請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98688完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯嘉洪 | zh_TW |
| dc.contributor.advisor | Chia-Hung Hou | en |
| dc.contributor.author | 陳怡瑋 | zh_TW |
| dc.contributor.author | I-Wei Chen | en |
| dc.date.accessioned | 2025-08-18T16:06:13Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849. https://doi.org/10.1002/ente.201600747
Ali, M. A. B., Rakib, M., Laborie, S., Viers, P., & Durand, G. (2004). Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate. Journal of Membrane Science, 244(1), 89-96. https://doi.org/10.1016/j.memsci.2004.07.007 Aliaskari, M., Wezstein, J., Saravia, F., & Horn, H. (2024). A systematic analysis of operating parameters for CO2 capture from seawater by bipolar membrane electrodialysis (BPMED). Separation and Purification Technology, 339, 126679. https://doi.org/10.1016/j.seppur.2024.126679 Alrashidi, A., Aleisa, E., & Alshayji, K. (2024). Life cycle assessment of hybrid electrodialysis and reverse osmosis seawater desalination systems. Desalination, 578. Bazinet, L., Ippersiel, D., & Mahdavi, B. (2004). Fractionation of whey proteins by bipolar membrane electroacidification. Innovative Food Science & Emerging Technologies, 5(1), 17-25. https://doi.org/10.1016/j.ifset.2003.10.001 Bazinet, L., & Shee, F. (2008). Method for transforming polysaccharides into oligosaccharides with bipolar membrane electrodialysis. Beh, E. S., Benedict, M. A., Desai, D., & Rivest, J. B. (2019). A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustainable Chemistry & Engineering, 7(15), 13411-13417. https://doi.org/10.1021/acssuschemeng.9b02720 Bi, J., Chen, T., Xie, Y., Shen, R., Li, B., Sun, M., Guo, X., & Zhao, Y. (2024). Bipolar membrane electrodialysis integrated with in-situ CO2 absorption for simulated seawater concentrate utilization, carbon storage and production of sodium carbonate. Journal of Environmental Sciences, 142, 21-32. https://doi.org/10.1016/j.jes.2023.11.014 Bui, J. C., Lucas, É., Lees, E. W., Liu, A. K., Atwater, H. A., Xiang, C., Bell, A. T., & Weber, A. Z. (2023). Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energy & Environmental Science, 16(11), 5076-5095. https://doi.org/10.1039/d3ee01606d Butler, J. N. (1991). Carbon Dioxide Equilibria and Their Applications. https://doi.org/10.1201/9781315138770 Cha, A., Loh, J., & Crowley, C. (2006). Shelf-stable acidified food compositions and methods for their preparation. Chen, F. M., Wang, J., Feng, C. H., Ma, J. X., & Waite, T. D. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401. Chen, T., Bi, J., Zhao, Y., Du, Z., Guo, X., Yuan, J., Ji, Z., Liu, J., Wang, S., Li, F., & Wang, J. (2022). Carbon dioxide capture coupled with magnesium utilization from seawater by bipolar membrane electrodialysis. Science of The Total Environment, 820, 153272. https://doi.org/10.1016/j.scitotenv.2022.153272 Chen, W., Grimberg, S., Rogers, S., & Kim, T. (2021). Ammonia recovery from domestic wastewater using a proton-mediated redox couple. ACS Sustainable Chemistry & Engineering, 9(37), 12699-12707. https://doi.org/10.1021/acssuschemeng.1c05144 Cheng, C. Y., Chen, T. H., Chen, K. Y., Ma, J. X., & Hou, C. H. (2022). Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination, 534. Davis, J. R., Chen, Y., Baygents, J. C., & Farrell, J. (2015). Production of acids and bases for ion exchange regeneration from dilute salt solutions using bipolar membrane electrodialysis. ACS Sustainable Chemistry & Engineering, 3(9), 2337-2342. https://doi.org/10.1021/acssuschemeng.5b00654 Digdaya, I. A., Sullivan, I., Lin, M., Han, L., Cheng, W.-H., Atwater, H. A., & Xiang, C. (2020). A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. Nature Communications, 11(1), 4412. https://doi.org/10.1038/s41467-020-18232-y Eisaman, M. D., Alvarado, L., Larner, D., Wang, P., Garg, B., & Littau, K. A. (2011). CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 4(4), 1319-1328. https://doi.org/10.1039/C0EE00303D Eisaman, M. D., Alvarado, L., Larner, D., Wang, P., & Littau, K. A. (2011). CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 4(10), 4031-4037. https://doi.org/10.1039/C1EE01336J Eisaman, M. D., Parajuly, K., Tuganov, A., Eldershaw, C., Chang, N., & Littau, K. A. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy & Environmental Science, 5(6), 7346-7352. https://doi.org/10.1039/C2EE03393C Emerson, S., & Hedges, J. (2008). Chemical oceanography and the marine carbon cycle. Cambridge University Press. Ferrer, J. J., Laborie, S., Durand, G., & Rakib, M. (2006). Formic acid regeneration by electromembrane processes. Journal of Membrane Science, 280(1-2), 509-516. Gomez-Villalba, L. S., Sierra-Fernandez, A., Quintana, P., Rabanal, M. E., & Fort, R. (2018). Correlation between microstructure and cathodoluminescence properties of Mg(OH)2 (brucite) nanoparticles: effect of synthesis method. CrystEngComm, 20(37), 5632-5640. https://doi.org/10.1039/C8CE00942B Heijne, A. T., Liu, F., Weijden, R. v. d., Weijma, J., Buisman, C. J. N., & Hamelers, H. V. M. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44(11), 4376-4381. https://doi.org/10.1021/es100526g Hofmann, M., & Schellnhuber, H. J. (2010). Ocean acidification: a millennial challenge. Energy & Environmental Science, 3(12), 1883-1896. https://doi.org/10.1039/C000820F Hou, X. H., Liang, Q., Hu, X. Q., Zhou, Y., Ru, Q., Chen, F. M., & Hu, S. J. (2018). Coupling desalination and energy storage with redox flow electrodes. Nanoscale, 10(26), 12308-12314. https://doi.org/10.1039/c8nr02737d Hwang, C. W., Jeong, M. H., Kim, Y. J., Son, W. K., Kang, K. S., Lee, C. S., & Hwang, T. S. (2016). Process design for lithium recovery using bipolar membrane electrodialysis system. Separation and Purification Technology, 166, 34-40. https://doi.org/10.1016/j.seppur.2016.03.013 Iizuka, A., Hashimoto, K., Nagasawa, H., Kumagai, K., Yanagisawa, Y., & Yamasaki, A. (2012). Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Separation and Purification Technology, 101, 49-59. https://doi.org/10.1016/j.seppur.2012.09.016 Jiang, C., Wang, Q., Li, Y., Wang, Y., & Xu, T. (2015). Water electro-transport with hydrated cations in electrodialysis. Desalination, 365, 204-212. https://doi.org/10.1016/j.desal.2015.03.007 Kenichi, O., & Masahiko, M. (1958). Process for the production of acidic and alkaline solution from salt solution by multi-compartment electrolysis. In: Google Patents. Kim, H., Kim, S., Kim, N., Su, X., & Kim, C. (2023). Multi-electrode scale-up strategy and parametric investigation of redox-flow desalination systems. Desalination, 549. Kim, N., Aguda, A., Kim, C., & Su, X. (2024). Redox-mediated electrodialysis for desalination, environmental remediation, and resource recovery. ACS Energy Letters, 9(8), 3887-3912. https://doi.org/10.1021/acsenergylett.4c00913 Kim, N., Jeon, J., Elbert, J., Kim, C., & Su, X. (2022). Redox-mediated electrochemical desalination for waste valorization in dairy production. Chemical Engineering Journal, 428, 131082. https://doi.org/10.1016/j.cej.2021.131082 Kim, N., Su, X., & Kim, C. (2021). Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chemical Engineering Journal, 420, 127715. https://doi.org/10.1016/j.cej.2020.127715 Lee, Y.-Y. (2024). Assessing the viability of scaling-up redox-mediated electrodialysis desalination. Unpublished master's thesis, National Taiwan University, Taipei, Taiwan. Legrand, L., Shu, Q., Tedesco, M., Dykstra, J. E., & Hamelers, H. V. M. (2020). Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO2 capture. Journal of Colloid and Interface Science, 564, 478-490. https://doi.org/10.1016/j.jcis.2019.12.039 Lei, Y., Song, B., van der Weijden, R. D., Saakes, M., & Buisman, C. J. N. (2017). Electrochemical induced calcium phosphate precipitation: importance of local pH. Environmental Science & Technology, 51(19), 11156-11164. https://doi.org/10.1021/acs.est.7b03909 Lin, P., Yu, R. J., Wang, Y. Y., Yang, T., Li, Z. T., Zhang, J., Yi, X. B., Liu, Z., & Xu, X. T. (2023). Mechanism insight into improved desalination performance and energy efficiency in redox flow deionization with ion exchange resins. Chemical Engineering Journal, 475. Liu, G., Luo, H., Wang, H., Wang, B., Zhang, R., & Chen, S. (2014). Malic acid production using a biological electrodialysis with bipolar membrane. Journal of Membrane Science, 471, 179-184. https://doi.org/10.1016/j.memsci.2014.08.014 Liu, Y., Chen, J., Cai, Z., Chen, R., Sun, Q., & Sun, M. (2017). Removal of copper and nickel from municipal sludge using an improved electrokinetic process. Chemical Engineering Journal, 307, 1008-1016. https://doi.org/10.1016/j.cej.2016.08.133 Liu, Y., Ren, Y., Ma, H., He, G., & Jiang, Z. (2022). Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. Advanced Membranes, 2, 100028. https://doi.org/10.1016/j.advmem.2022.100028 Lu, D., Xu, C. J., Wang, Y., & Cai, W. F. (2022). Continuous desalination via redox flow desalination using sodium 4-sulfo- natooxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (NaSO -TEMPO). Chemical Engineering Journal, 431. Luo, T., Abdu, S., & Wessling, M. (2018). Selectivity of ion exchange membranes: A review. Journal of Membrane Science, 555, 429-454. https://doi.org/10.1016/j.memsci.2018.03.051 Ma, H., Yue, S., Li, H., Wang, Q., & Tu, M. (2019). Recovery of lactic acid and other organic acids from food waste ethanol fermentation stillage: Feasibility and effects of substrates. Separation and Purification Technology, 209, 223-228. https://doi.org/10.1016/j.seppur.2018.07.031 MacLean, S. A., Raza, S., Wang, H., Igbomezie, C., Liu, J., Makowski, N., Ma, Y. Y., Shen, Y. X., Röhr, J. A., Weng, G. M., & Taylor, A. D. (2024). Investigation of flow rate in symmetric four-channel redox flow desalination system. Cell Reports Physical Science, 5(1). Maletzki, F., Rösler, H. W., & Staude, E. (1992). Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. Journal of Membrane Science, 71(1), 105-116. https://doi.org/10.1016/0376-7388(92)85010-G Mehmood, A., Iqbal, M. I., Lee, J.-Y., Hwang, J., Jung, K.-D., & Ha, H. Y. (2016). A novel high performance configuration of electrochemical cell to produce alkali for sequestration of carbon dioxide. Electrochimica Acta, 219, 655-663. https://doi.org/10.1016/j.electacta.2016.09.123 Merkel, A., Ashrafi, A. M., & Ečer, J. (2018). Bipolar membrane electrodialysis assisted pH correction of milk whey. Journal of Membrane Science, 555, 185-196. https://doi.org/10.1016/j.memsci.2018.03.035 Mohandass, G., Krishnan, S., & Kim, T. (2022). Experimental analysis and modeling of closed-loop redox flow desalination. Journal of the Electrochemical Society, 169(6). Nagasawa, H., Yamasaki, A., Iizuka, A., Kumagai, K., & Yanagisawa, Y. (2009). A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis. AIChE Journal, 55(12), 3286-3293. https://doi.org/10.1002/aic.11907 Onsager, L. (1934). Deviations from ohm's law in weak electrolytes. The Journal of Chemical Physics, 2(9), 599-615. https://doi.org/10.1063/1.1749541 Oschlies, A., Bach, L. T., Rickaby, R. E. M., Satterfield, T., Webb, R., & Gattuso, J. P. (2023). Climate targets, carbon dioxide removal, and the potential role of ocean alkalinity enhancement. Guide to Best Practices in Ocean Alkalinity Enhancement Research, 2-oae2023, 1. https://doi.org/10.5194/sp-2-oae2023-1-2023 Ozkan, M. (2025). Atmospheric alchemy: The energy and cost dynamics of direct air carbon capture. MRS Energy & Sustainability, 12(1), 46-61. https://doi.org/10.1557/s43581-024-00091-5 Paleologou, M., Thibault, A., Wong, P.-Y., Thompson, R., & Berry, R. (1997). Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system. Separation and Purification Technology, 11(3), 159-171. Park, H. S., Lee, J. S., Han, J., Park, S., Park, J., & Min, B. R. (2015). CO2 fixation by membrane separated nacl electrolysis. Energies, 8(8), 8704-8715. https://www.mdpi.com/1996-1073/8/8/8704 Pärnamäe, R., Mareev, S., Nikonenko, V., Melnikov, S., Sheldeshov, N., Zabolotskii, V., Hamelers, H. V. M., & Tedesco, M. (2021). Bipolar membranes: A review on principles, latest developments, and applications. Journal of Membrane Science, 617, 118538. https://doi.org/10.1016/j.memsci.2020.118538 Raissouni, I., Marraha, M., & Azmani, A. (2007). Effect of some parameters on the improvement of the bipolar membrane electrodialysis process. Desalination, 208(1), 62-72. https://doi.org/10.1016/j.desal.2006.03.584 Ramalingam, K., Liang, M., Pyae, N. L. W., Aung, S. H., Oo, T. Z., Srimuk, P., Ma, J., Presser, V., Chen, F., & Waite, T. D. (2020). Self-sustained visible-light-driven electrochemical redox desalination. ACS Applied Materials & Interfaces, 12(29), 32788-32796. https://doi.org/10.1021/acsami.0c08286 Ramirez-Corredores, M. M., Goldwasser, M. R., & Falabella de Sousa Aguiar, E. (2023). Carbon dioxide and climate change. In M. M. Ramirez-Corredores, M. R. Goldwasser, & E. Falabella de Sousa Aguiar (Eds.), Decarbonization as a Route Towards Sustainable Circularity (pp. 1-14). Springer International Publishing. https://doi.org/10.1007/978-3-031-19999-8_1 Robert, M. (2012). Proton-coupled electron transfer. Energy & Environmental Science, 5(7), 7695-7695. https://doi.org/10.1039/C2EE90013K Sabatino, F., Mehta, M., Grimm, A., Gazzani, M., Gallucci, F., Kramer, G. J., & van Sint Annaland, M. (2020). Evaluation of a direct air capture process combining wet scrubbing and bipolar membrane electrodialysis. Industrial & Engineering Chemistry Research, 59(15), 7007-7020. https://doi.org/10.1021/acs.iecr.9b05641 Sahadat Hossain, M., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649 Schreier, M., Héroguel, F., Steier, L., Ahmad, S., Luterbacher, J. S., Mayer, M. T., Luo, J., & Grätzel, M. (2017). Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2(7), 17087. https://doi.org/10.1038/nenergy.2017.87 Scovazzo, P., Poshusta, J., DuBois, D., Koval, C., & Noble, R. (2003). Electrochemical separation and concentration of < 1% carbon dioxide from nitrogen. Journal of The Electrochemical Society, 150(5), D91. https://doi.org/10.1149/1.1566962 Sharifian, R., Boer, L., Wagterveld, R. M., & Vermaas, D. A. (2022). Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane. Chemical Engineering Journal, 438, 135326. https://doi.org/10.1016/j.cej.2022.135326 Sharifian, R., van der Wal, H. C., Wagterveld, R. M., & Vermaas, D. A. (2023). Fouling management in oceanic carbon capture via in-situ electrochemical bipolar membrane electrodialysis. Chemical Engineering Journal, 458, 141407. https://doi.org/10.1016/j.cej.2023.141407 Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C., & Vermaas, D. A. (2021). Electrochemical carbon dioxide capture to close the carbon cycle. Energy & Environmental Science, 14(2), 781-814. https://doi.org/10.1039/D0EE03382K Simons, R. (1985). Water splitting in ion exchange membranes. Electrochimica Acta, 30(3), 275-282. https://doi.org/10.1016/0013-4686(85)80184-5 Strathmann, H., Krol, J. J., Rapp, H. J., & Eigenberger, G. (1997). Limiting current density and water dissociation in bipolar membranes. Journal of Membrane Science, 125(1), 123-142. https://doi.org/10.1016/S0376-7388(96)00185-8 Stucki, S., Schuler, A., & Constantinescu, M. (1995). Coupled CO2 recovery from the atmosphere and water electrolysis: Feasibility of a new process for hydrogen storage. International Journal of Hydrogen Energy, 20(8), 653-663. https://doi.org/10.1016/0360-3199(95)00007-Z Tanaka, Y. (2007). Chapter 3: Bipolar membrane electrodialysis. In Y. Tanaka (Ed.), Membrane Science and Technology (Vol. 12, pp. 405-436). Elsevier. https://doi.org/10.1016/S0927-5193(07)12017-9 Tongwen, X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, Conservation and Recycling, 37(1), 1-22. https://doi.org/10.1016/S0921-3449(02)00032-0 Tongwen, X., & Weihua, Y. (2002). Citric acid production by electrodialysis with bipolar membranes. Chemical Engineering and Processing: Process Intensification, 41(6), 519-524. https://doi.org/10.1016/S0255-2701(01)00175-1 Tsai, S. K., Chen, T. H., Ma, J. X., & Hou, C. H. (2024). Achieving high water recovery in a redox-flow battery with graphite felt electrodes for brine concentration. Desalination, 574. Venugopal, K., & Dharmalingam, S. (2016). Composite ion exchange membrane based electrodialysis cell for desalination as well as acid and alkali productions. Int. J. Trend Res. Dev, 3, 631-640. Vermaas, D. A., Wiegman, S., Nagaki, T., & Smith, W. A. (2018). Ion transport mechanisms in bipolar membranes for (photo) electrochemical water splitting. Sustainable Energy & Fuels, 2(9), 2006-2015. Walczak, M. M., Dryer, D. A., Jacobson, D. D., Foss, M. G., & Flynn, N. T. (1997). pH dependent redox couple: an illustration of the nernst equation. Journal of Chemical Education, 74(10), 1195. https://doi.org/10.1021/ed074p1195 Wei, Y., Li, C., Wang, Y., Zhang, X., Li, Q., & Xu, T. (2012). Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Separation and Purification Technology, 86, 49-54. https://doi.org/10.1016/j.seppur.2011.10.019 Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203-215. https://doi.org/10.1016/0304-4203(74)90015-2 White, W., Sanborn, C. D., Fabian, D. M., & Ardo, S. (2018). Conversion of visible light into ionic power using photoacid-dye-sensitized bipolar ion-exchange membranes. Joule, 2(1), 94-109. https://doi.org/10.1016/j.joule.2017.10.015 Wilhelm, F. G., Pünt, I., van der Vegt, N. F. A., Strathmann, H., & Wessling, M. (2002). Asymmetric bipolar membranes in acid−base electrodialysis. Industrial & Engineering Chemistry Research, 41(3), 579-586. https://doi.org/10.1021/ie010524n Yan, Z., Zhu, L., Li, Y. C., Wycisk, R. J., Pintauro, P. N., Hickner, M. A., & Mallouk, T. E. (2018). The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy and Environmental Science, 11(8), 2235-2245. https://doi.org/10.1039/c8ee01192c Youn, M. H., Park, K. T., Lee, Y. H., Kang, S.-P., Lee, S. M., Kim, S. S., Kim, Y. E., Ko, Y. N., Jeong, S. K., & Lee, W. (2019). Carbon dioxide sequestration process for the cement industry. Journal of CO2 Utilization, 34, 325-334. https://doi.org/10.1016/j.jcou.2019.07.023 Yuzer, B., Selcuk, H., Chehade, G., Demir, M. E., & Dincer, I. (2020). Evaluation of hydrogen production via electrolysis with ion exchange membranes. Energy, 190, 116420. https://doi.org/10.1016/j.energy.2019.116420 Zhang, C. Y., He, D., Ma, J. X., Tang, W. W., & Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 128, 314-330. https://doi.org/10.1016/j.watres.2017.10.024 Zhang, D., Dai, J. H., Liang, M. J., Han, M. X., He, Q. Y., Chen, F. M., & Li, L. J. (2023). Thermal redox desalination of seawater driven by temperature difference. Acs Energy Letters, 8(5), 2325-2330. https://doi.org/10.1021/acsenergylett.3c00128 Zhang, X., Li, C., Wang, Y., Luo, J., & Xu, T. (2011). Recovery of acetic acid from simulated acetaldehyde wastewaters: Bipolar membrane electrodialysis processes and membrane selection. Journal of Membrane Science, 379(1), 184-190. https://doi.org/10.1016/j.memsci.2011.05.059 Zhao, Y., Wang, J., Ji, Z., Liu, J., Guo, X., & Yuan, J. (2020). A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer. Chemical Engineering Journal, 381, 122542. https://doi.org/10.1016/j.cej.2019.122542 Zholkovskij, E. K., Müller, M. C., & Staude, E. (1998). The storage battery with bipolar membranes. Journal of Membrane Science, 141(2), 231-243. https://doi.org/10.1016/S0376-7388(97)00306-2 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98688 | - |
| dc.description.abstract | 因應全球氣候變遷與淡水資源短缺問題,碳捕捉與脫鹽的整合技術逐漸受到重視。海洋作為最大的碳匯與水資源儲存場所,因富含溶解性無機碳(Dissolved Inorganic Carbon, DIC),展現出碳捕捉與脫鹽應用的潛力。電化學方法因能源效率高、藥劑消耗少、操作彈性並與再生能源相容性高而成為重要研究方向。雙極膜電透析(Bipolar Membrane Electrodialysis, BMED)是一種先進的電化學薄膜分離技術,可透過雙極膜(Bipolar Membrane, BPM)中間層的水解反應(Water Dissociation, WD)產生酸與鹼,並結合離子交換膜(Ion Exchange Membrane, IEM)排列達到多樣化的功能。然而傳統BMED系統仍存在能耗較高的問題,限制了其大規模應用。
本研究開發一新穎的氧化還原介導雙極膜電透析系統(Redox-Mediated Bipolar Membrane Electrodialysis, RM-BMED),該系統在電極室中循環可逆氧化還原電解質(K₃/K₄[Fe(CN)₆]),藉由較低的氧化還原電位與較快的電子傳遞速率,降低操作電壓,並達到同步碳捕捉與脫鹽的應用目標。在操作過程中,BPM產生的鹼性環境可將DIC轉化為碳酸根離子,與海水中的鈣離子反應形成碳酸鈣沉澱,同時藉由IEMs的選擇性離子傳輸進行脫鹽。 本研究系統性探討不同操作條件(電解液組成、施加電壓與進料濃度)對產鹼與脫鹽性能的影響。實驗結果顯示,RM-BMED系統相較於傳統BMED可以在低2.5 V的操作電壓下,達到相同的電流密度,顯示氧化還原電解質能有效提升電荷傳遞效率。進一步評估參數之影響,發現提高施加電壓有助於促進水解反應與離子遷移,並於1.0 V達到最佳的效能。當進流濃度增加,脫鹽的電流效率因電阻降低而提升;但產鹼的電流效率則可能因共離子洩漏與水傳輸現象下降。為進一步驗證RM-BMED系統在海水碳捕捉與脫鹽的應用潛力,本研究以合成海水進行實驗。結果顯示,透過控制流量可將鹼室pH維持於9.6–10,使DIC經由碳酸鈣沉澱反應去除,DIC去除率達62 ± 2%,脫鹽率為11 ± 1%,碳捕捉能耗為845 ± 59 kJ/mol DIC (2.35 ± 0.16 kWh/kg CaCO₃)。而系統產生的酸化海水亦能有效用於薄膜清洗,無需外加化學藥劑。整體結果顯示,RM-BMED系統具備同步碳捕捉與脫鹽的技術潛力,為因應氣候變遷與水資源短缺挑戰提供了一具前瞻性策略。 | zh_TW |
| dc.description.abstract | In response to the global climate change and freshwater scarcity, integrated technologies for carbon capture and desalination have gained attention. As the largest natural reservoir of both carbon and water, seawater can be utilized for the integrated processes of carbon capture and desalination, due to its high dissolved inorganic carbon (DIC) content. Electrochemical methods have emerged as a key research direction due to their renewable energy compatibility, high energy efficiency, low chemical consumption, and operational flexibility. Bipolar membrane electrodialysis (BMED) is an advanced electrochemical membrane separation technology that generates acid and alkali through water dissociation (WD) at the bipolar membrane (BPM) interface, combined with ion exchange membranes (IEMs) to achieve diverse functionalities. However, the high energy consumption of conventional BMED systems remains a major limitation for their large-scale deployment.
This study develops a novel redox-mediated BMED (RM-BMED) system that circulates reversible redox electrolytes (K₃/K₄[Fe(CN)₆]) in the electrode chambers. Through lower redox potential and faster electron transfer rates, this system reduces operating voltage and simultaneously achieves carbon capture and desalination. During operation, the alkaline environment generated by BPM converts DIC into carbonate ions, which react with calcium ions in seawater to form calcium carbonate precipitates, while selective ion transport through IEMs enables desalination. The study systematically investigates the effects of various operating conditions (electrolyte composition, applied voltage, and feed concentration) on the performance of alkalization and desalination. Results demonstrate that RM-BMED achieves the same current density at 2.5 V lower operating voltage compared to conventional BMED, indicating effective improvement of charge transfer efficiency by the redox electrolyte. Further evaluation showed that increasing voltage promotes WD and ion migration, with optimal performance of alkalization and desalination achieved at 1.0 V. As feed concentration increases, system resistance decreases, improving performance of desalination; however, co-ion leakage and water transport lead to a decline in the performance of alkalization. To further demonstrate the RM-BMED system's potential for seawater carbon capture and desalination, experiments were conducted using synthetic seawater. Results show that controlling flow rate maintains pH at 9.6-10 in the alkali chamber, enabling DIC removal through calcium carbonate precipitation with 62 ± 2% DIC removal efficiency, 11 ± 1% salt removal efficiency, and carbon capture energy consumption of 845 ± 59 kJ/mol DIC (2.35 ± 0.16 kWh/kg CaCO₃). The system-generated acidified seawater can also effectively clean membrane components without additional chemical reagents. Overall results demonstrate the technical potential of RM-BMED for simultaneous carbon capture and desalination, offering a promising strategy to the challenges of climate change and water scarcity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:06:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:06:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xii Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation and Objectives 2 Chapter 2. Theory and Literature Review 3 2.1. Carbon Capture 3 2.1.1. DIC-CO₂ Equilibrium in Ocean Systems 4 2.1.2. Electrochemical Approach of pH-Swing 6 2.2. Bipolar Membrane Electrodialysis (BMED) 10 2.2.1. Principle of Bipolar Membrane 10 2.2.2. Development and Application of BMED 13 2.2.3. Factors Affecting the Performance for Carbon Capture 20 2.3. Emerging Redox-Mediated Electrochemical Separations 23 2.3.1. Principle of Redox-Mediated Electrochemical Systems 23 2.3.2. Redox-Mediated Electrodialysis 24 2.3.3. Redox-Mediated BMED for Carbon Capture 27 Chapter 3. Materials and Methods 28 3.1. Chemicals and Materials 28 3.2. Research Design 31 3.3. Experimental Methods 32 3.3.1. Experimental Set-up and Operation 32 3.4. Key Performance Indicators 38 Chapter 4. Results and Discussion 40 4.1. Current-Voltage Curves of Electrolyte Solution 40 4.2. Effect of Applied Voltage on Alkalization and Deionization 42 4.3. Effect of Feed Concentration on Alkalization and Deionization 46 4.4. A Practical Study of Seawater 50 4.4.1. Simulation of the pH Range for Calcium Carbonate Precipitation 50 4.4.2. Effect of Seawater Flowrate 52 4.4.3. Scaling Management of BPM 59 Chapter 5. Conclusions and Suggestions 62 5.1. Conclusions 62 5.2. Suggestions 64 Reference 65 | - |
| dc.language.iso | en | - |
| dc.subject | 碳捕捉及封存 | zh_TW |
| dc.subject | 氧化還原介導雙極膜電透析 | zh_TW |
| dc.subject | 礦化 | zh_TW |
| dc.subject | 薄膜分離 | zh_TW |
| dc.subject | 海水淡化 | zh_TW |
| dc.subject | Seawater Desalination | en |
| dc.subject | Membrane Separation | en |
| dc.subject | Mineralization | en |
| dc.subject | Carbon Capture and Sequestration | en |
| dc.subject | Redox-mediated Bipolar Membrane Electrodialysis | en |
| dc.title | 利用氧化還原介導雙極膜電透析系統同步碳捕捉及脫鹽之研析 | zh_TW |
| dc.title | Simultaneous carbon capture and desalination using redox-mediated bipolar membrane electrodialysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林進榮;楊汶達;劉雅瑄 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Jung Lin;Wen-Ta Yang;Ya-Hsuan Liou | en |
| dc.subject.keyword | 氧化還原介導雙極膜電透析,碳捕捉及封存,海水淡化,薄膜分離,礦化, | zh_TW |
| dc.subject.keyword | Redox-mediated Bipolar Membrane Electrodialysis,Carbon Capture and Sequestration,Seawater Desalination,Membrane Separation,Mineralization, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202503654 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
