Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9866
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林建甫 | |
dc.contributor.author | Chi-Yu Cheng | en |
dc.contributor.author | 鄭紀玉 | zh_TW |
dc.date.accessioned | 2021-05-20T20:46:09Z | - |
dc.date.available | 2008-07-23 | |
dc.date.available | 2021-05-20T20:46:09Z | - |
dc.date.copyright | 2008-07-23 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-10 | |
dc.identifier.citation | 中文部分
李玉如 譯;Simone Borla and Denis Masetti 著(2007), 《避險基金》譯自:《Hedge funds-A resource for Investors》 台北:台灣金融研訓院。 林惠玲、陳正倉(2007),「統計學-方法與應用」, 台北:雙葉書廊有限公司 張有若(2002),「全球共同基金群組風險與績效評估-以風險值修正夏普指標之應用」,中原大學企業管理研究所碩士論文。 陳哲瑜(2003),「風險值在共同基金績效評估上之應用」,國立中正大學企業管理研究所碩士論文。 黃佳毓(2006)《風險管理-衍生性商品避險運用》,台北:財團法人中華民國證券暨期貨市場發展基金會。 黃嘉斌 譯;Robert A. Jaeger 著 (2005), 《透視避險基金》譯自: 《All About Hedge Funds》 台北:寰宇出版股份有限公司。 楊宗庭(2001),「共同基金風險值的評估與應用」,國立台灣大學財務金融學研究所碩士論文。 葉珀如(2006)「避險基金風險與績效評估」,朝陽科技大學財務金融系研究所碩士論文。 蒲建亨(2001),「整合VaR 法之衡量與驗證.以台灣金融市場投資組合為例」,國立政治大學國際貿易研究所碩士論文。 劉文祺、張淑怡、張清鳳,(2000),「共同基金評選指標之實用性研究」,產業金融,109,60-80。 英文部分 Blanco and Geoffrey (1999), “How Good is Your VaR? Using Backtesting to Assess System Performance”, Financial Engineering News, 11, 1-4. Dowd, K. (1999), “A Value at Risk Approach to Risk-Return Analysis”, The Journal of Portfolio Management, 25 (4), 60-67. Dowd, K. (2000), “Assessing VaR Accuracy”, Derivatives Quarterly, Spring, 61-63. Duffie, D. and J. Pan (1997), “An Overview of Value at Risk”, The Journal of Derivatives, Spring, 7-49. Fothergill, M. and C. Coke (2001), “Funds of Hedge Funds: An Introduction to Multi-Manager Funds”, The Journal of Alternative investments. Philippe, J. (1997), “Value at Risk: the new benchmark for controlling market risk”, IRWIN, Chicago: Irwin. Philippe, J. (1996), “Risk2: Measuring the Risk in Value at Risk”, Financial Analysis Journal, 47-56. J.P. Morgan, (1996), “ RiskMetrics Technical Document”, Fourth Edition (http://www.riskmetrics.com) Schwager, J. (1985), “ Alternative to Sharpe Ratio Better Measure of Performance”, Futures: The Magazine of Commodities & Options, 14 (3), 56-58. Schneeweis, T. and G. Martin (2001), “The Benefits of Hedge Funds: Asset Allocation for the Institutional Investor”, Journal of Alternative Investments, Vol. 4, 7-26. Sharpe, W. F. (1964), “Capital asset prices: A theory of market equilibrium under conditions of risk”, Journal of Finance, 19 (3), 425-442. Sharpe, W. F. (1966), “Mutual Fund Performance”, The Journal of Business, Fall, 119-138. Sharpe, W. F. (1994), “The Sharpe Ratio”, The Journal of Portfolio Management, Fall, 49-58. Technical Committee of the International Organization of Securities Commissions (2006), “Final Report the Regulatory Environment For Hedge Funds a Survey and Comparison”, 1-35. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9866 | - |
dc.description.abstract | 投資績效的衡量一直是投資人最關心的課題,投資的盈虧清晰可見,但投資績效的優劣卻不容易判定,尤其是避險基金強調其追求絶對報酬,與股票、債券市場的相關性低,對於一般投資人來說,顯少揭露其投資風險。本研究針對Credit Suisse/Tremont investable index避險基金作常態分配檢定,以報酬率、變異係數、Sharpe指標及Sharpe ratio of VaR指標,分析各種投資策略的績效排名,並以不同的風險值模型估算避險基金的風險值並分析其間之差異。
實證發現在小樣本的研究,避險基金的報酬率分配多為常態分配,然仍有部分的投資策略的避險基金為非常態分配有高峰偏態現象。在平均報酬率的績效排名以新興市場策略的避險基金的績效最好,但考慮到風險的波動性,以變異係數為績效排名時,則以事件導向策略的避險基金為首選。另本研究發現,當避險基金出現超額報酬為負值時,運用Sharpe指標及Sharpe ratio of VaR指標的績效排名會出現偏誤,使得績效較佳的基金有較差的排名,而有修正調整的必要。將修正後的Sharpe指標予以績效排名時,發現Sharpe 指標與平均報酬率的績效排名相較,其排名次序變動不大,係高報酬率的避險基金其風險的波動性也很高,故高的超額報酬有高的風險波動及低的超額報酬有較低的風險波動。 在風險值的計算本研究實證發現,以歷史模擬法計算之風險值,均高於同時期以蒙地卡羅模擬法估算的風險值,並且沿著蒙地卡羅模擬法計算的風險值做小幅度的變動,兩者風險值相當接近,且在其信賴區間95%下,以Delta-Normal、歷史模擬法或蒙地卡羅模擬法,所驗證之回溯測試值都具有可信度。 | zh_TW |
dc.description.abstract | This research uses the normal distribution test to evaluate the performance of monthly index return for nine hedge funds of Credit Suisse/Tremont investable index. The ranking for various investment strategy of hedge fund is made based on the return rate, the coefficient of variation, the Sharpe ratio, and the Sharpe ratio of VaR. Besides, the risk values of various hedge funds are evaluated in the Delta-Normal approach, the historical simulation approach, and the Monte Carlo simulation approach.
The empirical results show that the return rates for parts of hedge funds are not the normal distribution with leptokurtic and skewed phenomenon even though most hedge funds fit the normal distribution in small sample. If ranked in the mean return rate, the performance of the investment strategy for emerging market is best. If considering the risk volatility and ranked in coefficient of variation, the performance of the investment strategy for event driven is best. Besides, when the excess return is negative, the ranking would be incorrect if using the Sharpe ratio and the Sharpe ratio of VaR. It is necessary to modify the evaluation method. Comparing the ranking in the modified Sharpe ratio and the ranking in the mean return rate, there is the minor change only. The result shows that the higher the return is, the higher the volatility is. The risk evaluation of the empirical results shows the risk estimated in the historical simulation approach is higher than the risk estimated in the Monte Carlo simulation approach for the investigated period. Both values are very close. At 95% confidence interval, the trace tests are reliable in Delta-Normal approach, the historical simulation approach, and the Monte Carlo simulation approach. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:46:09Z (GMT). No. of bitstreams: 1 ntu-97-P95323014-1.pdf: 814219 bytes, checksum: 1dc395e147cd989c5cb28ffee36a6481 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
謝辭 i 中文摘要 ii 英文摘要 iii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究架構流程 3 1.4 避險基金發展現況 5 1.4.1 避險基金的定義及特性 5 1.4.2 避險基金的投資策略分析 6 第二章 文獻探討 9 2.1 常態分配檢定 9 2.2 績效評估 9 2.2.1 避險基金的績效評估 9 2.2.2 績效評估指標 10 2.3 風險值 11 第三章 研究方法 13 3.1 資料來源與樣本期間說明 13 3.1.1 資料來源 13 3.1.2 CSFB/Tremont Hedge Fund Index介紹 13 3.1.3 樣本期間 15 3.2 避險基金常態性檢定 15 3.3 績效評估模型 17 3.3.1 避險基金的投資報酬率 17 3.3.2 避險基金平均報酬率 17 3.3.3 避險基金波動性的衡量 18 3.3.4 變異係數 18 3.3.5 Sharpe 指標 19 3.3.6 Sharpe ratio of VaR 19 3.4 風險值 20 3.4.1 風險值的定義 20 3.4.2 Delta-Normal法 21 3.4.3 歷史模擬法 22 3.4.4 蒙地卡羅模擬法 23 3.4.5 回溯測試 24 第四章 實證分析 26 4.1 常態分配檢定結果分析 26 4.2 避險基金績效評估實證分析 27 4.2.1 平均報酬率分析 27 4.2.2 變異係數分析 29 4.2.3 Sharpe 指標及Sharpe ratio of VaR指標分析 31 4.3 風險值分析 33 4.3.1 風險值的比較 33 4.3.2 風險值的驗證 34 第五章 結論與後續研究建議 36 5.1 結論 36 5.2 研究限制 38 5.3 研究建議 39 參考文獻 40 中文部分 40 英文部分 41 附錄一:CSFB/Tremont Hedge Fund Index項下子指數之成份基金: 43 附錄二:9類避險基金指數常態分配檢定圖 46 附錄三:避險基金報酬率分配圖 51 | |
dc.language.iso | zh-TW | |
dc.title | CSFB/TREMONT避險基金績效與風險的探討 | zh_TW |
dc.title | The Risk and Performance Analysis in the Hedge Fund Industry: A Case of CSFB and TREMONT | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳中書,王騰坤,劉祥熹 | |
dc.subject.keyword | 避險基金,績效,常態分配檢定,Sharpe指標,風險值, | zh_TW |
dc.subject.keyword | Hedge Fund,Performance,Normal Distribution Test,Sharpe ratio,Risk Value, | en |
dc.relation.page | 55 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-07-11 | |
dc.contributor.author-college | 社會科學院 | zh_TW |
dc.contributor.author-dept | 經濟學研究所 | zh_TW |
Appears in Collections: | 經濟學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-97-1.pdf | 795.14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.