請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張立 | zh_TW |
| dc.contributor.advisor | Li Chang | en |
| dc.contributor.author | 邱舜萱 | zh_TW |
| dc.contributor.author | Shun-Hsuan Chiu | en |
| dc.date.accessioned | 2025-08-18T01:15:37Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | 中央氣象署。2023。中華民國112年氣候資料年報:第一部分-地面資料。台北市:交通部中央氣象署。
王三太、林子凱、曹幸之與謝哲進。2004。馬鈴薯新品種-台農3 號(萬豐) 之育成。技術服務 15(2): 58。 汪皆得。1942。台北地區馬鈴薯栽培見聞。台灣農事報 213: 730-734。 林上湖、鍾文全、張定霖與姚士源。2008。台灣馬鈴薯種薯栽培現況。農政與農情 192: 65-69。 林上湖、鍾文全與楊佐琦。2010。台灣馬鈴薯產業80年之回顧與展望。植物種苗 12 (4): 1-23。 林玫珠、邱燕欣、陳金枝與謝廷芳。2023。馬鈴薯病毒檢測技術精進開發與應用。農業部農業試驗所112年度科技計畫研究報告: 1-9。 林玫珠、鄧汀欽、陳金枝、鄭櫻慧、謝廷芳與邱燕欣。2022。臺灣馬鈴薯病毒病害發生與健康無病毒種薯之繁殖。農業世界 471: 62-66。 張勝智、邱訓芳、邱燕欣與廖文偉。2021。鮮食加工都好用!馬鈴薯「種苗6號」。豐年 71 (4): 6-7。 曹幸之。1993。馬鈴薯新品種—台農一號。豐年43 (10): 14-17。 郭國柱。1965。馬鈴薯種薯供應試驗 (第二報) 馬鈴薯 X 毒素病抗血清之製造及力價之檢定。農業研究 14: 26-28。 陳培昌、鄭希焜、陳英隆、倪萬丁、李窓明、范淑貞與陳麗美。1977。六五/六六年期馬鈴薯採種圃拔除病,可疑珠工作報告。新竹區農業改良場研究報告 32: 11-12。 黃哲倫與陳甘澍。2022。適合加工與鮮食之馬鈴薯新品種 [台農 4 號]。農業試驗所技術服務季刊 129: 36。 楊佐琦、廖文偉與盧耀村。2001。本省馬鈴薯與草莓健康種苗生產體系之回顧與展望。健康種苗在植物病害防治上之應用研討會專刊: 51-74。 廖文偉。2004。馬鈴薯「種苗2號」(大吉)生育特性與栽培管理。種苗科技專訊 47: 16-19。 鄧汀欽、曹幸之、蔡淑娓、黃秋雄與曾明懋。1992。免疫酵素分析測定臺灣馬鈴薯病毒之發生與優良品系之抗 Y 病毒反應。中華農業研究 41(4): 361-370。 盧慶輝與盧耀村。1987。加工用馬鈴薯品種病毒檢查及健康種原之培育。植保會刊 29: 448-449。 Adams, S. E., Jones, R. A. C., and Coutts, R. H. A. 1986. Effect of temperature on potato virus X infection in potato cultivars carrying different combinations of hypersensitivity genes. Plant Pathol. 35:517-526. Agrofoglio, Y. C., Delfosse, V. C., Vanesa, N., de Urreta Martín, G., Almasia, N. I., Vazquez, R. C., and Distéfano, A. J. 2017. First Complete Genome Sequence of Potato leafroll virus from Argentina. Microbiol. Resour. Ann. 5:e628–617. Aksoy, E., Demirel, U., Bakhsh, A., Zia, M. A. B., Naeem, M., Saeed, F., Çalışkan, S., and Çalışkan, M. E. 2021. Recent Advances in Potato (Solanum tuberosum L.) Breeding. Pages 409-487 in: Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers. J. M. Al-Khayri, S. M. Jain and D. V. Johnson, eds. Springer International Publishing, Cham. Alcaide, C., Sardanyes, J., Elena, S. F., and Gomez, P. 2021. Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol. 7:veab017. Ali, M. C., Maoka, T., Natsuaki, K., and Natsuaki, T. 2010. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVYNTN-NW by multiplex PCR assay. Journal of Virological Methods 165:15-20. Amari, K., and Niehl, A. 2020. Nucleic acid-mediated PAMP-triggered immunity in plants. Curr. Opin. Virol. 42:32-39. Amari, K., Huang, C., and Heinlein, M. 2021. Potential Impact of Global Warming on Virus Propagation in Infected Plants and Agricultural Productivity. Front. Plant Sci. 12:649768. Ávila-Valdés, A., Quinet, M., Lutts, S., Martínez, J. P., and Lizana, X. C. 2020. Tuber yield and quality responses of potato to moderate temperature increase during Tuber bulking under two water availability scenarios. Field Crop. Res. 251:107786. Baebler, Š., Stare, K., Kovač, M., Blejec, A., Prezelj, N., Stare, T., Kogovšek, P., Pompe-Novak, M., Rosahl, S., and Ravnikar, M. 2011. Dynamics of responses in compatible potato-Potato virus Y interaction are modulated by salicylic acid. PLoS One 6:e29009. Bagnall, R. H., and Tai, G. C. C. 1986. Field resistance to potato virus Y in potato assessed by cluster analysis. Plant Dis. 70:301-304. Beals, K. A. 2019. Potatoes, nutrition and health. Am. J. Potato Res. 96:102-110. Bouché, N., Lauressergues, D., Gasciolli, V., and Vaucheret, H. 2006. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. Embo J. 25:3347-3356. Boyko, V., Ferralli, J., and Heinlein, M. 2000. Cell‐to‐cell movement of TMV RNA is temperature‐dependent and corresponds to the association of movement protein with microtubules. Plant J. 22:315-325. Bradeen, J. M., and Haynes, K. G. 2011. Introduction to potato. Pages 1-19 in: Genetics genomics and breeding of potato. J. M. Bradeen and C. Kole, eds. Science Publishers, Enfield, NH, United States. Bradshaw, J. E. 2022. A Brief History of the Impact of Potato Genetics on the Breeding of Tetraploid Potato Cultivars for Tuber Propagation. Potato Res. 65:461-501. Brosseau, C., and Moffett, P. 2015. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing. Plant Cell 27:1742-1754. Brunt, A. A. 2001. The main viruses infecting potato crops. Pages 65-67 in: Virus and virus-like diseases of potatoes and production of seedpotatoes. G. Loebenstein, P. H. Berger, A. A. Brunt and R. H. Lawson, eds. Springer, Dordrecht. Burton, W. G. 1978. The physics and physiology of storage. Pages 545-606 in: The Potato Crop: The scientific basis for improvement. P. M. Harris, ed. Springer US, Boston, MA. Busse, J. S., Wiberley‐Bradford, A. E., and Bethke, P. C. 2019. Transient heat stress during tuber development alters post‐harvest carbohydrate composition and decreases processing quality of chipping potatoes. J. Sci. Food Agric. 99:2579-2588. Butković, A., and González, R. 2022. A brief view of factors that affect plant virus evolution. Front. Virol. 2:994057. Camire, M. E., Kubow, S., and Donnelly, D. J. 2009. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49:823-840. Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., Rodrigo, I., and Lisón, P. 2014. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol. Biochem. 77:35-43. Canto, T., and Palukaitis, P. 2002. Novel N gene-associated, temperature-independent resistance to the movement of tobacco mosaic virus vectors neutralized by a cucumber mosaic virus RNA1 transgene. J. Virol. 76:12908-12916. Carbonell, A., and Carrington, J. C. 2015. Antiviral roles of plant ARGONAUTES. Curr. Opin. Plant Biol. 27:111-117. Chikh Ali, M., Maoka, T., and T. Natsuaki, K. 2008. The Discrimination between Serotypes O and N of Potato virus Y Using a Multiplex PCR Assay. Tropical Agriculture and Development 52:37-42. Chikh Ali, M., Maoka, T., Natsuaki, K. T., and Natsuaki, T. 2010. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVY(NTN-NW) by multiplex PCR assay. J. Virol. Methods 165:15-20. Choi, K. S., Del Toro, F., Tenllado, F., Canto, T., and Chung, B. N. 2017. A model to explain temperature dependent systemic infection of potato plants by Potato virus Y. Plant Pathol. J. 33:206. Chung, B. N., Choi, K. S., Ahn, J. J., Joa, J. H., Do, K. S., and Park, K. S. 2015. Effects of Temperature on Systemic Infection and Symptom Expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris). Plant Pathol. J. 31:363-370. Chung, B. N., Canto, T., Tenllado, F., San Choi, K., Joa, J. H., Ahn, J. J., Kim, C. H., and Do, K. S. 2016. The effects of high temperature on infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathol. J. 32:321. Close, R. 1964. Some effects of other viruses and of temperature on the multiplication of potato virus X. Ann. Appl. Biol. 53:151-164. Cockerham, G. 1955. Strains of potato virus X. Pages 89–92 in: Proceedings of the second conference on potato virus diseases at Lisse-Wageningen, 25–29 June, 1954, E. Streutgers, A. B. R. Beemster, D. Noordam and J. P. H. Van Der Want, eds., Lisse-Wageningen, Netherlands. Cox, B. A., and Jones, R. A. C. 2010. Genetic variability in the coat protein gene of Potato virus X and the current relationship between phylogenetic placement and resistance groupings. Arch. Virol. 155:1349-1356. Cueto-Ginzo, I. A., Serrano, L., Sin, E., Rodríguez, R., Morales, J. G., Lade, S. B., Medina, V., and Achon, M. A. 2016. Exogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteome. Physiol. Mol. Plant Pathol. 96:47-59. de Ronde, D., Lohuis, D., and Kormelink, R. 2019. Identification and characterization of a new class of Tomato spotted wilt virus isolates that break Tsw‐based resistance in a temperature‐dependent manner. Plant Pathol. 68:60-71. Esposito, S., Aversano, R., D’amelia, V., Villano, C., Alioto, D., Mirouze, M., and Carputo, D. 2018. Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Planta 248:729-743. Ewing, E. E. 1981. Heat stress and the tuberization stimulus. Am. Potato J. 58:31-49. Fang, G., Yang, S., Ruan, B., Ye, G., He, M., Su, W., Zhou, Y., Wang, J., and Yang, S. 2024. Research Progress on Physiological, Biochemical, and Molecular Mechanisms of Potato in Response to Drought and High Temperature. in: Horticulturae. Farooq, T., Hussain, M. D., Shakeel, M. T., Riaz, H., Waheed, U., Siddique, M., Shahzadi, I., Aslam, M. N., Tang, Y., and She, X. 2022. Global genetic diversity and evolutionary patterns among Potato leafroll virus populations. Front. Microbiol. 13:1022016. Fernandez de Cubillos, C., and Thurston, H. 1975. The effect of viruses on infection by Phytophthora infestans (Mont.) de Bary in potatoes. Am. Potato J. 52:221-226. Fesenko, I., Spechenkova, N., Mamaeva, A., Makhotenko, A. V., Love, A. J., Kalinina, N. O., and Taliansky, M. 2021. Role of the methionine cycle in the temperature‐sensitive responses of potato plants to potato virus Y. Mol. Plant Pathol. 22:77-91. FOASTAT. 2023. World Food and Agriculture – Statistical Yearbook 2023. Foster, G. D. 1991. Molecular variation between ordinary and Andean strains of potato virus S. Res. Virol. 142:413-416. Foster, G. D. 1992. The structure and expression of the genome of carlaviruses. Res. Virol. 143:103-112. Fuentes, S., Gibbs, A. J., Adams, I. P., Wilson, C., Botermans, M., Fox, A., Kreuze, J., Boonham, N., Kehoe, M. A., and Jones, R. A. C. 2021. Potato virus A isolates from three continents: Their biological properties, phylogenetics, and prehistory. Phytopathology 111:217-226. Funke, C. N., Nikolaeva, O. V., Green, K. J., Tran, L. T., Chikh-Ali, M., Quintero-Ferrer, A., Cating, R. A., Frost, K. E., Hamm, P. B., and Olsen, N. 2017. Strain-specific resistance to Potato virus Y (PVY) in potato and its effect on the relative abundance of PVY strains in commercial potato fields. Plant Dis. 101:20-28. Gasciolli, V., Mallory, A. C., Bartel, D. P., and Vaucheret, H. 2005. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15:1494-1500. Ghoshal, B., and Sanfaçon, H. 2014. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology 456-457:188-197. Glais, L., Tribodet, M., and Kerlan, C. 2002. Genomic variability in Potato potyvirus Y (PVY): evidence that PVY NW and PVY NTN variants are single to multiple recombinants between PVY O and PVY N isolates. Arch. Virol. 147:363-378. Glasa, M., Hančinský, R., Šoltys, K., Predajňa, L., Tomašechová, J., Hauptvogel, P., Mrkvová, M., Mihálik, D., and Candresse, T. 2021. Molecular characterization of Potato Virus Y (PVY) using high-throughput sequencing: Constraints on full genome reconstructions imposed by mixed infection involving recombinant PVY strains. Plants 10:753. Glushkevich, A., Spechenkova, N., Fesenko, I., Knyazev, A., Samarskaya, V., Kalinina, N. O., Taliansky, M., and Love, A. J. 2022. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato (Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. in: Plants. Gong, Y.-N., Tang, R.-Q., Zhang, Y., Peng, J., Xian, O., Zhang, Z.-H., Zhang, S.-B., Zhang, D.-Y., Liu, H., and Luo, X.-W. 2020. The NIa-protease protein encoded by the Pepper mottle virus is a pathogenicity determinant and releases DNA methylation of Nicotiana benthamiana. Front. Microbiol. 11:102. Gray, S., De Boer, S., Lorenzen, J., Karasev, A., Whitworth, J., Nolte, P., Singh, R., Boucher, A., and Xu, H. 2010. Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Dis. 94:1384-1397. Grech‐Baran, M., Witek, K., Szajko, K., Witek, A. I., Morgiewicz, K., Wasilewicz‐Flis, I., Jakuczun, H., Marczewski, W., Jones, J. D. G., and Hennig, J. 2020. Extreme resistance to Potato virus Y in potato carrying the Rysto gene is mediated by a TIR‐NLR immune receptor. Plant Biotechnol. J. 18:655-667. Green, K. J., Brown, C. J., and Karasev, A. V. 2018. Genetic diversity of potato virus Y (PVY): sequence analyses reveal ten novel PVY recombinant structures. Archives of virology 163:23-32. Green, K. J., Brown, C. J., Gray, S. M., and Karasev, A. V. 2017. Phylogenetic study of recombinant strains of Potato virus Y. Virology 507:40-52. Guenoune-Gelbart, D., Elbaum, M., Sagi, G., Levy, A., and Epel, B. L. 2008. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol. Plant-Microbe Interact. 21:335-345. Guyader, S., and Ducray, D. G. 2002. Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. J. Gen. Virol. 83:1799-1807. Hameed, A., Iqbal, Z., Asad, S., and Mansoor, S. 2014. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. Plant Pathol. J. 30:407-415. Harahagazwe, D., Condori, B., Barreda, C., Bararyenya, A., Byarugaba, A. A., Kude, D. A., Lung’aho, C., Martinho, C., Mbiri, D., and Nasona, B. 2018. How big is the potato (Solanum tuberosum L.) yield gap in Sub-Saharan Africa and why? A participatory approach. Open Agric. 3:180-189. Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., and Fujita, M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14:9643-9684. Haverkort, A. J., and Verhagen, A. 2008. Climate Change and Its Repercussions for the Potato Supply Chain. Potato Res. 51:223-237. Hawkes, J. G. 1992. Biosystematics of the potato. Pages 13–64 in: The Potato Crop. P. M. Harris, ed. Springer, Dordrecht. Heinlein, M., Padgett, H. S., Gens, J. S., Pickard, B. G., Casper, S. J., Epel, B. L., and Beachy, R. N. 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107-1120. Herbers, K., Tacke, E., Hazirezaei, M., Krause, K. P., Melzer, M., Rohde, W., and Sonnewald, U. 1997. Expression of a luteoviral movement protein in transgenic plants leads to carbohydrate accumulation and reduced photosynthetic capacity in source leaves. Plant J. 12:1045-1056. Hijmans, R. J. 2003. The effect of climate change on global potato production. Am. J. Potato Res. 80:271-279. Hu, S.-F., Wei, W.-L., Hong, S.-F., Fang, R.-Y., Wu, H.-Y., Lin, P.-C., Sanobar, N., Wang, H.-P., Sulistio, M., Wu, C.-T., Lo, H.-F., and Lin, S.-S. 2020. Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches. Bot. Stud. 61:22. Huaman, Z., and Spooner, D. M. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am. J. Bot. 89:947-965. Hunter, L. J., Westwood, J. H., Heath, G., Macaulay, K., Smith, A. G., Macfarlane, S. A., Palukaitis, P., and Carr, J. P. 2013. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PLoS One 8:e66530. Hunter, L. J. R., Brockington, S. F., Murphy, A. M., Pate, A. E., Gruden, K., MacFarlane, S. A., Palukaitis, P., and Carr, J. P. 2016. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases. Sci Rep 6:23082. Incarbone, M., Bradamante, G., Pruckner, F., Wegscheider, T., Rozhon, W., Nguyen, V., Gutzat, R., Mérai, Z., Lendl, T., MacFarlane, S., Nodine, M., and Mittelsten Scheid, O. 2023. Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells. Proc. Natl. Acad. Sci. U. S. A. 120:e2302069120. IPCC. 2023. Sections. Pages 35–115 in: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H. Lee and J. Romero, eds. Intergovernmental Panel on Climate Change, Geneva, Switzerland. Islam, W., Naveed, H., Zaynab, M., Huang, Z., and Chen, H. Y. H. 2019. Plant defense against virus diseases; growth hormones in highlights. Plant Signal. Behav. 14:1596719. Janda, M., Lamparová, L., Zubíková, A., Burketová, L., Martinec, J., and Krčková, Z. 2019. Temporary heat stress suppresses PAMP‐triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol. Plant Pathol. 20:1005-1012. Jayasinghe, U. 1988. Potato leafroll virus PLRV. International Potato Center, Lima, Peru. Jeffries, C. J. 1998. Potato. Bioversity International, Rome. Jensen, S. G. 1973. Systemic movement of barley yellow dwarf virus in small grains. Phytopathology 63:854-856. Jones, E. D., and Mullen, J. M. 1974. The effect of potato virus X on susceptibility of potato tubers to Fusarium roseum ‘Avenaceum’. Am. Potato J. 51:209-215. Jones, R. A. C. 2016. Future scenarios for plant virus pathogens as climate change progresses. Adv.Virus Res. 95:87-147. Jones, R. A. C., and Coutts, B. A. 2015. Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol. Plant Pathol. 16:541. Jones, R. A. C., and Kehoe, M. A. 2016. A proposal to rationalize within-species plant virus nomenclature: Benefits and implications of inaction. Arch. Virol. 161:2051-2057. Jones, R. A. C., and Naidu, R. A. 2019. Global dimensions of plant virus diseases: current status and future perspectives. Annu. Rev. Virol. 6:387-409. Karasev, A. V., and Gray, S. M. 2013a. Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 51:571-586. Karasev, A. V., and Gray, S. M. 2013b. Continuous and emerging challenges of Potato virus Y in potato. Annual review of phytopathology 51:571-586. Kaunda, J. S., and Zhang, Y. J. 2019. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. Nat. Product. Bioprospecting 9:77-137. Kerlan, C. 2008. Potato viruses. Pages 296-309 in: Encyclopedia of virology. B. W. J. Mahy and M. H. V. van Regenmortel, eds. Academic Press, Oxford. Kim, W.-J., Kim, W., Kim, Y., Cheong, H., and Kim, S.-J. 2023. Coordinated recruitment of conserved defense-signaling pathways in PVYO-Infected Nicotiana benthamiana. Plant Signal. Behav. 18:2252972. Kiple, K. F., and Ornelas, K. C. 2000. The Cambridge world history of food. Cambridge University Press. Korpan, Y. I., Nazarenko, E. A., Skryshevskaya, I. V., Martelet, C., Jaffrezic-Renault, N., and El'skaya, A. V. 2004. Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol. 22:147-151. Kostiw, M. 2011. The occurrence of major potato viruses in Poland. J. Plant Protect. Res. Kreuze, J. F., Souza-Dias, J. A. C., Jeevalatha, A., Figueira, A. R., Valkonen, J. P. T., and Jones, R. A. C. 2020. Viral Diseases in Potato. Pages 389-430 in: The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. H. Campos and O. Ortiz, eds. Springer International Publishing, Cham. Kumar, G., and Dasgupta, I. 2021. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms 9:695. Kumar, R., Tiwari, R. K., Sundaresha, S., Kaundal, P., and Raigond, B. 2022. Potato viruses and their management. Pages 309-335 in: Sustainable management of potato pests and diseases. Springer. Kumar, R. R., Ansar, M., Rajani, K., Kumar, J., and Ranjan, T. 2020. First report on molecular basis of potato leaf roll virus (PLRV) aggravation by combined effect of tuber and prevailing aphid. BMC Res. Notes 13:1-4. Kutnjak, D., Silvestre, R., Cuellar, W., Perez, W., Müller, G., Ravnikar, M., and Kreuze, J. 2014. Complete genome sequences of new divergent potato virus X isolates and discrimination between strains in a mixed infection using small RNAs sequencing approach. Virus Res. 191:45-50. Lacomme, C., and Jacquot, E. 2017. General Characteristics of Potato virus Y (PVY) and Its Impact on Potato Production: An Overview. Pages 1-19 in: Potato virus Y: biodiversity, pathogenicity, epidemiology and management. C. Lacomme, L. Glais, D. U. Bellstedt, B. Dupuis, A. V. Karasev and E. Jacquot, eds. Springer International Publishing, Cham. Lebeurier, G., and Hirth, L. 1966. Effect of elevated temperatures on the development of two strains of tobacco mosaic virus. Virology 29:385-395. Lee, J.-Y., and Lu, H. 2011. Plasmodesmata: the battleground against intruders. Trends Plant Sci. 16:201-210. Lee, S. T. 1971. Occurrence of potato virus M and its strain in Taiwan. J. Agric.Assoc. China 76:78-89. Lee, S. T., and Wang, C. K. 1974. Potato virus A found in Taiwan. Plant Prot. 16:102-109. Leisner, S. M., and Schoelz, J. E. 2018. Joining the crowd: integrating plant virus proteins into the larger world of pathogen effectors. Annu. Rev. Phytopathol. 56:89-110. Leonetti, P., Stuttmann, J., and Pantaleo, V. 2021. Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol. J. 18:194. Liao, Z., Hodén, K. P., Singh, R. K., and Dixelius, C. 2020. Genome-wide identification of Argonautes in Solanaceae with emphasis on potato. Sci Rep 10:20577. Lin, Y. H., Abad, J. A., Maroon-Lango, C. J., Perry, K. L., and Pappu, H. R. 2014. Molecular characterization of domestic and exotic potato virus S isolates and a global analysis of genomic sequences. Arch. Virol. 159:2115-2122. Liu, S., Sun, H., Ma, G., Zhang, T., Wang, L., Pei, H., Li, X., and Gao, L. 2022. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front. Nutr. 9:973677. Loebenstein, G. 2008. Plant virus diseases: economic aspects. Pages 197–201 in: Encyclopedia of Virology. B. W. J. Mahy and M. H. V. van Regenmortel, eds. Academic Press, Oxford. Lorenzen, J. H., Piche, L. M., Gudmestad, N. C., Meacham, T., and Shiel, P. 2006. A multiplex PCR assay to characterize Potato virus Y isolates and identify strain mixtures. Plant Dis. 90:935-940. Loughnane, J. B., and Murphy, P. A. 1938. Mode of dissemination of potato virus X. Nature 141:120-121. Makarova, S., Makhotenko, A., Spechenkova, N., Love, A. J., Kalinina, N. O., and Taliansky, M. 2018. Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with potato virus Y. Front. Microbiol. 9:2582. Makki, M., Del Toro, F. J., Necira, K., Tenllado, F., Djilani-Khouadja, F., and Canto, T. 2021. Differences in virulence among PVY isolates of different geographical origins when infecting an experimental host under two growing environments are not determined by HCPro. Plants 10:1086. Manzer, F. E., Merriam, D. C., and Hepler, P. R. 1978. Effects of potato virus S and two strains of potato virus X on yields of Russet Burbank, Kennebec, and Katahdin cultivars in Maine. Am. Potato J. 55:601-609. Mishra, P., Alhussan, A. A., Khafaga, D. S., Lal, P., Ray, S., Abotaleb, M., Alakkari, K., Eid, M. M., and El-Kenawy, E.-S. M. 2024. Forecasting production of potato for a sustainable future: global market analysis. Potato Res. 67:1671-1690. Murant, A. F., and Harrison, B. D., eds. 1970. Description of plant viruses. Commonwealth Mycological Institute and Association of Applied Biologists, Kew and Trumpington, United Kingdom. Navarro, C., Abelenda, J. A., Cruz-Oró, E., Cuéllar, C. A., Tamaki, S., Silva, J., Shimamoto, K., and Prat, S. 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119-122. Naylor, M., Murphy, A. M., Berry, J. O., and Carr, J. P. 1998. Salicylic acid can induce resistance to plant virus movement. Mol. Plant-Microbe Interact. 11:860-868. Nicot, N., Hausman, J.-F., Hoffmann, L., and Evers, D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56:2907-2914. Nie, X., and Singh, M. 2013. Response of potato, tobacco and Physalis floridana plants to mixed infection with PVX, PVYNTN and PVY° strains. Can. J. Plant Pathol. 35:390-401. Niehl, A., Peña, E. J., Amari, K., and Heinlein, M. 2013. Microtubules in viral replication and transport. Plant J. 75:290-308. Niehl, A., Pasquier, A., Ferriol, I., Mely, Y., and Heinlein, M. 2014. Comparison of the Oilseed rape mosaic virus and Tobacco mosaic virus movement proteins (MP) reveals common and dissimilar MP functions for tobamovirus spread. Virology 456:43-54. Niehl, A., Amari, K., Gereige, D., Brandner, K., Mély, Y., and Heinlein, M. 2012. Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48. Plant Physiol. 160:2093-2108. Nyalugwe, E. P., Wilson, C. R., Coutts, B. A., and Jones, R. A. C. 2012. Biological properties of Potato virus X in potato: effects of mixed infection with Potato virus S and resistance phenotypes in cultivars from three continents. Plant Dis. 96:43-54. Obiero, C. O., Milroy, S. P., and Bell, R. W. 2019. Importance of whole plant dry matter dynamics for potato (Solanum tuberosum L.) tuber yield response to an episode of high temperature. Environ. Exp. Bot. 162:560-571. Ohki, T., Sano, M., Asano, K., Nakayama, T., and Maoka, T. 2018. Effect of temperature on resistance to Potato virus Y in potato cultivars carrying the resistance gene Rychc. Plant Pathol. 67:1629-1635. Ohsato, S., Miyanishi, M., and Shirako, Y. 2003. The optimal temperature for RNA replication in cells infected by Soil-borne wheat mosaic virus is 17 C. J. Gen. Virol. 84:995-1000. Park, J.-S., Park, S.-J., Kwon, S.-Y., Shin, A.-Y., Moon, K.-B., Park, J. M., Cho, H. S., Park, S. U., Jeon, J.-H., and Kim, H.-S. 2022. Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Reports 38. Payen, O., and Madec, P. 1957. A new potato virus. Acad. Agric. Fr. 43:265-276. Pelletier, Y., Nie, X., Giguère, M. A., Nanayakkara, U., Maw, E., and Foottit, R. 2012. A new approach for the identification of aphid vectors (Hemiptera: Aphididae) of potato virus Y. J. Econ. Entomol. 105:1909-1914. Petrov, N. M., Stoyanova, M. I., and Gaur, R. K. 2023. Chapter 12 - Biodiversity and characterization of economically important viruses on potato cultivars. Pages 245-270 in: Plant RNA Viruses. R. K. Gaur, B. L. Patil and R. Selvarajan, eds. Academic Press. Phan, M. S. V., Seo, J.-K., Choi, H.-S., Lee, S.-H., and Kim, K.-H. 2014. Pseudorecombination between two distinct strains of cucumber mosaic virus results in enhancement of symptom severity. Plant Pathol. J. 30:316. Pietkiewicz, J. 1975. Effect of viruses on the reaction of potato to Phytophthora infestans. II. Mechanism of changes in the reaction to Ph. infestans in virus-infected plants. J. Phytopathol.-Phytopathol. Z. 82:49-55. Pitt, W. J., Kairy, L., Villa, E., Nalam, V. J., and Nachappa, P. 2022. Virus infection and host plant suitability affect feeding behaviors of cannabis aphid (Hemiptera: Aphididae), a newly described vector of Potato Virus Y. Environ. Entomol. 51:322-331. Pollari, M., De, S., Wang, A., and Mäkinen, K. 2020. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog. 16:e1008965. Prinz, M., Kellermann, A., and Bauch, G. 2023. One-step multiplex DiRT-PCR for PLRV, PVY, PVM, PVS, PVA and PVX ready for routine testing directly on tuber sap. Eur. J. Plant Pathol. 167:407-420. Puurand, ü., Mäkinen, K., Paulin, L., and Saarma, M. 1994. The nucleotide sequence of potato virus A genomic RNA and its sequence similarities with other potyviruses. J. Gen. Virol. 75:457-461. Qing, Z., Ahmad, S., Chen, Y., Liang, Q., Zhang, L., Chen, B., and Wen, R. 2023. P3/P3N-PIPO of PVY interacting with BI-1 inhibits the degradation of NIb by ATG6 to facilitate virus replication in N. benthamiana. Front. Plant Sci. 14:1183144. Rajamäki, M., Merits, A., Rabenstein, F., Andrejeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S., and Valkonen, J. P. T. 1998. Biological, serological, and molecular differences among isolates of potato A potyvirus. Phytopathology 88:311-321. Reynolds, M. P., Ewing, E. E., and Owens, T. G. 1990. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance. Plant Physiol. 93:791-797. Richard, M. M. S., Knip, M., Aalders, T., Beijaert, M. S., and Takken, F. L. W. 2020. Unlike many disease resistances, Rx1-mediated immunity to potato virus X is not compromised at elevated temperatures. Front. Genet. 11:417. Saijo, Y., and Loo, E. P. i. 2020. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 225:87-104. Schubert, J., Fomitcheva, V., and Sztangret-Wiśniewska, J. 2007. Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J. Virol. Methods 140:66-74. Schultz, E. S. 1923. TRANSMISSION, VARIATION, AND CONTROL OF CER-TAIN DEGENERATION DISEASES OF IRISH POTA. J. Agric. Res. 25:43. Shoala, T. 2025. Potato Leafroll Virus. Pages 265-284 in: Compendium of Phytopathogenic Microbes in Agro-Ecology : Vol. 2 Viruses and Viroids. N. Amaresan and K. Kumar, eds. Springer Nature Switzerland, Cham. Singh, R. P., Valkonen, J. P. T., Gray, S. M., Boonham, N., Jones, R. A. C., Kerlan, C., and Schubert, J. 2008. Discussion paper: The naming of Potato virus Y strains infecting potato. Arch. Virol. 153:1-13. Slack, S. A. 1983. Identification of an isolate of the Andean strain of potato virus S in North America. Plant Dis. 67:786-789. Smith, K. M. 1931. Composite nature of certain potato viruses of the mosaic group. Nature 127:702-702. Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., and Bryan, G. J. 2005. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc. Natl. Acad. Sci. U. S. A. 102 (41):14694–14699. Suraj, H. M., SharathKumar, M., and van Kan, J. A. L. 2023. Too hot to defend: a tale of salicylic acid. Trends Plant Sci. 28:4-6. Syller, J., and Grupa, A. 2016. Antagonistic within‐host interactions between plant viruses: molecular basis and impact on viral and host fitness. Mol. Plant Pathol. 17:769-782. Szittya, G., Molnár, A., Silhavy, D., Hornyik, C., and Burgyán, J. 2002. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14:359-372. Szittya, G., Silhavy, D., Molnár, A., Havelda, Z., Lovas, Á., Lakatos, L., Bánfalvi, Z., and Burgyán, J. 2003. Low temperature inhibits RNA silencing‐mediated defence by the control of siRNA generation. Embo J. Tabasinejad, F., Jafarpour, B., Zakiaghl, M., Siampour, M., Rouhani, H., and Mehrvar, M. 2014. Genetic structure and molecular variability of potato virus M populations. Arch. Virol. 159:2081-2090. Taliansky, M., Mayo, M. A., and Barker, H. 2003. Potato leafroll virus: a classic pathogen shows some new tricks. Mol. Plant Pathol. 4:81-89. Tang, R., Niu, S., Zhang, G., Chen, G., Haroon, M., Yang, Q., Rajora, O. P., and Li, X.-Q. 2018. Physiological and growth responses of potato cultivars to heat stress. Botany 96:897-912. Tang, X., Zhang, N., Si, H., and Calderón-Urrea, A. 2017. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods 13:1-8. Tatarowska, B., Plich, J., Milczarek, D., and Flis, B. 2020. Temperature‐dependent resistance to potato virus M in potato (Solanum tuberosum). Plant Pathol. 69:1445-1452. Tatarowska, B., Milczarek, D., Szajko, K., Plich, J., and Boguszewska-Mańkowska, D. 2025. Effect of Ns Gene Dosage and Temperature on the Level of Potato Resistance to PVS. in: Agriculture. Temfack Deloko, D. C., Achiangia, N. P., Chofong, N. G., Mbulli, A. I., Anoumaa, M., Fonkeng Sama, L., and Fonkou, T. 2021. Prevalence of potato viruses on potato (Solanum tuberosum L.) grown in the Western Highlands of Cameroon. J. Agric. Food Res. 5:100192. Topkaya, S., Celik, A., Santosa, A. I., and Jones, R. A. C. 2023. Molecular Analysis of the Global Population of Potato Virus S Redefines Its Phylogeny, and Has Crop Biosecurity Implications. Viruses 15. Tran, L. T., Green, K. J., Rodriguez-Rodriguez, M., Orellana, G. E., Funke, C. N., Nikolaeva, O. V., Quintero-Ferrer, A., Chikh-Ali, M., Woodell, L., and Olsen, N. 2022. Prevalence of recombinant strains of potato virus Y in seed potato planted in Idaho and Washington States between 2011 and 2021. Plant Dis. 106:810-817. Tsai, W.-A., Brosnan, C. A., Mitter, N., and Dietzgen, R. G. 2022. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. Stress Biol. 2:37. Tsedaley, B. 2015. A review paper on Potato virus Y (PVY) biology, economic importance and its managements. J. Biol. Agric. Healthc. 5:110-126. Valkonen, J. P. T., Puurand, Ü., Slack, S. A., Mäkinen, K., and Saarma, M. 1995. Three strain groups of potato A potyvirus based on hypersensitive responses in potato, serological properties, and coat protein sequences. Plant Dis. 79:748-753. Van Dam, J., Kooman, P. L., and Struik, P. C. 1996. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Res. 39:51-62. van Zanten, M., Voesenek, L. A., Peeters, A. J., and Millenaar, F. F. 2009. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol. 151:1446-1458. Verchot, J. 2022. Potato virus X: A global potato‐infecting virus and type member of the Potexvirus genus. Mol. Plant Pathol. 23:315-320. Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206. Wang, J., Meng, F., Chen, R., Liu, J., Nie, X., and Nie, B. 2016. RT-PCR Differentiation, Molecular and Pathological Characterization of Andean and Ordinary Strains of Potato virus S in Potatoes in China. Plant Dis. 100:1580-1585. Wang, J., Wang, J., Li, J., Shang, H., Chen, X., and Hu, X. 2021. The RLK protein TaCRK10 activates wheat high‐temperature seedling‐plant resistance to stripe rust through interacting with TaH2A. 1. Plant J. 108:1241-1255. Wang, Y., Bao, Z., Zhu, Y., and Hua, J. 2009. Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant-Microbe Interact. 22:498-506. Wang, Y. M., Ostendorf, B., Gautam, D., Habili, N., and Pagay, V. 2022. Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. in: Remote Sens. Weber, E. L., Busse, J. S., and Bethke, P. C. 2021. Current-Season Infection With Ordinary and Recombinant Strains of Potato virus Y Has Detrimental Effects on Chipping Potato Yield and Tuber Quality. Plant Dis. 105:450-455. Whitworth, J. L., Gray, S. M., Ingram, J. T., and Hall, D. G. 2021. Foliar and Tuber Symptoms of U.S. Potato Varieties to Multiple Strains and Isolates of Potato virus Y. Am. J. Potato Res. 98:93-103. Xie, J., Chen, Y., Cai, G., Cai, R., Hu, Z., and Wang, H. 2023. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 51:W587-W592. Xie, Z., Fan, B., Chen, C., and Chen, Z. 2001. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. U. S. A. 98:6516-6521. Xu, H., D'Aubin, J., and Nie, J. 2010. Genomic variability in Potato virus M and the development of RT-PCR and RFLP procedures for the detection of this virus in seed potatoes. Virol. J. 7:1-7. Yang, X., Li, Y., and Wang, A. 2021. Research Advances in Potyviruses: From the Laboratory Bench to the Field. Annu. Rev. Phytopathol. 59:1-29. Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., Ma, Y., Beverly, D., Phillips, R., and Novick, K. 2023. Leaf angle as a leaf and canopy trait: Rejuvenating its role in ecology with new technology. Ecol. Lett. 26:1005-1020. Yeh, H.-H., and Chiu, Y.-S. 2020. Polysaccharide priming plant resistance to viruses. Google Patents. Zhong, S.-H., Liu, J.-Z., Jin, H., Lin, L., Li, Q., Chen, Y., Yuan, Y.-X., Wang, Z.-Y., Huang, H., and Qi, Y.-J. 2013. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110:9171-9176. Zhou, J., Li, K., Li, Y., Li, M., and Guo, H. 2023. Responses of Aerial and Belowground Parts of Different Potato (Solanum tuberosum L.) Cultivars to Heat Stress. in: Plants. Zhu, X., Duan, H., Jin, H., Chen, S., Chen, Z., Shao, S., Tang, J., and Zhang, Y. 2023. Heat responsive gene StGATA2 functions in plant growth, photosynthesis and antioxidant defense under heat stress conditions. Front. Plant Sci. 14:1227526. Zvereva, A. S., and Pooggin, M. M. 2012. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578-2597. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98661 | - |
| dc.description.abstract | 馬鈴薯為全球重要的糧食作物,然而其生產易受多種病毒威脅,包括馬鈴薯Y病毒 (potato virus Y, PVY)、馬鈴薯S病毒 (potato virus S, PVS)、馬鈴薯X病毒 (potato virus X, PVX) 、馬鈴薯A病毒 (potato virus A, PVA)、馬鈴薯M病毒 (potato virus M, PVM) 與馬鈴薯捲葉病毒 (potato leafroll virus, PLRV) 等。在台灣,關於馬鈴薯病毒感染現況及其生物與分子特性之資訊仍相當有限。此外,氣候變遷所導致的高溫亦可能影響植物與病毒間的交互作用,但不同馬鈴薯品種在高溫下之病毒感染變化仍未被充分釐清。本研究主要聚焦於兩項目標:(1) 進行田間調查以了解台灣地區的馬鈴薯病毒現況,並分析其生物學與分子特性;(2) 探討高溫對病毒與寄主交互作用之影響。田間調查結果顯示,PVY為台灣最普遍的馬鈴薯病毒,其次為PVS與PVX。病原性分析、病毒系統鑑定與親緣演化樹分析結果指出,PVY-33N-Wi (本研究使用之PVY代表病毒系統) 會在菸草 (Nicotiana benthamiana) 上引起嚴重病徵,而 PVS-67I (本研究使用之PVS代表病毒系統) 則造成輕微矮化現象。進一步接種試驗顯示,PVY-33N-Wi 感染克尼伯 (Kennebec) 與台農一號兩品種時,僅在克尼伯上造成葉片變形之病徵、地上部鮮重下降17% 及塊莖產量減少50%;但在台農一號上無顯著影響。相對地,PVS-67I僅使台農一號植株高度略微增加。在溫度與病毒交互作用分析中,高溫處理本身即顯著降低根部鮮重並增加植株高度。在高溫下,PVY-33N-Wi在克尼伯感染初期累積量增加,可能與水楊酸 (Salicylic acid, SA) 相關抗病毒路徑受到抑制有關;而在台農一號中,PVY-33N-Wi在感染後期累積量反而下降,其抗性機制可能與SA或RNA介導沉默作用 (RNA interference, RNAi) 路徑較無關聯。至於PVS-67I,於高溫下兩品種皆呈現感染初期累積量增加、後期下降之趨勢,此現象可能與初期之SA與部分RNAi相關基因表現下調、而後期之RNAi 路徑相關基因被誘導表現有關。綜上所述,PVY為台灣主要的馬鈴薯病毒,高溫會顯著影響馬鈴薯生理表現,並導致不同品種間在病毒累積動態上的差異,可能與SA與部分RNAi路徑中基因表現的差異調控有關。為因應氣候升溫所帶來的挑戰,台灣馬鈴薯產業未來應優先發展兼具高溫耐受性與抗病毒能力之在地品種,以確保生產穩定與永續經營。 | zh_TW |
| dc.description.abstract | Potato is a globally important food crop. However, the potato production is threatened by several viruses including potato viruses Y, S, A, M and X (PVY, PVS, PVA, PVM and PVX), and potato leafroll virus (PLRV). In Taiwan, current information regarding the potato virus infection status and their biological and molecular characteristics remains limited. Moreover, the climate change-induced high temperature influences plant-virus interaction. However, the effect of high temperature on potato virus infection dynamics in different potato cultivars remain largely elusive. This study focused on two major objectives: (1) conducting field survey to identify potato viruses in Taiwan and analyzing their biological and molecular characteristics, and (2) investigating the effects of high temperature on virus–host interactions. In this study, the field survey results revealed that PVY is the most prevalent potato virus in Taiwan, followed by PVS and PVX. Pathogenicity, strain typing, and phylogenetic analysis revealed that PVY-33N-Wi (representative PVY strain used in this study) induced severe symptoms, while PVS-67I (representative PVS strain used in this study) caused mild stunting in Nicotiana benthamiana. Inoculation of PVY-33N-Wi on Kennebec and Tainung No. 1 potato cultivars showed that PVY-33N-Wi caused deformed leaves symptoms, a 17% reduction in shoot weight and 50% yield loss in Kennebec, but had no significant effect on Tainung No. 1. In contrast, PVS-67I infection only slightly increased plant height in Tainung No. 1. In the temperature–virus interaction assay, high temperature alone significantly reduced root weight and increased plant height in both Kennebec and Tainung No. 1. Further analysis showed that PVY-33N-Wi accumulated more in Kennebec under high temperature at early infection stages, which may associate with the suppression of salicylic acid (SA)-related antiviral immune pathway. In Tainung No. 1, the accumulation of PVY-33N-Wi was decreased under high temperature at later infection stages, which may not primarily involve the SA and RNA interference (RNAi) pathway. For the PVS-67I, PVS-67I accumulate more at early infection stages but decrease at later infection stages under high temperature in both Kennebec and Tainung No. 1. The result may be associated with the early suppression of SA-related gene and some RNAi-related genes, followed by the induction of certain RNAi-related gene at later infection stages under high temperature. In conclusion, PVY is the predominant potato virus in Taiwan. High temperature significantly affects potato physiology and leads to cultivar-specific difference in the accumulation dynamics of PVY and PVS, possibly due to differential expression of SA and RNAi-related gene. To address the challenges posed by rising temperatures, future development of the potato industry in Taiwan should prioritize the local breeding of heat-tolerant and virus-resistant cultivars to ensure sustainable production. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:15:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:15:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT IV 目次 VI 表次 IX 圖次 X 壹、 前言 1 一、 馬鈴薯作物介紹 1 二、 馬鈴薯病毒之發生與流行 2 (一) 馬鈴薯病毒對產量與品質的影響 2 (二) 馬鈴薯常見病毒及其分類特性 2 三、 台灣馬鈴薯產業發展、病毒之發生與調查紀錄 7 四、 高溫對植物病毒病害之影響 8 (一) 高溫對植物病毒感染力之影響 8 (二) 高溫對病毒與植物交互作用之影響 9 (三) 高溫對馬鈴薯與馬鈴薯病毒的研究現況 11 五、 研究動機 12 貳、 材料與方法 13 一、 植物材料與種植方式 13 (一) 圓葉菸草 (Nicotiana benthamiana) 13 (二) 馬鈴薯 (Solanum tuberosum L.) 13 二、 植物接種 13 (一) PVY與PVS病原性分析 13 (二) 序列稀釋終點純化病毒 14 (三) 馬鈴薯溫度試驗 14 (四) 馬鈴薯塊莖產量試驗 14 三、 植物總RNA萃取與RT-PCR 擴增反應 15 (一) 植物RNA萃取 15 (二) 反轉錄聚合酶連鎖反應 (reverse transcription polymerase chain reaction, RT-PCR) 16 (三) 瓊酯膠體電泳分析 17 四、 PCR產物純化與轉殖 17 五、 反轉錄定量聚合酶連鎖反應 (RT-qPCR) 19 六、 序列分析與親緣關係分析 20 (一) 基於PVY部分基因序列之演化樹分析 20 (二) PVY全基因序列演化樹分析 20 (三) PVS CP 基因片之演化分析 21 參、 結果 22 一、 臺灣馬鈴薯主要病毒種類及其發生比例 22 二、 PVY及PVS分離株病原性測試及病毒系統分析 23 (一) PVY及PVS分離株病原性測試 23 (二) PVY及PVS系統分型檢測 24 三、 PVY及PVS 親緣演化分析 25 (一) PVY基因組第四片段序列之親緣演化分析 25 (二) PVS外鞘蛋白(CP)基因之演化樹分析 25 四、 PVY-33N-Wi強毒系統對馬鈴薯病徵表現及薯塊產量之影響 25 五、 高溫處理下對PVY與PVS感染馬鈴薯之影響 26 (一) 高溫處理下PVY病毒累積量變化 27 (二) 高溫處理下PVY對馬鈴薯表型與生理性狀之影響 27 (三) 高溫處理下PVY感染對防禦相關基因表現量之影響 29 (四) 高溫處理下PVS表現量變化 30 (五) 高溫處理下PVS對馬鈴薯表型與生理性狀之影響 31 (六) 高溫處理下PVS感染對防禦相關基因表現量之影響 32 肆、 討論 35 一、 田間馬鈴薯感染病毒情形與種類探討 35 二、 PVY與PVS病毒系統探討 38 (一) PVY病毒系統 38 (二) PVS病毒系統 38 (三) PVY與PVS致病性探討 39 三、 高溫對馬鈴薯生長影響 41 (一) 高溫對病毒感染馬鈴薯之影響 43 (二) PVY-33N-Wi 44 (三) PVS-67I 46 四、 結論 47 伍、 參考文獻 49 陸、 附表 64 柒、 附圖 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 馬鈴薯S病毒 | zh_TW |
| dc.subject | 馬鈴薯Y病毒 | zh_TW |
| dc.subject | 克尼伯 | zh_TW |
| dc.subject | 高溫 | zh_TW |
| dc.subject | 台農一號 | zh_TW |
| dc.subject | 馬鈴薯 | zh_TW |
| dc.subject | potato | en |
| dc.subject | Tainung No.1 | en |
| dc.subject | Kennebec | en |
| dc.subject | high temperature | en |
| dc.subject | potato virus S | en |
| dc.subject | potato virus Y | en |
| dc.title | 台灣馬鈴薯病毒現況調查與探討高溫對馬鈴薯Y病毒與馬鈴薯S病毒感染之影響 | zh_TW |
| dc.title | Survey of the current status of potato viruses in Taiwan and investigation of the effects of high temperature on potato virus Y and potato virus S infections | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪挺軒;林玫珠 | zh_TW |
| dc.contributor.oralexamcommittee | Ting-Hsuan Hung;Mei-Ju Lin | en |
| dc.subject.keyword | 馬鈴薯,馬鈴薯Y病毒,馬鈴薯S病毒,高溫,克尼伯,台農一號, | zh_TW |
| dc.subject.keyword | potato,potato virus Y,potato virus S,high temperature,Kennebec,Tainung No.1, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202502661 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2030-08-02 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-02 | 5.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
