請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊穎堅 | zh_TW |
| dc.contributor.advisor | Yiing-Jang Yang | en |
| dc.contributor.author | 張仁宥 | zh_TW |
| dc.contributor.author | Jen-Yu Chang | en |
| dc.date.accessioned | 2025-08-18T01:18:25Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Alford, M., Peacock, T., MacKinnon, J., et al. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65–69. https://doi.org/10.1038/nature14399
Alford, M. H. (2008). Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophysical Research Letters, 35(15). https://doi.org/10.1029/2008GL034720 Alford, M. H., MacKinnon, J. A., Simmons, H. L., & Nash, J. D. (2016). Near-inertial internal gravity waves in the ocean. Annual Review of Marine Science, 8, 95–123. https://doi.org/10.1146/annurev-marine-010814-015746 Chu, X., Chen, G., & Qi, Y. (2020). Periodic mesoscale eddies in the South China Sea. Journal of Geophysical Research: Oceans, 125, e2019JC015139. https://doi.org/10.1029/2019JC015139 E.U. Copernicus Marine Service Information. (n.d.). Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing (Product ID: SEALEVEL_GLO_PHY_L4_MY_008_047) [Data set]. Marine Data Store. https://doi.org/10.48670/moi-00148 Gahtan, J., Knapp, K. R., Schreck, C. J. III, Diamond, H. J., Kossin, J. P., & Kruk, M. C. (2024). International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.01 [Data set]. NOAA National Centers for Environmental Information. https://doi.org/10.25921/82ty-9e16 Gong, Q., Wang, Q., Chen, L., et al. (2023). Observation of near-inertial waves in the wake of four typhoons in the northern South China Sea. Scientific Reports, 13, 3147. https://doi.org/10.1038/s41598-023-29377-3 He, Q., Zhan, H., Cai, S., He, Y., Huang, G., & Zhan, W. (2018). A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. Journal of Geophysical Research: Oceans, 123, 4906–4929. https://doi.org/10.1029/2018JC014054 Hu, Q., Huang, X., Xu, Q., Zhou, C., Guan, S., Xu, X., Zhao, W., Yang, Q., & Tian, J. (2023). Parametric Subharmonic Instability of Diurnal Internal Tides in the Abyssal South China Sea. Journal of Physical Oceanography, 53(1), 195-213. https://doi.org/10.1175/JPO-D-22-0020.1 Hu, Q., Huang, X., Xu, Q., Zhou, C., Guan, S., Xu, X., Zhao, W., Yang, Q., & Tian, J. (2023). Parametric subharmonic instability of diurnal internal tides in the abyssal South China Sea. Journal of Physical Oceanography, 53(1), 195–213. https://doi.org/10.1175/JPO-D-22-0020.1 Huang, P., Xu, J., & Liang, M. (2022). Decadal variation in the frequency of tropical cyclones originating in the South China Sea and migrating from the western North Pacific. Frontiers in Earth Science, 10, 980220. https://doi.org/10.3389/feart.2022.980220 HYCOM Consortium for Data Assimilative Ocean Modeling. (2020). GOFS 3.1: 41-layer HYCOM + NCODA Global 1/12° Analysis (GLBy0.08) [Data set]. U.S. Navy Operational Global Ocean Model. https://www.hycom.org/dataserver/gofs-3pt1/analysis (Accessed July 21, 2025) Jan, S., Chang, M. H., Yang, Y. J., et al. (2021). Mooring observed intraseasonal oscillations in the central South China Sea during summer monsoon season. Scientific Reports, 11, 13685. https://doi.org/10.1038/s41598-021-93219-3 Jan, S., Chern, C. S., Wang, J., & Chao, S. Y. (2007). Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. Journal of Geophysical Research: Oceans, 112, C06019. https://doi.org/10.1029/2006JC004003 Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bulletin of the American Meteorological Society, 91(3), 363–376. https://doi.org/10.1175/2009BAMS2755.1 Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565. Li, Y., Xu, Z., & Lv, X. (2024). The generation and propagation of wind and tide-induced near-inertial waves in the ocean. Journal of Marine Science and Engineering, 12, 1565. https://doi.org/10.3390/jmse12091565 Lien, Ren-Chieh, Thomas B. Sanford, Sen Jan, Ming-Huei Chang, and Barry B. Ma. 2013. "Internal tides on the East China Sea Continental Slope." Journal of Marine Research 71, (1). https://elischolar.library.yale.edu/journal_of_marine_research/369 Liu, J., He, Y., Li, J., Cai, S., Wang, D., & Huang, Y. (2018). Case study of nonlinear interaction between near-inertial waves induced by typhoon and diurnal tides near the Xisha Islands. Journal of Geophysical Research: Oceans, 123, 2768–2784. https://doi.org/10.1029/2017JC013555 Liu, K., & Zhao, Z. (2020). Disintegration of the K1 internal tide in the South China Sea due to parametric subharmonic instability. Journal of Physical Oceanography, 50, 3605–3622. https://doi.org/10.1175/JPO-D-19-0320.1 Liu, Q., Xie, X. H., Shang, X. D., & Chen, G. Y. (2016). Coherent and incoherent internal tides in the southern South China Sea. Chinese Journal of Oceanology and Limnology, 34, 1374–1382. https://doi.org/10.1007/s00343-016-5171-5 McComas, C. H., & Bretherton, F. P. (1977). Resonant interaction of oceanic internal waves. Journal of Geophysical Research, 82(9), 1397–1412. https://doi.org/10.1029/JC082i009p01397 Metzger, E. J., Helber, R. W., Hogan, P. J., Posey, P. G., Thoppil, P. G., Townsend, T. L., Wallcraft, A. J., Smedstad, O. M., & Franklin, D. S. (2017). Global Ocean Forecast System 3.1 validation testing (NRL Report NRL/MR/7320--17-9722). Naval Research Laboratory. Olbers, D., Pollmann, F., & Eden, C. (2020). On PSI interactions in internal gravity wave fields and the decay of baroclinic tides. Journal of Physical Oceanography, 50(3), 751–771. https://doi.org/10.1175/JPO-D-19-0224.1 Phillips, O. M. (1960). On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. Journal of Fluid Mechanics, 9(2), 193–217. https://doi.org/10.1017/S0022112060001043 Shang, X., Liu, Q., Xie, X., Chen, G., & Chen, R. (2015). Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 98, 43–52. https://doi.org/10.1016/j.dsr.2014.12.005 Shaw, P.-T., & Chao, S.-Y. (1994). Surface circulation in the South China Sea. Deep-Sea Research, 41, 1663–1683. Shen, J., Fang, W., Zhang, S., Qiu, Y., Zhang, J., & Xie, X. (2020). Observed internal tides and near-inertial waves in the northern South China Sea: Intensified f-band energy induced by parametric subharmonic instability. Journal of Geophysical Research: Oceans, 125, e2020JC016324. https://doi.org/10.1029/2020JC016324 The altimetric Mesoscale Eddy Trajectories Atlas (META3.2 DT) was produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr) with support from CNES, in collaboration with IMEDEA (DOI: 10.24400/527896/a01-2022.005.220209 for the META3.2 DT allsat version) Thomas, L. N., & Zhai, X. (2022). The lifecycle of surface-generated near-inertial waves. In R. Musgrave, F. Pollmann, S. Kelly, & M. Nikurashin (Eds.), Ocean Mixing: Drivers, Mechanisms and Impacts (Chap. 5). Wang, B., Huang, F., Wu, Z., Yang, J., Fu, X., & Kikuchi, K. (2009). Multi-scale climate variability of the South China Sea monsoon: A review. Dynamics of Atmospheres and Oceans, 47(1-3), 15-37. https://doi.org/10.1016/j.dynatmoce.2008.09.004 Wang, S., Cao, A., Liang, X., Chen, X., & Meng, J. (2021). Impact of background geostrophic currents with vorticity on resonant triad interaction over midocean ridges. Journal of Geophysical Research: Oceans, 126, e2021JC017227. https://doi.org/10.1029/2021JC017227 Wang, S., Guo, X., Cao, A., Tsutsumi, E., & Chen, X. (2024). Parametric subharmonic instability of the M2 internal tides in the Tokara Strait. Journal of Geophysical Research: Oceans, 129, e2022JC019622. https://doi.org/10.1029/2022JC019622 Whalen, C. B., de Lavergne, C., Naveira Garabato, A. C., et al. (2020). Internal wave-driven mixing: Governing processes and consequences for climate. Nature Reviews Earth & Environment, 1, 606–621. https://doi.org/10.1038/s43017-020-0097-z Wu, L., Zhang, H., Chen, J.-M., & Feng, T. (2020). Characteristics of tropical cyclone activity over the South China Sea: Local and nonlocal tropical cyclones. Terrestrial, Atmospheric and Oceanic Sciences, 31, 261–271. https://doi.org/10.3319/TAO.2019.07.01.02 Xie, H., Shang, D., Chen, Y., & Zhang, Z. (2011). Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophysical Research Letters, 38(5). https://doi.org/10.1029/2010GL046521 Xie, S., Xie, Q., Wang, D., & Liu, W. T. (2003). Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research: Oceans, 108(C8). https://doi.org/10.1029/2003JC001867 Xie, S., Chang, C., Xie, Q., & Wang, D. (2007). Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations. Journal of Geophysical Research: Oceans, 112(C10). https://doi.org/10.1029/2007JC004238 Xie, X., Liu, Q., Shang, X., Chen, G., & Wang, D. (2016). Poleward propagation of parametric subharmonic instability-induced inertial waves. Journal of Geophysical Research: Oceans, 121, 1881–1895. https://doi.org/10.1002/2015JC011194 Xu, H., Zhang, Z., Vetter, P. A., Xie, Q., Long, T., & Hong, B. (2022). Impact of anticyclonic eddy on nonlinear wave-wave interaction in the southern South China Sea during late summer 2020. Geophysical Research Letters, 49, e2021GL096892. https://doi.org/10.1029/2021GL096892 Xu, Z., Liu, K., Yin, B., Zhao, Z., Wang, Y., & Li, Q. (2016). Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research: Oceans, 121, 8268–8286. https://doi.org/10.1002/2016JC012105 Yang, W., Wei, H., & Zhao, L. (2020). Parametric subharmonic instability of the semidiurnal internal tides at the East China Sea shelf slope. Journal of Physical Oceanography, 50(4), 907–920. https://doi.org/10.1175/JPO-D-19-0163.1 Zhang, Z., Xu, H., Vetter, P. A., Xie, Q., Xie, X., Song, W., & Tian, C. (2021). High-frequency motions in the southeastern South China Sea during winter–spring 2018/2019. Frontiers in Marine Science, 8, 681993. https://doi.org/10.3389/fmars.2021.681993 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98674 | - |
| dc.description.abstract | 本研究利用在太平島北部近東西向水道所觀測到的長期溫度與海流資料,研究週期約為全日潮週期兩倍的全日內潮次諧波運動。
觀測資料顯示四個主要特徵:第一、在深度-頻譜圖中,在潮汐頻率和近慣性頻率之間有一峰值,且非當地中尺度渦漩所造成;第二、頻帶濾波分析顯示全日內潮頻率一半的東西向海流和海溫在颱風雷伊經過後有顯著的變化,並且東西向海流垂直結構呈雙向傳播且高模態結構;第三、在颱風經過後,全日內潮次諧波深度積分動能的最大值與全日內潮變化相互對應,推測該次諧波增強可能和颱風增強當地全日內潮有關。第四、雙頻譜分析(bispectrum)證實在颱風經過後有非線性效應存在,推測與全日內潮參數次諧波不穩定(PSI)運動有關,使得全日內潮傳遞能量至其次諧波,增強颱風後全日內潮次諧波運動。 綜上所述,本研究觀測到頻率為全日內潮頻率一半的次諧波運動於颱風經過後增強,推測與颱風增強當地全日內潮以及全日內潮PSI運動有關。但本研究僅一觀測位置,後續須更多觀測與較大範圍的數值模式研究,才可了解颱風過後如何在該海域透過PSI增強全日內潮次諧波運動促進海水混合的整體動力機制。 | zh_TW |
| dc.description.abstract | This study investigates the subharmonic motions of diurnal internal tides, with periods approximately twice that of the diurnal internal tides, using long-term temperature and current data observed in the east-west oriented channel north of Taiping Island.
The observed data revealed four main characteristics. First, the depth-frequency map showed a peak between tidal and near-inertial frequency, which was not caused by local mesoscale eddies. Second, bandpass analysis revealed significant changes in temperature and east-westward currents at half the diurnal internal tide frequency after the passage of Typhoon Rai. The vertical structure of east-westward currents displayed a bidirectional propagation and high-mode pattern. Third, the peaks of subharmonic motions in depth-integrated kinetic energy coincided with peaks of diurnal internal tides after the typhoon, suggesting the enhancement of subharmonic motions might be related to typhoon-induced local diurnal internal tides. Last, bispectrum analysis confirmed the presence of nonlinear interactions after the typhoon, suggesting the involvement of parametric subharmonic instability (PSI), which transfers energy from diurnal internal tides to its subharmonics, enhancing the subharmonic motions following the typhoon. In conclusion, this study observed an enhancement of subharmonic motions at half of diurnal internal tide frequency after typhoon, might be related to the typhoon-induced intensification of local diurnal internal tides and PSI of the diurnal internal tides. However, due to the limitation of a single-station observation, further observations and modelling work is needed to understand the complete dynamical mechanism through which PSI enhances subharmonic motions to facilitate ocean mixing in the region after typhoon. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:18:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:18:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 V 圖次 VII 表次 XI 符號表 XII 第一章、緒論 1 1.1研究背景 1 1.2 研究動機 3 第二章、資料介紹 5 2.1 錨碇資料介紹 6 2.2大氣資料介紹 9 2.3 新海研1號的水文觀測資料 9 2.4颱風最佳路徑資料介紹 10 2.5衛星資料介紹 10 2.6模式資料介紹 12 2.7經過錨碇串之颱風介紹 13 第三章、分析方法 15 3.1傅立葉頻譜分析(SPECTRUM ANALYSIS) 15 3.2旋轉能譜(ROTARY SPECTRUM) 16 3.3濾波分析(BAND-PASS ANALYSIS) 17 3.4小波分析 19 3.5斜壓流(BAROCLINIC CURRENTS) 21 3.6波向分解(DECOMPOSITION) 24 3.7雙頻譜分析(BISPECTRUM ANALYSIS) 26 第四章、分析結果與討論 28 4.1背景水文環境 28 4.2背景海流環境 32 4.3中尺度渦漩的影響 40 4.4颱風經過後變化 42 4.4.1時間序列分析 42 4.4.2 垂直傳遞方向分析 45 4.4.3 雙頻譜分析 49 4.5 PSI理論回顧與討論 50 4.5.1 PSI理論回顧 50 4.5.2 討論 53 第五章、結論 54 參考資料 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙頻譜分析 | zh_TW |
| dc.subject | 參數次諧波不穩定(PSI) | zh_TW |
| dc.subject | 非線性交互作用 | zh_TW |
| dc.subject | Bispectrum analysis | en |
| dc.subject | Parametric Subharmonic Instability (PSI) | en |
| dc.subject | Nonlinear interaction | en |
| dc.title | 南海中部全日內潮次諧波之研究 | zh_TW |
| dc.title | Study on subharmonic waves of diurnal internal tides in the central South China Sea | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張明輝;方盈智;鄭宇昕 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Huei Chang;Ying-Chih Fang;Yu-Hsin Cheng | en |
| dc.subject.keyword | 參數次諧波不穩定(PSI),非線性交互作用,雙頻譜分析, | zh_TW |
| dc.subject.keyword | Parametric Subharmonic Instability (PSI),Nonlinear interaction,Bispectrum analysis, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202504191 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
