請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿廷 | zh_TW |
| dc.contributor.advisor | Yu-Ting Hsu | en |
| dc.contributor.author | 吳竣名 | zh_TW |
| dc.contributor.author | Jun-Ming Wu | en |
| dc.date.accessioned | 2025-08-18T01:15:50Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Aguiar, I., Monzon, A., and Lopez-Carreiro, I. (2023). Maas potential users' profiles characterization with a k-means clustering algorithm. *Transportation Research Procedia*, 71:219–226.
Alonso-González, M. J., Hoogendoorn-Lanser, S., van Oort, N., Cats, O., and Hoogendoorn, S. (2020). Drivers and barriers in adopting mobility as a service (MaaS)–a latent class cluster analysis of attitudes. *Transportation Research Part A: Policy and Practice*, 132:378–401. Alyavina, E., Nikitas, A., and Njoya, E. T. (2020). Mobility as a service and sustainable travel behaviour: A thematic analysis study. *Transportation Research Part F: Traffic Psychology and Behaviour*, 73:362–381. Arthur, D. and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding. Technical report, Stanford. Cohen, J. (1988). The effect size. *Statistical Power Analysis for the Behavioral Sciences*. Abingdon: Routledge, pp. 77–83. Duan, S. X., Tay, R., Molla, A., and Deng, H. (2022). Predicting mobility as a service (MaaS) use for different trip categories: An artificial neural network analysis. *Transportation Research Part A: Policy and Practice*, 166:135–149. Durand, A., Harms, L., Hoogendoorn-Lanser, S., and Zijlstra, T. (2018). Mobility-as-a-service and changes in travel preferences and travel behaviour: A literature review. Giesecke, R., Surakka, T., and Hakonen, M. (2016). Conceptualising mobility as a service. In *2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER)*, pp. 1–11. IEEE. Gould, E., Wehrmeyer, W., Leach, M., et al. (2015). Transition pathways of e-mobility services. *WIT Transactions on Ecology and the Environment*, 194(1):349–359. Goulet-Langlois, G., Koutsopoulos, H. N., Zhao, Z., and Zhao, J. (2017). Measuring regularity of individual travel patterns. *IEEE Transactions on Intelligent Transportation Systems*, 19(5):1583–1592. He, Y. and Csiszár, C. (2020). Concept of mobile application for mobility as a service based on autonomous vehicles. *Sustainability*, 12(17):6737. Hensher, D. A., Ho, C. Q., and Reck, D. J. (2021). Mobility as a service and private car use: Evidence from the Sydney MaaS trial. *Transportation Research Part A: Policy and Practice*, 145:17–33. Hietanen, S. (2014). Mobility as a service: The new transport model. *Eurotransport*, 12(2):2–4. Jittrapirom, P., Caiati, V., Feneri, A. M., Ebrahimigharehbaghi, S., Alonso-González, M. J., and Narayan, J. (2017). Mobility as a service: A critical review of definitions, assessments of schemes, and key challenges. *Urban Planning*, 2(2):13–25. Kamargianni, M., Li, W., Matyas, M., and Schäfer, A. (2016). A critical review of new mobility services for urban transport. *Transportation Research Procedia*, 14:3294–3303. Kieu, L.-M., Bhaskar, A., and Chung, E. (2015). A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card AFC data. *Transportation Research Part C: Emerging Technologies*, 58:193–207. Lin, P., Weng, J., Alivanistos, D., Ma, S., and Yin, B. (2020). Identifying and segmenting commuting behavior patterns based on smart card data and travel survey data. *Sustainability*, 12(12):5010. Ma, X., Wu, Y.-J., Wang, Y., Chen, F., and Liu, J. (2013). Mining smart card data for transit riders' travel patterns. *Transportation Research Part C: Emerging Technologies*, 36:1–12. Matowicki, M., Amorim, M., Kern, M., Pecherkova, P., Motzer, N., and Pribyl, O. (2022). Understanding the potential of MaaS–a European survey on attitudes. *Travel Behaviour and Society*, 27:204–215. Matyas, M. (2020). Opportunities and barriers to multimodal cities: Lessons learned from in-depth interviews about attitudes towards mobility as a service. *European Transport Research Review*, 12(1):1–11. Pickford, A. and Chung, E. (2019). The shape of MaaS: The potential for MaaS lite. *IATSS Research*, 43(4):219–225. Pieroni, C., Giannotti, M., Alves, B. B., and Arbex, R. (2021). Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city. *Journal of Transport Geography*, 96:103203. Ramboll (2019). Whimpact: Insights from the World’s First MaaS System. [https://www.konferenceforum.dk/contributions/7114.pdf](https://www.konferenceforum.dk/contributions/7114.pdf). Accessed: 2025-06-30. Sochor, J., Arby, H., Karlsson, I. M., and Sarasini, S. (2018). A topological approach to mobility as a service: A proposed tool for understanding requirements and effects, and for aiding the integration of societal goals. *Research in Transportation Business & Management*, 27:3–14. Sun, L., Zhao, J., Zhang, J., Zhang, F., Ye, K., and Xu, C. (2024). Activity-based individual travel regularity exploring with entropy-space k-means clustering using smart card data. *Physica A: Statistical Mechanics and its Applications*, 636:129522. Tomczak, M. and Tomczak, E. (2014). The need to report effect size estimates revisited: An overview of some recommended measures of effect size. Wong, Y. Z., Hensher, D. A., and Mulley, C. (2020). Mobility as a service (MaaS): Charting a future context. *Transportation Research Part A: Policy and Practice*, 131:5–19. Yang, C., Yan, F., and Ukkusuri, S. V. (2018). Unraveling traveler mobility patterns and predicting user behavior in the Shenzhen metro system. *Transportmetrica A: Transport Science*, 14(7):576–597. 劉瑾易 (2022). 基於智慧票卡資料探索旅次行為及旅行模式. 國立臺灣大學土木工程學系學位論文, 1–84. 周翔淳 (2020). 交通行動服務使用者之套票購買行為分析-以高雄市 MaaS 系統為例. 碩士論文, 國立交通大學. 臺灣博碩士論文知識加值系統. 張書豪 (2023). MaaS 綑綁方案消費者偏好在不同類型城市之比較. 碩士論文, 國立陽明交通大學. 臺灣博碩士論文知識加值系統. 王靖塘 (2021). 城際運輸多元整合出行服務之願付價格. 碩士論文, 國立臺灣大學. 盧宗成, 王晉元, 簡佑勳, 楊煜民, 王蕾絜, 林季萱, 吳東凌, and 陳翔捷 (2022). 交通行動服務會員之共享運具使用特性分析-以高雄市 MeN Go 系統為例. *運輸計劃季刊*, 51(3):195–230. 莊英正 (2022). 多元整合出行服務之減碳效益研究. 碩士論文, 國立臺灣大學. 邱瀧緯 (2021). 綑綁定價組合分析於「交通行動服務 (MaaS)」服務套裝方案之研究. 碩士論文, 淡江大學. 臺灣博碩士論文知識加值系統. 郭銘倫 (2021). 大數據分析應用於交通行動服務高雄 MeN Go 月票之顧客分群研究. 碩士論文, 淡江大學. 臺灣博碩士論文知識加值系統. 陳恒宇 (2017). 多元整合出行服務 (MaaS) 願付價格之研究. 碩士論文, 國立臺灣大學. 陳敦基, 洪鈞澤, 陳奕廷, 陳其華, and 劉仲潔 (2017). 我國公共運輸行動服務 (MaaS) 未來發展應用與策略規劃. *都市交通*, 32(1):11–45. 陳昱珺 (2022). 探討觀光客對交通行動服務 (MaaS) 選擇之偏好. 碩士論文, 國立成功大學. 臺灣博碩士論文知識加值系統. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98662 | - |
| dc.description.abstract | 本研究旨在探討多元整合旅運服務(Mobility as a Service, MaaS)之使用者公共運輸使用行為特性。MaaS 的核心理念係透過整合多種公共運輸系統、共享運具及副大眾運輸系統等,提供使用者無縫且便利的移動體驗,進一步提升都市居民對公共運輸與綠色交通系統的使用意願,藉以降低民眾對私人機動運具的依賴,促進城市的永續發展。透過理解 MaaS 之公共運輸使用行為可以理解公共運輸系統作為 MaaS 系統之服務核心,使用者的旅次特性得以作為後續服務改善的重要基礎。因此本研究以高雄市 MaaS 系統「 MeNGo」 之電子票證資料作為實證分析對象,透過對使用者公共運輸電子票證進行旅次特性之特徵工程、主成分分析(PCA)、使用者分群及多項羅吉特模型(MNL)等方法進行分析,欲了解在 MaaS 系統中之使用者公共運輸旅次特性。
本研究資料使用2023 年 11 月 MeNGo使用者之公共運輸電子票證資料,總共為 1,603,411 筆旅次交易紀錄,涵蓋 45,115 位使用者。研究中在資料中萃取出 32 項旅次特徵,並進一步歸納為 5 個主要行為構面與 8個使用者集群,依使用頻率區分為通勤族群(包含長距離規律、短距離規律、高轉乘、多目的使用者)與非通勤族群(混合模式、間歇性平日/假日、一次性使用者)兩大類別。分析結果發現,「使用頻率」與「時空規律性」為區分兩大族群之關鍵特性,其中通勤族群偏好班距穩定的捷運系統,於部份集群中呈現出高度的時空規律性;非通勤族群則有較多元且分散的運具選擇,並以公共運輸與私人運具混合使用的形式完成日常出行之目的。接續透過效果量分析,檢定各通勤族群間的使用行為差異程度,並透過多項羅吉特模型驗證站點特性與個人屬性對通勤族群使用行為的影響。研究之主要貢獻在於提出一套系統性的 MaaS 使用者電子票證資料處理與分析流程,並針對不同的使用者特性提出對應的改善策略,包括針對使用者行為特性進行套套票組合設計、提升公車服務接駁效率、以及推動跨機關資料整合與開放。 | zh_TW |
| dc.description.abstract | This study investigates the public transport trip characteristics of Mobility as a Service (MaaS) users based on Kaohsiung City’s MaaS platform MeNGo. MaaS aims to integrate various public transport systems, shared-mobility services, and para-transit modes to provide a seamless, convenient travel experience that enhances traveler’s accessibility to public transport, increases ridership intentions, reduces reliance on private motorized vehicles, and fosters sustainable urban development. Because public transport forms the core of MaaS ecosystem, understanding MaaS users’ trip characteristics and patterns can help of providing service improvement. Accordingly, this research employs smart-card data from Kaohsiung City’s MaaS platform “MeNGo” as a case study and applies trip-feature engineering, principal component analysis (PCA), K-Means++ clustering, and a multinomial logit model (MNL) to analyze public transport trip characteristics within a MaaS context.
The dataset contains 1,603,411 public transport transactions made by 45,115 MeNGo users in November 2023. Thirty-two trip features were extracted and synthesized into five behavioral dimensions, from which eight user clusters have been identified. Based on usage frequency, these clusters were grouped into commuter segments (long-distance regular, short-distance regular, high-transfer, and multi-purpose users) and non-commuter segments (mixed-mode, intermittent weekday/holiday, and one-off users).Usage frequency and spatial-temporal regularity emerge as the decisive attributes separating the two macro-segments: commuter clusters favor the metro system’s stable headways and display pronounced regularity, while non-commuter clusters adopt more diverse and dispersed modal portfolios, often combining public and private modes to meet daily travel needs. Effect-size analysis was performed to gauge behavioral differences among commuter clusters, and an MNL was estimated to verify how station attributes and individual characteristics influence commuter behavior. The study’s primary contribution includes formulation of a comprehensive and systematic workflow for processing and analyzing MaaS smart-card data. Policy recommendations include designing ticket bundles tailored to various user behaviors and their needs, improving bus feeder efficiency, and promoting cross-agency data integration and open-data initiatives. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:15:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:15:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究內容與流程 4 第二章 文獻回顧與評析 7 2.1 多元旅運整合服務 (Mobility as a Service, MaaS) 7 2.1.1 MaaS 定義與整合 7 2.1.2 MaaS 使用者特性與潛在使用者 9 2.1.3 國內 MaaS 發展與相關研究 11 2.2 公共運輸電子票證及使用者行為特徵 19 2.3 文獻評析 21 第三章 方法論 23 3.1 方法論架構 23 3.2 資料處理階段 25 3.2.1 原始資料集 25 3.2.2 使用者行為特徵資料集 27 3.3 主成分分析 35 3.4 K-means++ 38 3.5 效果量分析 41 3.5.1 效果量指標選擇 41 3.5.2 效果量解讀標準 41 3.6 多項羅吉特模式 (Multinomial Logit, MNL) 43 第四章 資料分析與結果討論 47 4.1 主成分分析 (PCA) 47 4.1.1 使用者旅次構面 49 4.2 使用者分群結果 52 4.2.1 使用者分群數 52 4.2.2 各群集使用者特徵敘述性統計 54 4.2.3 各群集特性描述 59 4.2.4 各群集使用者公共運輸旅次特性 60 4.3 效果量檢定 65 4.4 各群集之空間與個人特徵分布 67 4.4.1 捷運站點分布 67 4.4.2 卡別比例 70 4.4.3 運具使用比例 72 4.5 通勤族群多項羅吉特模式分析 (MNL) 74 4.6 結果與討論 79 第五章 結論與建議 83 5.1 結論 83 5.2 研究貢獻與限制 84 5.3 建議 85 參考文獻 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 公共運輸使用者特徵 | zh_TW |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | 多元整合旅運服務 | zh_TW |
| dc.subject | 大數據分析 | zh_TW |
| dc.subject | PCA | en |
| dc.subject | Public transport user characteristics | en |
| dc.subject | Data analytics | en |
| dc.subject | Mobility as a Service | en |
| dc.title | 多元整合旅運服務(MaaS)使用者特徵分析:以高雄市為例 | zh_TW |
| dc.title | Characteristics of Mobility as a Service (MaaS) Users: A Case Study in Kaohsiung City | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 張學孔 | zh_TW |
| dc.contributor.coadvisor | Shyue-Koong Chang | en |
| dc.contributor.oralexamcommittee | 沈宗緯 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Wei Shen | en |
| dc.subject.keyword | 多元整合旅運服務,大數據分析,公共運輸使用者特徵,主成分分析, | zh_TW |
| dc.subject.keyword | Mobility as a Service,Data analytics,Public transport user characteristics,PCA, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202503060 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
