5G Wi-Fi Mesh network was deployed, providing stable, high-speed wireless connectivity throughout the chicken house. The results showed the CDM could accurately detect chickens with a precision of 95.8% and an average precision (AP) of 94.3%. The MQA achieved a Multiple Object Tracking Accuracy (MOTA) of 93.9%. Additionally, the HDA successfully identified hypothermic chickens by estimating body surface temperature from thermal images, using spatial alignment of RGB and thermal images and dynamic thresholding techniques. A clear relationship was observed between temperature and chicken behavior through the analyzation of quantification results. This automated and objective system demonstrated reliable performance under real-world conditions, offering a practical tool to enhance farm management, improve animal welfare, and enable early detection of potential health issues in commercial poultry operations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:14:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:14:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS ii
摘要 iii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Organization 3 CHAPTER 2. LITERATURE REVIEW 4 2.1 Traditional approach of chicken monitoring 4 2.2 Image processing approaches for chicken health monitoring 4 2.3 Deep learning approaches for chicken localization and tracking 5 2.4 Integration of mobile robot with deep learning approaches for chicken monitoring 6 CHAPTER 3. MATERIALS AND METHODS 8 3.1 System overview 8 3.2 Experimental site 8 3.3 Smart surveillance module 10 3.4 Data acquisition and annotation 12 3.5 Chicken detection 13 3.6 Image calibration and registration of the dual channel camera 13 3.7 Quantification of chicken dispersion and movement 14 3.8 Chicken hypothermia detection 15 CHAPTER 4. RESULTS AND DISCUSSION 17 4.1 Performance of CDM 17 4.2 Performance of MQA 18 4.3 Analysis on temporal chicken dispersion and movement 18 4.4 Analysis on spatial chicken dispersion and movement 22 4.5 Performance of HDA 24 CHAPTER 5. CONCLUSIONS 28 5.1 Summary 28 5.2 Future work 28 REFERENCES 29 | - |
| dc.language.iso | en | - |
| dc.subject | 雙通道攝影機 | zh_TW |
| dc.subject | 軌道式監視系統 | zh_TW |
| dc.subject | YOLO模型 | zh_TW |
| dc.subject | SORT演算法 | zh_TW |
| dc.subject | 機器視覺 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 臺灣土雞 | zh_TW |
| dc.subject | Rail surveillance system | en |
| dc.subject | Taiwan native chicken | en |
| dc.subject | Convolutional neural network | en |
| dc.subject | Machine vision | en |
| dc.subject | Simple online and real-time tracking | en |
| dc.subject | You only look once | en |
| dc.subject | Dual channel camera | en |
| dc.title | 應用深度學習與軌道式監控系統於雞舍之監測 | zh_TW |
| dc.title | Monitoring Chicken House Using Rail Surveillance System and Deep Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱玟霖;陳志維;謝明昆;謝廣文;李文宗 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Lin Chu;Zhi-Wei Chen;Ming-Kun Hsieh;Kuang-Wen Hsieh;Wen-Tzong Lee | en |
| dc.subject.keyword | 雙通道攝影機,軌道式監視系統,YOLO模型,SORT演算法,機器視覺,卷積神經網路,臺灣土雞, | zh_TW |
| dc.subject.keyword | Dual channel camera,Rail surveillance system,You only look once,Simple online and real-time tracking,Machine vision,Convolutional neural network,Taiwan native chicken, | en |
| dc.relation.page | 32 | - |
| dc.identifier.doi | 10.6342/NTU202503773 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
