請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98672完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 沈伯懷 | zh_TW |
| dc.contributor.author | Po-Huai Shen | en |
| dc.date.accessioned | 2025-08-18T01:17:59Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Aboagye, P. D., & Sharifi, A. (2024). Urban climate adaptation and mitigation action plans: A critical review. Renewable and Sustainable Energy Reviews, 189, 113886.
Aghamolaei, R., Fallahpour, M., & Mirzaei, P. A. (2021). Tempo-spatial thermal comfort analysis of urban heat island with coupling of CFD and building energy simulation. Energy and buildings, 251, 111317. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office. Andersson, E., Langemeyer, J., Borgström, S., McPhearson, T., Haase, D., Kronenberg, J., Barton, D. N., Davis, M., Naumann, S., & Röschel, L. (2019). Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. BioScience, 69(7), 566-574. Benedict, M. A., & McMahon, E. T. (2012). Green infrastructure: linking landscapes and communities. Island press. Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., & Joost, S. (2021). A spatially explicit approach to simulate urban heat mitigation with InVEST (v3. 8.0). Geoscientific Model Development, 14(6), 3521-3537. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155. Chen, Y.-C., Lo, T.-W., Shih, W.-Y., & Lin, T.-P. (2019). Interpreting air temperature generated from urban climatic map by urban morphology in Taipei. Theoretical and applied climatology, 137(3), 2657-2662. Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12), 1582-1591. Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and planning B: Planning and design, 24(2), 247-261. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46. Davies, C., Hansen, R., Rall, E., Pauleit, S., Lafortezza, R., De Bellis, Y., Santos, A., & Tosics, I. (2015). The status of European green space planning and implementation based on an analysis of selected European city-regions. Davies, C., & Lafortezza, R. (2017). Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land use policy, 69, 93-101. Deilami, K., Kamruzzaman, M., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International journal of applied earth observation and geoinformation, 67, 30-42. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A. G., Mittal, N., Feliú, E., & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of environmental management, 146, 107-115. Dousset, B., & Gourmelon, F. (2003). Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS Journal of photogrammetry and remote sensing, 58(1-2), 43-54. Eastman, J. (2016). TerrSet. Geospatial monitoring and modelling system. Manual. Clark University. Worcester, MA, USA. 393 p. In. Eastman, J. R. (2006). IDRISI Andes guide to GIS and image processing. Clark University, Worcester, 328. Fastl, C., Arnberger, A., Gallistl, V., Stein, V. K., & Dorner, T. E. (2024). Heat vulnerability: health impacts of heat on older people in urban and rural areas in Europe. Wiener Klinische Wochenschrift, 136(17), 507-514. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., & Bertrand-Krajewski, J.-L. (2015). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban water journal, 12(7), 525-542. Frantzeskaki, N. (2019). Seven lessons for planning nature-based solutions in cities. Environmental Science & Policy, 93, 101-111. Gascon, M., Triguero-Mas, M., Martínez, D., Dadvand, P., Rojas-Rueda, D., Plasència, A., & Nieuwenhuijsen, M. J. (2016). Residential green spaces and mortality: a systematic review. Environment international, 86, 60-67. Gasparrini, A., Guo, Y., Hashizume, M., Kinney, P. L., Petkova, E. P., Lavigne, E., Zanobetti, A., Schwartz, J. D., Tobias, A., & Leone, M. (2015). Temporal variation in heat–mortality associations: a multicountry study. Environmental health perspectives, 123(11), 1200-1207. Grilo, F., Pinho, P., Aleixo, C., Catita, C., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., McPhearson, T., & Branquinho, C. (2020). Using green to cool the grey: Modelling the cooling effect of green spaces with a high spatial resolution. Science of the Total Environment, 724, 138182. Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584, 1040-1055. Guzder-Williams, B., Mackres, E., Angel, S., Blei, A. M., & Lamson-Hall, P. (2023). Intra-urban land use maps for a global sample of cities from Sentinel-2 satellite imagery and computer vision. Computers, Environment and Urban Systems, 100, 101917. Hamel, P., Bosch, M., Tardieu, L., Lemonsu, A., De Munck, C., Nootenboom, C., Viguié, V., Lonsdorf, E., Douglass, J. A., & Sharp, R. P. (2024). Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States. Geoscientific Model Development, 17(12), 4755-4771. Hoffman, J. S., Shandas, V., & Pendleton, N. (2020). The effects of historical housing policies on resident exposure to intra-urban heat: a study of 108 US urban areas. Climate, 8(1), 12. Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote sensing of environment, 114(3), 504-513. Infrastructure, G. (2013). Enhancing Europe’s natural capital. European Commission: Brussels, Belgium. Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook of cartography, 7, 186-190. Jerome, G. (2018). Defining community-scale green infrastructure. In Green Infrastructure (pp. 89-95). Routledge. Jusuf, S. K., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat international, 31(2), 232-242. Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., & Stadler, J. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and society, 21(2). Kafy, A.-A., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., Khan, M. H. H., Sikdar, M. S., Sarker, M. H. S., Mawa, J., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., & Folke, C. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global environmental change, 11(4), 261-269. Langemeyer, J., Gómez-Baggethun, E., Haase, D., Scheuer, S., & Elmqvist, T. (2016). Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science & Policy, 62, 45-56. Lee, A. C., & Maheswaran, R. (2011). The health benefits of urban green spaces: a review of the evidence. Journal of public health, 33(2), 212-222. Legg, S. (2021). IPCC, 2021: Climate change 2021-the physical science basis. Interaction, 49(4), 44-45. Li, J., Xu, X., Yang, J., Liu, Z., Xu, L., Gao, J., Liu, X., Wu, H., Wang, J., & Yu, J. (2017). Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations. Environmental research, 156, 657-664. Li, L., Zheng, M., Zhang, J., Li, C., Ren, Y., Jin, X., & Chen, J. (2023). Effects of green infrastructure on the dispersion of PM2. 5 and human exposure on urban roads. Environmental research, 223, 115493. Li, X., & Yeh, A. G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4), 323-343. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14-37. Lin, C.-Y., Chen, F., Huang, J., Chen, W.-C., Liou, Y.-A., Chen, W.-N., & Liu, S.-C. (2008). Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment, 42(22), 5635-5649. Lin, C.-Y., Su, C.-J., Kusaka, H., Akimoto, Y., Sheng, Y.-F., Huang, J.-C., & Hsu, H.-H. (2016). Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric chemistry and physics, 16(3), 1809-1822. Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C., & Chen, W.-B. (2022). The Taiwan climate change projection information and adaptation knowledge platform: a decade of climate research. Water, 14(3), 358. Lin, Y.-K., Zafirah, Y., Ke, M.-T., Andhikaputra, G., & Wang, Y.-C. (2021). The effects of extreme temperatures on emergency room visits—a population-based analysis by age, sex, and comorbidity. International Journal of Biometeorology, 65(12), 2087-2098. Liquete, C., Kleeschulte, S., Dige, G., Maes, J., Grizzetti, B., Olah, B., & Zulian, G. (2015). Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environmental Science & Policy, 54, 268-280. Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and urban planning, 168, 94-116. Longato, D., Cortinovis, C., Albert, C., & Geneletti, D. (2021). Practical applications of ecosystem services in spatial planning: Lessons learned from a systematic literature review. Environmental Science & Policy, 119, 72-84. Mas, J.-F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94-111. Masson, V. (2006). Urban surface modeling and the meso-scale impact of cities. Theoretical and applied climatology, 84(1), 35-45. Matthews, T., Lo, A. Y., & Byrne, J. A. (2015). Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landscape and urban planning, 138, 155-163. Meade, R. D., Akerman, A. P., Notley, S. R., McGinn, R., Poirier, P., Gosselin, P., & Kenny, G. P. (2020). Physiological factors characterizing heat-vulnerable older adults: a narrative review. Environment international, 144, 105909. Mecca, B. (2023). Assessing the sustainable development: A review of multi‐criteria decision analysis for urban and architectural sustainability. Journal of Multi‐Criteria Decision Analysis, 30(5-6), 203-218. Meerow, S., & Newell, J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and urban planning, 159, 62-75. Miao, S., Chen, F., LeMone, M. A., Tewari, M., Li, Q., & Wang, Y. (2009). An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. Journal of Applied Meteorology and Climatology, 48(3), 484-501. Mills, G., Cleugh, H., Emmanuel, R., Endlicher, W., Erell, E., Mcgranahan, G., Ng, E., Nickson, A., Rosenthal, J., & Steemer, K. (2010). Climate information for improved planning and management of mega cities (needs perspective). Procedia Environmental Sciences, 1, 228-246. Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, 200-206. Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island–abilities and limitations. Building and environment, 45(10), 2192-2201. Montibeller, G., & Franco, L. A. (2011). Raising the bar: strategic multi-criteria decision analysis. Journal of the Operational Research Society, 62(5), 855-867. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing, 66(3), 247-259. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote sensing of environment, 115(5), 1145-1161. Newman, P. (2014). Biophilic urbanism: a case study on Singapore. Australian planner, 51(1), 47-65. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and urban planning, 134, 127-138. Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban forestry & urban greening, 4(3-4), 115-123. Odu, G. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449-1457. Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment (1967), 7(8), 769-779. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly journal of the royal meteorological society, 108(455), 1-24. Olmedo, M., Paegelow, M., Mas, J.-F., & Escobar, F. (2018). Geomatic approaches for modeling land change scenarios. An introduction. Geomatic Approaches for Modeling Land Change Scenarios, 1-8. Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental science & technology, 46(2), 696-703. Pillai, S. K., Noe, R. S., Murphy, M. W., Vaidyanathan, A., Young, R., Kieszak, S., Freymann, G., Smith, W., Drenzek, C., & Lewis, L. (2014). Heat illness: predictors of hospital admissions among emergency department visits—Georgia, 2002–2008. Journal of community health, 39(1), 90-98. Pontius Jr, R. G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., & Kok, K. (2008). Comparing the input, output, and validation maps for several models of land change. The annals of regional science, 42(1), 11-37. Pontius Jr, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, ecosystems & environment, 85(1-3), 239-248. Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of photogrammetry and remote sensing, 67, 93-104. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536. Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3-4), 938-943. Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682-703. Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, 512, 582-598. Schwaab, J., Meier, R., Mussetti, G., Seneviratne, S., Bürgi, C., & Davin, E. L. (2021). The role of urban trees in reducing land surface temperatures in European cities. Nature communications, 12(1), 6763. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. Sleeter, B. M., Marvin, D. C., Cameron, D. R., Selmants, P. C., Westerling, A. L., Kreitler, J., Daniel, C. J., Liu, J., & Wilson, T. S. (2019). Effects of 21st‐century climate, land use, and disturbances on ecosystem carbon balance in California. Global Change Biology, 25(10), 3334-3353. Small, C. (2003). High spatial resolution spectral mixture analysis of urban reflectance. Remote sensing of environment, 88(1-2), 170-186. Song, Y., Chen, B., Ho, H. C., Kwan, M.-P., Liu, D., Wang, F., Wang, J., Cai, J., Li, X., & Xu, Y. (2021). Observed inequality in urban greenspace exposure in China. Environment international, 156, 106778. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. Stewart, T. J., French, S., & Rios, J. (2013). Integrating multicriteria decision analysis and scenario planning—Review and extension. Omega, 41(4), 679-688. Su, Y.-F., Foody, G. M., & Cheng, K.-S. (2012). Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landscape and urban planning, 107(2), 172-180. Taha, H. (1997). Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings, 25(2), 99-103. Takada, T., Miyamoto, A., & Hasegawa, S. F. (2010). Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landscape ecology, 25, 561-572. Turek-Hankins, L. L., Coughlan de Perez, E., Scarpa, G., Ruiz-Diaz, R., Schwerdtle, P. N., Joe, E. T., Galappaththi, E. K., French, E. M., Austin, S. E., & Singh, C. (2021). Climate change adaptation to extreme heat: a global systematic review of implemented action. Oxford Open Climate Change, 1(1), kgab005. Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104(52), 20666-20671. Van den Berg, A. E., Maas, J., Verheij, R. A., & Groenewegen, P. P. (2010). Green space as a buffer between stressful life events and health. Social science & medicine, 70(8), 1203-1210. van Til, J., Groothuis-Oudshoorn, C., Lieferink, M., Dolan, J., & Goetghebeur, M. (2014). Does technique matter; a pilot study exploring weighting techniques for a multi-criteria decision support framework. Cost effectiveness and resource allocation, 12(1), 22. Van Vliet, M., Ludwig, F., Zwolsman, J., Weedon, G., & Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47(2). Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309-324. Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3), 391-405. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote sensing of environment, 86(3), 370-384. Vos, P. E., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: to tree or not to tree? Environmental pollution, 183, 113-122. Wang, C.-H. (2023). Taipei: Towards a liveable and sustainable city. In Routledge Handbook of Asian Cities (pp. 140-153). Routledge. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of photogrammetry and remote sensing, 64(4), 335-344. Yang, J., Hu, X., Feng, H., & Marvin, S. (2021). Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban forestry & urban greening, 66, 127384. Young, R. F. (2011). Planting the living city: Best practices in planning green infrastructure—Results from major us cities. Journal of the American Planning Association, 77(4), 368-381. Zander, K., Hill, G., Barber, G., Erdiaw-Kwasie, M., Abunyewah, M., & Garnett, S. (2025). Citizen's preferences for urban planning priorities: The importance of heat mitigation plans. Cities, 161, 105888. Zawadzka, J., Harris, J. A., & Corstanje, R. (2021). Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and urban planning, 214, 104163. Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China's 32 major cities: Spatial patterns and drivers. Remote sensing of environment, 152, 51-61. 公視新聞網 (2024)〈北北桃熱島效應擴大 北市擬策略盼體感溫度降2℃〉。 行政院環境保護署 (2023)《氣候變遷因應法》。 汪中安 (2022) 氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例。國立臺灣大學生物環境系統工程學系學位論文: 1-115。 周佳 (2017) 臺灣氣候變遷科學報告 2017—物理現象與機制。國家災害防救科技中心。 林子平 (2024)〈高溫蔓延!成大教授林子平:都市愈來愈熱,是因為做錯四件事〉。《未來城市@天下》。 莊喻淳 (2019) 運用馬可夫鍊細胞自動機模型模擬土地利用變遷-以鳳山溪流域為例 楊明叡 (2021) 都市熱島指標評估系統之建立及應用。 臺北市政府都市發展局 (2021) 臺北市國土功能分區劃設說明書。臺北市:臺北市政府。 臺北市政府都市發展局 (2023) 降溫城市計畫。 臺北市政府環境保護局 (2022)《臺北市因應氣候變遷行動綱領》。臺北市:臺北市政府環境保護局。 臺灣氣候變遷推估資訊與調適知識平台 (2021) 統計降尺度日資料。 臺灣電力公司 (2023)《2023年度供電年報》。臺北:臺灣電力公司。 遠見雜誌 (2023) 臺北市快成全高溫區!學者憂心:都市熱島效應愈變愈廣。 衛生福利部國民健康署 (2024)〈預防熱傷害衛教專區〉。 賴進貴、葉高華、陳汶軍 (2004) 土地利用變遷與空間相依性之探討:以臺北盆地聚落變遷為例。臺灣地理資訊學刊: 29-40。 羅子雯 (2018) 結合局部氣候分區及景觀生態指標之都市氣候地圖建置及應用。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98672 | - |
| dc.description.abstract | 面對氣候變遷與快速都市化的雙重挑戰,都市熱島效應已成為影響城市永續發展的關鍵議題。本研究以臺北市為例,整合土地利用變遷預測模型(Land Change Modeler, LCM)與多指標分析方法(Multi-Indicators Analysis, MIA),建構綠色基盤設施優先配置的決策支援系統。研究採用2000-2024年的土地利用資料,透過多層感知機(MLP)模型預測2030年在基線發展(BAU)、都市化發展(UD)及環境保護(PT)三種情境下的土地利用變遷。同時整合都市熱島效應、空氣品質、社會脆弱性、綠地可及性及景觀連結性五項指標,以等權重及熱島優先兩種權重設定進行空間分析。
研究結果顯示,臺北市可供土地利用轉變的空間極為有限,三種發展情境的差異主要體現在邊緣地區,對整體環境品質的影響相對有限。當都市熱島權重提高至0.4時,高需求區域(第5-6級)顯著擴張,基線情境下第6級網格數從330個增至1,120個,增幅達3.39%。空間分析發現,中山、松山、信義、萬華、大安等傳統高密度建成區在各情境下均維持高需求等級,顯示既有都市結構對環境品質的決定性影響。環境保護情境雖能維持較大面積的低需求區域,但對既有建成區的熱島問題改善有限。 本研究證實在高度都市化環境中,傳統土地利用規劃的效果有限,需要創新的立體化策略和系統性的網絡建構。研究建議:(1)針對高需求區域採用屋頂綠化、立面綠化等立體化措施;(2)保護中等需求區域避免進一步惡化;(3)強化低需求區域與市區的生態廊道連接。本研究成果不僅為臺北市提供科學化的規劃依據,也為其他面臨類似挑戰的亞洲高密度城市提供可複製的方法論架構。 | zh_TW |
| dc.description.abstract | Facing the dual challenges of climate change and rapid urbanization, the urban heat island effect has become a critical issue affecting urban sustainable development. This study takes Taipei City as a case study, integrating Land Change Modeler (LCM) and Multi-Indicators Analysis (MIA) to establish a decision support system for green infrastructure priority allocation. Using land use data from 2000-2024, this research employs Multi-Layer Perceptron (MLP) models to predict land use changes in 2030 under three scenarios: Business as Usual (BAU), Urban Development (UD), and Environmental Protection (PT). The study integrates five indicators: urban heat island effect, air quality, social vulnerability, green space accessibility, and habitat connectivity, conducting spatial analysis with both equal weights and heat island priority weight settings.
Results reveal that available land for conversion in Taipei City is extremely limited, with differences among the three scenarios mainly manifested in peripheral areas, having relatively limited impact on overall environmental quality. When the urban heat island weight is increased to 0.4, high-demand areas (levels 5-6) expand significantly, with level 6 grids increasing from 330 to 1,120 under the baseline scenario, representing a 239% increase. Spatial analysis identifies that traditional high-density built-up areas including Zhongshan, Songshan, Xinyi, Wanhua, and Daan districts maintain high demand levels across all scenarios, demonstrating the decisive influence of existing urban structure on environmental quality. While the environmental protection scenario maintains larger low-demand areas, improvements to heat island problems in existing built-up areas remain limited. This study confirms that traditional land use planning has limited effectiveness in highly urbanized environments, necessitating innovative vertical strategies and systematic network construction. The study recommends: (1) implementing vertical measures such as rooftop and facade greening in high-demand areas; (2) protecting medium-demand areas from further deterioration; (3) strengthening ecological corridor connections between low-demand areas and urban centers. The research outcomes not only provide scientific planning basis for Taipei City but also offer a replicable methodological framework for other high-density Asian cities facing similar challenges. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:17:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:17:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv 目次 vi 圖目次 ix 表目次 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程與架構 4 第二章 文獻回顧 6 2.1 都市熱島效應與氣候調適 6 2.2 衛星遙測在都市熱島與土地利用監測的應用 8 2.2.1 都市熱島效應監測 8 2.2.2 土地利用/覆蓋分類應用 8 2.2.3 整合應用與未來發展 9 2.3 土地利用變遷 9 2.4 綠色基盤設施效益 11 2.5 多功能綠色基盤設施規劃方法 12 第三章 研究方法 14 3.1研究區域 14 3.2土地利用資料蒐集與分類 15 3.3土地利用變遷模擬 18 3.3.1 Land change modeler 模式原理 18 3.3.2 模式架構 20 3.3.3 土地利用驅動因子與適宜性地圖 21 3.3.4 土地利用情境預測 24 3.3.5 土地利用模式驗證 25 3.4綠色基盤設施效益之多指標空間分析計算與標準化 27 3.4.1 都市熱島指標 27 3.4.2 空氣品質指標 29 3.4.3 社會脆弱性指標 30 3.4.4 綠地可及性指標 30 3.4.5 景觀連結性指標 31 3.4.6 權重情境設定假設 31 第四章 結果與討論 33 4.1土地利用分類 33 4.2土地利用變遷分析 37 4.2.1 驅動因子影響分析與轉移子模型準確度評估 39 4.2.2 土地利用轉移機率 42 4.2.3 土地利用轉移機率和適宜性地圖分析 43 4.2.4 土地利用情境與驗證結果 44 4.2.5 2030年土地利用情境模擬 49 4.3綠色基盤設施各效益指標結果 55 4.3.1 都市熱島指標 55 4.3.2 空氣品質指標 68 4.3.3 社會脆弱性指標 74 4.3.4 都市綠地可及性指標 81 4.3.5 景觀連結性指標 88 4.4不同土地變遷情境的綠色基盤設施優先設置位置分析 94 4.4.1 等權重情境假設 94 4.4.2 都市熱島權重增加情境假設 100 4.5政策意涵和都市綠色基盤設施系統規劃建議 111 第五章 結論與建議 114 5.1 結論 114 5.2 建議 115 5.3 研究限制 117 參考文獻 119 附錄 132 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 綠色基盤設施 | zh_TW |
| dc.subject | 土地利用變遷 | zh_TW |
| dc.subject | 都市熱島效應 | zh_TW |
| dc.subject | 多指標分析 | zh_TW |
| dc.subject | 氣候調適 | zh_TW |
| dc.subject | 臺北市 | zh_TW |
| dc.subject | Land use change | en |
| dc.subject | Taipei City | en |
| dc.subject | Climate adaptation | en |
| dc.subject | Green infrastructure | en |
| dc.subject | Multi-indicators analysis | en |
| dc.subject | Urban heat island effect | en |
| dc.title | 整合土地利用變遷預測與多指標分析之綠色基盤設施配置分析—以臺北市為例 | zh_TW |
| dc.title | Integrating Land Use Change Prediction and Multi-Indicators for Analyzing for Green Infrastructure Arrangement: A Case Study of Taipei City | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林映辰;謝宜桓 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Chen Lin;Yi-Huan Hsieh | en |
| dc.subject.keyword | 綠色基盤設施,土地利用變遷,都市熱島效應,多指標分析,氣候調適,臺北市, | zh_TW |
| dc.subject.keyword | Green infrastructure,Land use change,Urban heat island effect,Multi-indicators analysis,Climate adaptation,Taipei City, | en |
| dc.relation.page | 136 | - |
| dc.identifier.doi | 10.6342/NTU202503499 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.11 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
