Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98709
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲zh_TW
dc.contributor.advisorJen-Jer Jawen
dc.contributor.author莊芷瑄zh_TW
dc.contributor.authorJhih-Syuan Jhuangen
dc.date.accessioned2025-08-18T16:11:17Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation王祖鎧,2018。以光學二維影像輔助三維空間點雲之人工智慧自動建模技術,國立中央大學光電科學與工程學系碩士論文,桃園市。
王淼,湯凱佩,曾義星,2004。光達資料八分樹結構化與平面特徵萃取,航測及遙測學刊,10(1),59-70。
內政部,2019。108 年度三維近似化建物模型建置工作總報告。
內政部,2023。112 年度三維建物模型更新及精進工作總報告。
內政部,2024。111-112 年度無人載具實證運用高精地圖測製工作總報告。
Alexiou, E., Zhou, X., Viola, I., & Cesar, P., 2024. PointPCA: point cloud objective quality assessment using PCA-based descriptors. EURASIP Journal on Image and Video Processing, 2024(1), 20.
Bassier, M., Vergauwen, M., & Poux, F., 2020. Point cloud vs. mesh features for building interior classification. Remote Sensing, 12(14), 2224.
Gao, Z., Yan, J., Zhai, G., Zhang, J., & Yang, X., 2022. Robust mesh representation learning via efficient local structure-aware anisotropic convolution. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8566-8578.
Corsia, M., Chabardes, T., Bouchiba, H., & Serna, A., 2020. Large scale 3D point cloud modeling from CAD database in complex industrial environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 391-398.
Cui, L., Zhang, G., & Wang, J., 2021. Hole repairing algorithm for 3d point cloud model of symmetrical objects grasped by the manipulator. Sensors, 21(22), 7558.
Hastedt, H., & Luhmann, T., 2015. Investigations on the quality of the interior orientation and its impact in object space for UAV photogrammetry. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 321-328.
Hirschmüller, H., 2007. Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328-341.
Javaheri, A., Brites, C., Pereira, F., & Ascenso, J., 2022. Joint geometry and color projection-based point cloud quality metric. IEEE Access, 10, 90481-90497.
Jhuang, J.S., & Jaw, J.J., 2024. Toward a future design of point cloud processing platform, presented at the 2024 International Symposium on Remote Sensing, Taichung, Taiwan, Apr. 24–Apr. 26, 2024.
Jhuang, J.S., & Jaw, J.J., 2024. Mesh models as enhancements to point cloud-based surveying and mapping, presented at the 45th Asian Conference on Remote Sensing, Colombo, Sri Lanka, Nov. 17–Nov. 21, 2024, Paper ACRS0122.
Liu, Y., Yang, Q., Xu, Y., & Yang, L., 2023. Point cloud quality assessment: dataset construction and learning-based no-reference metric. ACM Transactions on Multimedia Computing, Communications and Applications, 19(2s), 1-26.
Park, H., & Lee, D., 2019. Comparison between point cloud and mesh models using images from an unmanned aerial vehicle. Measurement, 138, 461-466.
Qi, C. R., Su, H., Mo, K., & Guibas, L. J., 2017a. Pointnet: deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652-660.
Qi, C. R., Yi, L., Su, H., & Guibas, L. J., 2017b. Pointnet++: deep hierarchical feature learning on point sets in a metric space. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5105-5114.
Rusinkiewicz, S., & Levoy, M., 2001. Efficient variants of the ICP algorithm. In Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 145-152.
Rusu, R. B., Blodow, N., Marton, Z., Soos, A., & Beetz, M., 2007. Towards 3D object maps for autonomous household robots. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3191-3198.
Smistad, E., Falch, T. L., Bozorgi, M., Elster, A. C., & Lindseth, F., 2015. Medical image segmentation on GPUs–A comprehensive review. Medical Image Analysis, 20(1), 1-18.
Vo, A. V., Truong-Hong, L., Laefer, D. F., & Bertolotto, M., 2015. Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 88-100.
Xu, C., Yang, S., Galanti, T., Wu, B., Yue, X., Zhai, B., Zhan, W., Vajda, P., Keutzer, K. & Tomizuka, M., 2022. Image2point: 3D point-cloud understanding with 2D image pretrained models. In Proceedings of European Conference on Computer Vision, pp. 638-656.
Yang, Y.C., Chiou, Y.P., & Jaw, J.J., 2023. Topographic features in photogrammetric point clouds. 2023 International Symposium on Remote Sensing, Jeju, Korea.
Zhang, H., Wang, C., Yu, L., Tian, S., Ning, X., & Rodrigues, J., 2024. PointGT: a method for point-cloud classification and segmentation based on local geometric transformation. IEEE Transactions on Multimedia, 26, 8052-8062.
Zhang, Z., Sun, W., Min, X., Wang, T., Lu, W., & Zhai, G., 2022. No-reference quality assessment for 3D colored point cloud and mesh models. IEEE Transactions on Circuits and Systems for Video Technology, 32(11), 7618-7631.
Zhou, W., Peng, R., Dong, J., & Wang, T., 2018. Automated extraction of 3D vector topographic feature line from terrain point cloud. Geocarto International, 33(10), 1036-1047.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98709-
dc.description.abstract現有光學點雲測繪軟體與實務操作流程中多忽略品質資訊的記錄與回饋,缺乏明確判斷依據與客觀品質標準。本研究旨在解決光學點雲測繪中品質資訊不足的問題,建構一套品質導向的測繪框架,實現「圖資測繪+品質資訊」的雙重輸出,提升點雲資料的可靠度與應用效能。為闡述核心理念及簡化圖資標的,本研究現階段以建物為主要測繪對象,基於Open3D與PySide6建構使用者友善的互動式測繪平台,導入四項核心策略:(1)系統性誤差檢查:透過外部資料比對確保空間準確性;(2)測繪困難區偵測:建立偵測、篩選與標示策略,協助使用者檢視潛在高風險區域並採取適當測繪決斷;(3)影像倒投影:基於共線方程式建立物空間與像平面幾何關係,分為診斷性與驗證性兩種應用。診斷性倒投影將測繪困難區位置投影回原始影像,協助辨識匹配失敗或資料缺失成因;驗證性倒投影結合誤差傳播分析,除了檢視影像倒投影位置之外,亦計算像點位置標準差及參數誤差影響量分析,提供完整的量測成果精度查驗及誤差分析;(4)重複量測及品質計算:提供點位精度與穩定性指標。
本研究所設計之光學點雲測繪平台功能發揮測繪品質的監控與分析體系,形成多策略整合框架於互動式視覺化平台靈活運作。最重要者,本研究工作補足點雲測繪中長期被忽略的品質拼圖,藉此提供系統性決策支援機制,提升測繪成果的可靠度與應用價值。
zh_TW
dc.description.abstractCurrent point cloud surveying and mapping software and operational workflows often neglect quality information recording and feedback, lacking clear judgment criteria and objective quality standards. This study aims to address the problem of insufficient quality information in photogrammetric point cloud surveying and mapping by establishing a quality-oriented surveying and mapping methodological framework that achieves dual output of "mapping results + quality information," enhancing the reliability and application efficiency of point cloud data. For the simplicity and elaborating the effort on the key issues, the research focuses on buildings as the primary mapping objects and constructs a user-friendly interactive measurement platform based on Open3D and PySide6, implementing four core strategies: (1) Checking systematic error: ensuring spatial accuracy through comparison with external data; (2) Detecting difficult area of surveying and mapping: establishing detection, filtering, and marking strategies to assist users in examining potentially high-risk areas, thus making appropriate decision ; (3) Image reprojection: establishing geometric relationships between object space and image space based on collinearity equations supporting two applications. Diagnostic reprojection projects surveying and mapping difficulty areas back to original images to help identify causes of matching failures or data deficiencies; verificative reprojection, on the other hand, combines error propagation analysis to calculate image point coordinates as well as their standard deviations and offer the error analysis for a complete accuracy assessment; (4) Repeated measurement and quality calculation: providing point accuracy and stability indicators.
The research outcomes include a quality monitoring and analysis system, forming a multi-strategy integrated framework, and developing an interactive visualization platform. Last but not least, this study fills the long-neglected quality puzzle in point cloud surveying and mapping, providing systematic decision support mechanisms and enhancing the reliability and application value of surveying and mapping results.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:11:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:11:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法與流程 8
1.3 論文架構 9
第二章 文獻回顧 10
2.1 點雲品質指標 10
2.2 多元資料協作應用 11
2.3 點雲測繪平台現況 12
2.4 點雲自動化萃取現狀與人工干預必要性 13
2.5 補足光學點雲測繪基礎重要內涵 14
第三章 研究方法 15
3.1 使用者友善測繪平台設計 15
3.2 系統性誤差檢查 19
3.3 測繪困難區偵測 21
3.3.1 幾何複雜區 23
3.3.1.1 資料前處理與空間切割策略—定義鄰域 23
3.3.1.2 PCA 特徵指標篩選(綜合論述) 27
3.3.1.3 本研究採用之PCA特徵指標 30
3.3.1.4 多特徵整合與困難度評估 35
3.3.2 破洞與缺漏區 38
3.3.2.1 點雲前處理(濾除雜點(或稱異常點)) 40
3.3.2.2 破洞候選點偵測 40
3.3.2.3 點群分群與連接 43
3.3.2.4 破洞與建物邊緣分類 46
3.4 影像倒投影(Image Reprojection) 47
3.4.1 資料準備 48
3.4.1.1 影像倒投影基本資料需求 48
3.4.1.2 精度分析的資料需求 49
3.4.1.3 各類參數的資料準備 50
3.4.1.4 方差-協方差矩陣的建構與管理 52
3.4.2 無畸變影像產製 53
3.4.3 影像倒投影主要計算流程 55
3.4.4 誤差傳播計算 56
3.5 重複量測及品質計算 58
3.6 品質與資料屬性 59
第四章 平台功能展示與討論 62
4.1 測區基本資料 62
4.2 使用者友善測繪平台設計 64
4.3 系統性誤差檢查 69
4.4 測繪困難區偵測 74
4.4.1 幾何複雜區 75
4.4.1.1 視覺化分析與互動介面 75
4.4.1.2 Difficulty Score測試區分析 77
4.4.1.3 參數配置與調適機制 80
4.4.2 破洞與缺漏區 81
4.4.2.1 計算結果展示 81
4.4.2.2 視覺化分析與互動介面 87
4.4.2.3 參數配置與調適機制 89
4.5 影像倒投影 91
4.5.1 診斷性倒投影 91
4.5.1.1 平台架構與功能成果 91
4.5.1.2 視覺化分析成果 92
4.5.1.3 小結 95
4.5.2 驗證性倒投影 96
4.5.2.1 平台架構與功能成果 96
4.5.2.2 視覺化分析成果 96
4.5.2.3 小結 104
4.6 重複量測及品質計算 104
第五章 結論與建議 106
5.1 結論 106
5.2 建議 108
5.2.1 改進方向 108
5.2.2 未來研究方向 109
參考文獻 111
附錄A 114
-
dc.language.isozh_TW-
dc.subject品質資訊zh_TW
dc.subject光學點雲zh_TW
dc.subject互動式平台zh_TW
dc.subject誤差分析zh_TW
dc.subject測繪困難區zh_TW
dc.subjectInteractive platformen
dc.subjectError analysisen
dc.subjectDifficult area of surveying and mappingen
dc.subjectQuality informationen
dc.subjectPhotogrammetric point clouden
dc.title光學點雲測繪導入品質資訊與互動式策略-以建物為例zh_TW
dc.titleIntegrating Quality Information and Interactive Strategy for Building Measurement in Photogrammetric Point Clouden
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡展榮;邱式鴻;莊子毅zh_TW
dc.contributor.oralexamcommitteeJaan-Rong Tsay;Shih-Hong Chio;Tzu-Yi Chuangen
dc.subject.keyword光學點雲,品質資訊,測繪困難區,誤差分析,互動式平台,zh_TW
dc.subject.keywordPhotogrammetric point cloud,Quality information,Difficult area of surveying and mapping,Error analysis,Interactive platform,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202504227-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved