Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真zh_TW
dc.contributor.advisorChih-Chen Hsiehen
dc.contributor.author康荷雨zh_TW
dc.contributor.authorHe-Yu Kangen
dc.date.accessioned2025-08-18T16:05:01Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1. Meringolo, C., T.F. Mastropietro, T. Poerio, E. Fontananova, G. De Filpo, E. Curcio, and G. Di Profio, Tailoring PVDF Membranes Surface Topography and Hydrophobicity by a Sustainable Two-Steps Phase Separation Process. ACS Sustainable Chemistry & Engineering, 2018. 6(8): p. 10069-10077.
2. Deng, L.J., W.S. Guo, H.H. Ngo, H.W. Zhang, J. Wang, J.X. Li, S.Q. Xia, and Y. Wu, Biofouling and control approaches in membrane bioreactors. Bioresource Technology, 2016. 221: p. 656-665.
3. Wang, L.K., N.K. Shammas, M. Cheryan, Y.M. Zheng, and S.W. Zou, Treatment of Food Industry Foods and Wastes by Membrane Filtration, in Membrane and Desalination Technologies. 2011. p. 237-269.
4. Skelton, R., Membrane filtration applications in the food industry. Filtration & Separation, 2000. 37(3): p. 28-30.
5. Zeng, L.Y., Z.W. Zhu, and D.W. Sun, Novel graphene oxide/polymer composite membranes for the food industry: structures, mechanisms and recent applications. Critical Reviews in Food Science and Nutrition, 2022. 62(14): p. 3705-3722.
6. AI-Malack, M.H. and G.K. Anderson, Coagulation-crossflow microfiltration of domestic wastewater Journal of Membrane Science, 1996. 121(1): p. 59-70.
7. Parvatiyar, M.G., Interaction of dispersed phase with concentration polarization. Journal of Membrane Science, 1996. 115(2): p. 121-127.
8. Kuruzovich, J.N. and P.R. Piergiovanni, Yeast cell microfiltration: optimization of backwashing for delicate membranes. Journal of Membrane Science, 1996. 112(2): p. 241-247.
9. Cabassud, C., S. Laborie, and J.M. Lainé, How slug flow can improve ultrafiltration flux in organic hollow fibres. 1997. 128(1): p. 93-101.
10. Nikolov, N.D., V. Mavrov, and J.D. Nikolova, Ultrafiltration in a tubular membrane under simultaneous action of pulsating pressures in permeate and feed solution. Journal of Membrane Science, 1993. 83(2): p. 167-172.
11. Bowen, W.R. and H.A.M. Sabuni, Pulsed electrokinetic cleaning of cellulose nitrate microfiltration membranes. Industrial & Engineering Chemistry Research, 1992. 31(2): p. 515-523.
12. Wang, Q., W.C. Lin, S.R. Chou, P. Dai, and X. Huang, Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. Water Research, 2023. 236.
13. Mulder, M., Basic Principles of Membrane Technology. 1996: Springer science & business media.
14. Wang, P., M.M. Teoh, and T.S. Chung, Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Res, 2011. 45(17): p. 5489-500.
15. Zhang, L.-Z., Coupled heat and mass transfer through asymmetric porous membranes with finger-like macrovoids structure. International Journal of Heat and Mass Transfer, 2009. 52(3-4): p. 751-759.
16. Mahenthiran, A.V. and Z.A. Jawad, A Prospective Concept on the Fabrication of Blend PES/PEG/DMF/NMP Mixed Matrix Membranes with Functionalised Carbon Nanotubes for CO(2)/N(2) Separation. Membranes (Basel), 2021. 11(7).
17. Volkov, V.V., B.V. McHedlishvili, V.I. Roldugin, S.S. Ivanchev, and A.B. Yaroslavtsev, Membranes and nanotechnologies. Nanotechnologies in Russia, 2008. 3(11-12): p. 656-687.
18. Cui, Z.F., Y. Jiang, and R.W. Field, Fundamentals of Pressure-Driven Membrane Separation Processes, in Membrane Technology. 2010. p. 1-18.
19. Saxena, A., B.P. Tripathi, M. Kumar, and V.K. Shahi, Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci, 2009. 145(1-2): p. 1-22.
20. Ren, J., Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process. Journal of Membrane Science, 2004. 241(2): p. 305-314.
21. Strathmann, H. and K. Kock, The formation mechanism of phase inversion membranes. Desalination, 1977. 21(3): p. 241-255.
22. Mino, Y., N. Fukukawa, and H. Matsuyama, Simulation on Pore Formation from Polymer Solution at Surface in Contact with Solid Substrate via Thermally Induced Phase Separation. Membranes (Basel), 2021. 11(7).
23. Park, H.C., Y.P. Kim, H.Y. Kim, and Y.S. Kang, Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 1999. 156(2): p. 169-178.
24. Bottino, A., G. Camera-Roda, G. Capannelli, and S. Munari, The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of Membrane Science, 1991. 57(1): p. 1-20.
25. Stropnik, L. Germi, and B. erjal, Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion. Journal of Applied Polymer Science, 1996. 61(10): p. 1821-1830.
26. Guillen, G.R., Y. Pan, M. Li, and E.M.V. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research, 2011. 50(7): p. 3798-3817.
27. Theodorakopoulos, G.V., D.S. Karousos, E.P. Favvas, and A.D. Gotzias, Formation of Polyimide Membranes via Non-Solvent Induced Phase Separation: Insight from Molecular Dynamics Simulations. Chempluschem, 2024. 89(8): p. e202300766.
28. Guo, W.S., H.H. Ngo, and J.X. Li, A mini-review on membrane fouling. Bioresource Technology, 2012. 122: p. 27-34.
29. Field, R.W. and J.J. Wu, Modelling of permeability loss in membrane filtration: Re-examination of fundamental fouling equations and their link to critical flux. Desalination, 2011. 283: p. 68-74.
30. Choi, W., M.G. Shin, G.W. Lee, D. Kim, C.H. Yoo, J.S. Lee, H.W. Jung, and J.-H. Lee, Anisotropic biofouling behavior of sharkskin-patterned desalination membranes. Journal of Membrane Science, 2023. 683.
31. Mitranescu, A., M. Patel, S. Panglisch, J.E. Drewes, and I.M.A. ElSherbiny, Surface-Patterned Water Separation Membranes: A Critical Analysis of Current Knowledge and Future Research Needs. ACS ES&T Water, 2024. 4(12): p. 5225-5242.
32. Won, Y.J., J. Lee, D.C. Choi, H.R. Chae, I. Kim, C.H. Lee, and I.C. Kim, Preparation and application of patterned membranes for wastewater treatment. Environ Sci Technol, 2012. 46(20): p. 11021-7.
33. Zare, S. and A. Kargari, State-of-the-art surface patterned membranes fabrication and applications: A review of the current status and future directions. Chemical Engineering Research and Design, 2023. 196: p. 495-525.
34. Ibrahim, Y., F.E. Ahmed, and N. Hilal, Practicality and potential of membrane surface patterning in membrane technology. Current Opinion in Chemical Engineering, 2025. 47.
35. 施蓬揚, 以濕式法製備表面具有緻密層與圖案結構的抗阻塞薄膜, in 化學工程學研究所. 2023, 國立臺灣大學. p. 1-78.
36. Ibrahim, Y. and N. Hilal, A Critical Assessment of Surface-Patterned Membranes and Their Role in Advancing Membrane Technologies. ACS ES&T Water, 2023. 3(12): p. 3807-3834.
37. Asad, A., M. Sadrzadeh, and D. Sameoto, Direct Micropatterning of Phase Separation Membranes Using Hydrogel Soft Lithography. Advanced Materials Technologies, 2019. 4(7).
38. Marbelia, L., A. Ilyas, M. Dierick, J. Qian, C. Achille, R. Ameloot, and I.F.J. Vankelecom, Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques. Journal of Membrane Science, 2020. 597.
39. Bikel, M., I.G. Punt, R.G. Lammertink, and M. Wessling, Micropatterned polymer films by vapor-induced phase separation using permeable molds. ACS Appl Mater Interfaces, 2009. 1(12): p. 2856-61.
40. Zhou, J., H. Yan, K. Ren, W. Dai, and H. Wu, Convenient Method for Modifying Poly(dimethylsiloxane) with Poly(ethylene glycol) in Microfluidics. Anal. Chem., 2009. 81(16): p. 6627–6632.
41. Simpson, T.R.E., Z. Tabatabaian, C. Jeynes, B. Parbhoo, and J.L. Keddie, Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(6): p. 1421-1431.
42. Luo, Y., B. Huang, H. Wu, and R.N. Zare, Controlling Electroosmotic Flow in Poly(dimethylsiloxane) Separation Channels by Means of Prepolymer Additives. Anal. Chem., 2006. 78(13): p. 4588–4592.
43. Xiao, Y., X.D. Yu, J.J. Xu, and H.Y. Chen, Bulk modification of PDMS microchips by an amphiphilic copolymer. Electrophoresis, 2007. 28(18): p. 3302-7.
44. Yao, M. and J. Fang, Hydrophilic PEO-PDMS for microfluidic applications. Journal of Micromechanics and Microengineering, 2012. 22(2).
45. Li, Q., F. Qian, K. Yuan, W. Dong, Y. Han, and J. Lu, Properties of superhydrophobic filter media prepared by TiO2–SiO2@PDMS coating. Journal of Sol-Gel Science and Technology, 2022. 107(1): p. 178-189.
46. Tucher, N., Analysis of photonic structures for silicon solar cells. 2017: Analysis of Photonic Structures for Silicon Solar Cells.
47. Illescas, J., Y.S. Ramírez‐Fuentes, G. Zaragoza‐Galán, P. Porcu, A. Mariani, and E. Rivera, PEGDA‐based luminescent polymers prepared by frontal polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2015. 53(24): p. 2890-2897.
48. Jang, H., H. Choi, H. Jeong, S. Baek, S. Han, D.J. Chung, and H.S. Lee, Thermally Crosslinked Biocompatible Hydrophilic Polyvinylpyrrolidone Coatings on Polypropylene with Enhanced Mechanical and Adhesion Properties. Macromolecular Research, 2018. 26(2): p. 151-156.
49. Acosta-Cuevas, J.M., J. Gonzalez-Garcia, M. Garcia-Ramirez, V.H. Perez-Luna, E.O. Cisneros-Lopez, R. Gonzalez-Nunez, and O. Gonzalez-Reynoso, Generation of Photopolymerized Microparticles Based on PEGDA Using Microfluidic Devices. Part 1. Initial Gelation Time and Mechanical Properties of the Material. Micromachines (Basel), 2021. 12(3).
50. Amici, J., C. Torchio, D. Versaci, D. Dessantis, A. Marchisio, F. Caldera, F. Bella, C. Francia, and S. Bodoardo, Nanosponge-Based Composite Gel Polymer Electrolyte for Safer Li-O(2) Batteries. Polymers (Basel), 2021. 13(10).
51. Lin, D.-J., H.-H. Chang, T.-C. Chen, Y.-C. Lee, and L.-P. Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. European Polymer Journal, 2006. 42(7): p. 1581-1594.
52. Marino, T., S. Blefari, E. Di Nicolò, and A. Figoli, A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing and Synthesis, 2017. 6(3): p. 295-300.
53. Lin, D.-J., C.-L. Chang, T.-C. Chen, and L.-P. Cheng, Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system. Desalination, 2002. 145(1-3): p. 25-29.
54. Zhao, G. and W.-N. Chen, Enhanced PVDF membrane performance via surface modification by functional polymer poly(N-isopropylacrylamide) to control protein adsorption and bacterial adhesion. Reactive and Functional Polymers, 2015. 97: p. 19-29.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98683-
dc.description.abstract薄膜分離技術因具備操作簡便與節能等優勢,廣泛應用於水處理與工業分離程序。然而,薄膜在長時間操作中容易因為懸浮物沉積於表面而產生結垢,導致過濾性能下降與使用壽命縮短。為改善此現象,近年來在薄膜表面引入圖案結構成為新興策略,不僅可增加有效過濾面積,還改變周圍局部流場以減少結垢。相分離微成型法因具備製程簡單與高圖案保真度的優勢,已被廣泛應用於圖案薄膜之製備。但此方法由於鑄膜液圖案面無法直接接觸非溶劑,造成圖案表面延遲相分離並產生孔洞結構,反而可能形成懸浮物易附著區域,影響抗結垢性能。
回顧過往製備表面緻密且具圖案結構薄膜的方法,我們發現其中多數方法面臨圖案保真度差或製程過於複雜等限制。其中,以2wt% PEGDA-PDMS模具內含水分誘導相分離成膜之策略,雖能避免上述缺點,但薄膜機械強度卻不足。為此,本研究針對此限制,提出能兼顧表面緻密性、圖案保真度與結構強度的製膜策略。在薄膜材料選擇方面,選用具備耐酸性與化學惰性的聚偏二氟乙烯(polyvinylidene fluoride, PVDF)為鑄膜之高分子材料,並採用環保的磷酸三乙酯(Triethyl phosphate, TEP)作為溶劑,以水為非溶劑。實驗設計根據成膜機制提出兩項製程改良策略,其核心目標皆為促使鑄膜液與大量非溶劑迅速接觸,以誘導瞬間相分離,進而在薄膜表面形成緻密層與內部支撐結構。在第一項策略中,我們嘗試增加PDMS預聚物中PEGDA的含量,以提升模具含水能力,期望自圖案面誘導瞬間相分離。然而,我們發現當PEGDA含量過高時,會干擾PDMS預聚物的交聯反應,導致模具無法固化。因此改以文獻中已證實可固化之2wt% PEGDA-PDMS模具,製備表面緻密之圖案薄膜。第二項策略則在模具內含水分尚未擴散完全前,使鑄膜液非圖案面接觸非溶劑,自底部誘導形成支撐結構。實驗結果顯示,當縮短鑄膜液於空氣中靜置時間時,可同時保留圖案面緻密層與非圖案面手指狀支撐結構。在固定進料流率與初始滲透流率之純水過濾測試下,可維持穩定之滲透流率,成功提升薄膜之機械強度。
為進一步驗證薄膜之抗結垢效能,本研究以牛血清白蛋白(BSA)水溶液進行掃流式過濾測試,並搭配共軛焦雷射掃描顯微鏡(CLSM)觀察其沉積分布。實驗結果顯示,表面具有緻密層之薄膜相較於表面有孔洞的薄膜能顯著減緩通量衰退,並抑制BSA之沉積。而在薄膜表面引入箭頭型圖案亦有助於改變局部流場,減少污染物滯留,可有效降低懸浮物滲透與累積。兩者結合的設計,即具緻密層與箭頭圖案之薄膜,展現最佳的抗結垢表現。
綜上所述,本研究建立一套簡單可行的製程策略,成功製備出兼具圖案保真度、表面緻密層與機械強度的抗結垢薄膜,期望為功能性薄膜的結構設計與機制探討提供新的思路。
zh_TW
dc.description.abstractMembrane separation technology is widely used in water treatment and industrial processes due to its simplicity of operation and energy efficiency, but membrane fouling limits its performance. Patterned membranes have gained attention for their ability to increase the effective filtration area and alter local flow fields, thereby reducing fouling. Among various fabrication methods, phase separation micromolding (PSμM) offers advantages of simplicity and high pattern fidelity. Nevertheless, since the casting solution on the patterned side does not directly contact the nonsolvent, delayed phase separation occurs, resulting in porous surface structures that may promote foulant attachment and reduce antifouling efficacy.
Previous studies attempting to fabricate surface-dense, patterned membranes often faced challenges such as poor pattern fidelity or complicated processes. Among them, using 2wt% PEGDA-PDMS molds to induce phase separation via internally stored water has achieved both dense skin layer and pattern fidelity. However, the resulting membranes suffer from poor mechanical strength. To overcome this limitation, this study proposes a fabrication strategy that integrates dense skin layer, pattern fidelity, and internal structural strength. Polyvinylidene fluoride (PVDF) was selected as the casting polymer due to its excellent acid resistance and chemical inertness, with environment friendly triethyl phosphate (TEP) and water used as the solvent and nonsolvent, respectively. Based on phase separation mechanisms, two process modification strategies were proposed, both aimed at enabling rapid contact between the casting solution and a large amount of nonsolvent to induce instantaneous phase separation, forming a dense surface layer and an internal supporting structure. In the first strategy, we attempted to increase the water-holding capacity of the mold by raising the PEGDA content, aiming to induce phase separation from the patterned surface. However, it was found that excessive PEGDA disrupted the crosslinking reaction of the PDMS prepolymer, leading to incomplete mold curing. Consequently, we adopted a 2wt% PEGDA-PDMS mold previously reported to exhibit stable crosslinking, which was used to fabricate patterned membranes with dense surfaces. The second strategy focused on modifying the membrane formation process. Before the water stored in the mold had fully diffused, the non-patterned side of the casting solution was brought into contact with nonsolvent, thereby inducing phase separation from the bottom to form a finger-like support structure. By shortening the air exposure time of the casting solution, both a dense skin layer on the patterned surface and mechanically supportive finger-like pores beneath the non-patterned surface were achieved. The resulting membranes maintained a stable permeate flow rate, confirming enhanced mechanical strength.
To further verify the antifouling performance, cross-flow filtration tests using bovine serum albumin (BSA) solution were conducted, combined with confocal fluorescence microscopy to visualize protein deposition. Membranes with a dense surface layer exhibited significantly lower flux decline and reduced BSA accumulation compared to those with porous surfaces. Moreover, the incorporation of arrow patterns effectively altered the local flow field and minimized foulant retention. The membranes combining both dense skin layers and directional patterns demonstrated the most outstanding antifouling performance.
In conclusion, this study establishes a simple and feasible strategy to fabricate antifouling membranes with a dense skin layer, high pattern fidelity, and sufficient mechanical strength. The proposed approach offers new insights for the structural design and mechanism exploration of functional membranes in advanced separation applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:05:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:05:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 1
第二章 文獻回顧 3
2.1 薄膜過濾之簡介 3
2.2 高分子薄膜製備之方法 7
2.2.1 乾式法(Dry method) 9
2.2.2 熱誘導式相分離法(Thermal-induced phase separation, TIPS) 10
2.2.3 非溶劑誘導式相分離法(Nonsolvent-induced Phase Separation, NIPS) 11
2.3 非溶劑誘導式相分離之成膜機制 13
2.3.1 相分離之熱力學 13
2.3.2 相分離之質傳動力學 14
2.3.3 組成路徑與對應之薄膜結構 16
2.4 薄膜結垢與減少薄膜結垢之方法 19
2.4.1 薄膜結垢(Membrane fouling) 19
2.4.2 減少薄膜結垢的方法 20
2.5 製備表面具有圖案結構之薄膜 26
2.5.1 直接製備法(Direct fabrication process, DFP) 26
2.5.2 模板成型法(Template-based molding, TBM) 29
2.6 在薄膜圖案面建立緻密層之方法 33
2.6.1 噴霧改質非溶劑誘導式相分離法(Spray-modified NIPS, s-NIPS) 34
2.6.2 改質模具以非溶劑誘導式相分離 35
2.7 研究目標與實驗設計構想 44
2.7.1 提升PEGDA-PDMS模具中的儲水量以誘導圖案面瞬間相分離 46
2.7.2 在非圖案面誘導相分離以生成表面緻密薄膜之內部支撐結構 47
2.7.3 以BSA水溶液驗證表面緻密且具圖案結構薄膜之抗結垢效果 48
第三章 實驗設備、材料與方法 49
3.1 實驗設備 49
3.2 實驗材料 50
3.3 實驗方法 51
3.3.1 薄膜圖案之設計 51
3.3.2 翻模基板之圖案製作 52
3.3.3 鑄膜模具之製作 55
3.3.4 鑄膜液配製 60
3.3.5 薄膜製備 62
3.3.6 表面緻密且具圖案結構之薄膜與其抗結垢特性之分析 64
第四章 結果與討論 70
4.1 提升PEGDA-PDMS模具含水量以誘導圖案面瞬間相分離生成具支撐結構之薄膜 71
4.1.1 在PDMS預聚合物中添加親水之10wt% PEGDA 71
4.1.2 在PDMS預聚合物中添加3wt% PEGDA 72
4.2 在薄膜圖案表面形成緻密層並在非圖案面內部建立支撐結構 74
4.2.1 分析2wt% PEGDA-PDMS模具圖案尺寸 74
4.2.2 在薄膜圖案表面形成緻密層並在非圖案面建立支撐結構 75
4.2.3 以固定初始滲透流率測試不同製膜條件下薄膜之機械強度 81
4.3 以BSA水溶液測試表面緻密且具圖案結構薄膜之抗結垢效果 82
第五章 結論 90
參考文獻 92
-
dc.language.isozh_TW-
dc.subject相分離微成型法zh_TW
dc.subject聚偏二氟乙烯zh_TW
dc.subject抗結垢zh_TW
dc.subject薄膜過濾zh_TW
dc.subject表面圖案zh_TW
dc.subject表面緻密層zh_TW
dc.subjectDense skin layeren
dc.subjectPhase separation micromolding (PSμM)en
dc.subjectPolyvinylidene fluoride (PVDF) membranesen
dc.subjectAntifoulingen
dc.subjectMembrane filtrationen
dc.subjectSurface patternsen
dc.title以相分離微成型法製備表面緻密且具圖案結構之PVDF薄膜與其抗結垢特性探討zh_TW
dc.titlePreparation of Surface-Dense and Patterned PVDF Membranes via Phase Separation Micromolding and Investigation of Their Antifouling Propertiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊怡哲;林宏殷;李玫樺zh_TW
dc.contributor.oralexamcommitteeYi-Je Juang;Hung-yin Lin;Mei-hwa Leeen
dc.subject.keyword相分離微成型法,表面緻密層,表面圖案,薄膜過濾,抗結垢,聚偏二氟乙烯,zh_TW
dc.subject.keywordPhase separation micromolding (PSμM),Dense skin layer,Surface patterns,Membrane filtration,Antifouling,Polyvinylidene fluoride (PVDF) membranes,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202504119-
dc.rights.note未授權-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved