Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍俊宏zh_TW
dc.contributor.advisorJakey Blueen
dc.contributor.author江亞霖zh_TW
dc.contributor.authorYA LIN JIANGen
dc.date.accessioned2025-08-18T01:12:02Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., & Acharya, U. R. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.
[2] Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4–5), 185–196.
[3] Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. Advances in Neural Information Processing Systems, 33, 14927–14937.
[4] Antorán, J., Bhatt, U., Adel, T., Weller, A., & Hernández-Lobato, J. M. (2020). Getting a clue: A method for explaining uncertainty estimates. arXiv preprint arXiv:2006.06848.
[5] Baier, L., Schlör, T., Schöffer, J., & Kühl, N. (2021). Detecting concept drift with neural network model uncertainty. arXiv preprint arXiv:2107.01873.
[6] Bifet, A., & Gavalda, R. (2007, April). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM international conference on data mining (pp. 443-448). Society for Industrial and Applied Mathematics.
[7] Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 71–80.
[8] Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. Advances in Artificial Intelligence–SBIA 2004, 286–295.
[9] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Computing Surveys, 46(4), 1–37.
[10] Gomes, H. M., Barddal, J. P., Ferreira, L. E. B., & Bifet, A. (2018). Adaptive random forests for data stream regression. European Symposium on Artificial Neural Networks (ESANN), 267–272.
[11] Hüttel, F. B., Rodrigues, F., & Pereira, F. C. (2023). Deep evidential learning for Bayesian quantile regression. arXiv preprint arXiv:2308.10650.
[12] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[13] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 30.
[14] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12), 2346–2363.
[15] Nix, D. A., & Weigend, A. S. (1994, June). Estimating the mean and variance of the target probability distribution. In Proceedings of 1994 ieee international conference on neural networks (ICNN'94) (Vol. 1, pp. 55-60). IEEE.
[16] Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
[17] Raab, C., Heusinger, M., & Schleif, F.-M. (2020). Reactive soft prototype computing for concept drift streams. Neurocomputing, 416, 340–351.
[18] Stutts, A. C., Kumar, D., Tulabandhula, T., & Trivedi, A. (2024). Invited: Conformal inference meets evidential learning: Distribution-free uncertainty quantification with epistemic and aleatoric separability. Proceedings of the 61st ACM/IEEE Design Automation Conference (pp. 1-4).
[19] Sun, Y., Pfahringer, B., Gomes, H. M., & Bifet, A. (2022). SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams. Data Mining and Knowledge Discovery, 36(5), 2006–2032.
[20] Wang, H.-W. (2024). Deep ensemble-based online learning framework for drift detection and prediction interval estimation (Master’s thesis, Institute of Industrial Engineering, College of Engineering, National Taiwan University).
[21] Yang, C.-I., & Li, Y.-P. (2023). Explainable uncertainty quantifications for deep learning-based molecular property prediction. Journal of Cheminformatics, 15(1), 13.
[22] Ye, K., Chen, T., Wei, H., & Zhan, L. (2024, March). Uncertainty regularized evidential regression. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 15, pp. 16460-16468).
[23] Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98645-
dc.description.abstract本研究提出一DEQPI(Deep Evidential Quantile Prediction Interval)的線上學習架構,結合深度證據分位數迴歸(DEQR)模型與自適應飄移偵測器(AdaPH-Test),用以解決資料流中概念飄移、不確定性評估困難、模型更新遲滯等關鍵問題。研究動機來自於高頻資料流環境下,傳統深度學習模型在資源需求、更新速度與適應變化能力上的不足,難以勝任即時預測與決策應用。
本論文的貢獻有三:1) 在模型架構方面,採用 DEQR 預測上下分位數以構建預測區間,跳脫常態分布假設,提升對非對稱與厚尾資料的適應性與預測解釋力。2) 在飄移偵測上,提出改良型 Page-Hinkley Test(AdaPH-Test),可根據資料變化自動調整參數,提升在不同資料尺度下的泛用性與反應速度。3) 整合多種學習率調節策略,依據不確定性與預測誤差動態調整學習率,並引入正則項L^U解決高不確定性區域(HUA)中的梯度消失問題,提升模型穩定性與收斂效率。
實驗設計涵蓋模擬資料與公開資料集,結果顯示 DEQPI 架構在預測準確度、不確定性區間穩定性與飄移偵測能力上,皆優於現有線上學習方法如ARF與DEAPI,並成功應對突發與漸進式概念飄移。綜合而言,本研究所提方法在處理高頻資料流與概念飄移的挑戰下,提供一套結構簡潔、可即時反應且具有高度可解釋性的預測模型,對智慧製造、金融預測等即時應用場景具有高度實務價值。
zh_TW
dc.description.abstractThis thesis proposes an online learning framework named DEQPI (Deep Evidential Quantile Prediction Interval), which integrates the Deep Evidential Quantile Regression (DEQR) model with an adaptive drift detection mechanism (AdaPH-Test). The framework addresses critical challenges in streaming data environments, including concept drift, difficulty in uncertainty quantification, and delayed model adaptation. The motivation stems from the limitations of conventional deep learning models in high-frequency data streams, particularly their high computational demands, slow update capabilities, and poor responsiveness to distributional changes, which hinder their applicability in real-time prediction and decision-making scenarios.
This thesis makes three primary contributions:
1. Model architecture: DEQR is utilized to directly predict upper and lower quantiles, thereby constructing predictive intervals without relying on the normality assumption. This enhances the model’s flexibility and interpretability in handling asymmetric and heavy-tailed data distributions.
2. Drift detection: A modified Page-Hinkley Test, termed AdaPH-Test, is introduced to dynamically adjust detection parameters based on streaming data behavior. This adaptation improves the detector’s generalizability and responsiveness across varying data scales.
3. Adaptive learning: Multiple learning rate adjustment strategies are integrated to dynamically tune the learning rate based on uncertainty measures and prediction errors. In addition, a regularization term L^U is incorporated to resolve the vanishing gradient problem in high uncertainty areas (HUA), thereby improving model stability and convergence efficiency.
The experimental evaluation, conducted on both synthetic and public datasets, demonstrates that the proposed DEQPI framework outperforms state-of-the-art online learning methods such as ARF and DEAPI in prediction accuracy, uncertainty interval reliability, and drift detection effectiveness. Moreover, it shows robust performance in both sudden and gradual concept drift scenarios. Overall, this work delivers a lightweight, interpretable, and responsive prediction model well-suited for real-time applications in domains such as smart manufacturing and financial forecasting, offering significant practical value in dynamic and uncertainty-prone environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:12:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:12:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
目次 IV
圖次 VI
表次 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 3
第二章 文獻探討 6
2.1 線上學習 6
2.1.1 概念飄移之定義 6
2.1.2 線上學習框架 7
2.2 深度證據迴歸與不確定性量化 9
2.2.1 不確定性 9
2.2.2 深度證據迴歸 9
2.2.3 深度證據分位數迴歸 10
2.2.4 高不確定性區域學習 12
2.3 DEAPI 13
2.3.1 深度集成模型 14
2.3.2 飄移偵測器 14
2.3.3 區域預測評估指標 16
2.4 文獻綜合評析與本研究定位 17
第三章 基於深度證據分位數迴歸之線上學習 18
3.1 DEQPI線上學習架構 19
3.2 分位數飄移偵測器 23
3.3 自適應PH-TEST 25
3.4 ADAPH-TEST與PH-TEST之比較 27
3.5 高不確定區域正則化項在深度證據分位數迴歸之應用 36
第四章 案例研討 38
4.1 不同偵測器在模擬資料集之偵測效能驗證 38
4.2 DEQPI在模擬資料上之成效分析 51
4.3 DEQPI在開放資料集上之成效分析 73
第五章 結論 75
5.1 研究貢獻 75
5.2 未來研究方向 78
參考文獻 79
-
dc.language.isozh_TW-
dc.subject概念飄移偵測zh_TW
dc.subject線上學習zh_TW
dc.subject高不確定性區域zh_TW
dc.subject深度證據分位數迴歸zh_TW
dc.subject不確定性量化zh_TW
dc.subjectuncertainty quantificationen
dc.subjectdeep evidential quantile regression (DEQR)en
dc.subjecthigh uncertainty areaen
dc.subjectconcept drift detectionen
dc.subjectonline learningen
dc.title深度證據分位數迴歸模型結合飄移偵測器在線上學習之應用zh_TW
dc.titleApplication of Deep Evidential Quantile Regression Combined with Drift Detector in Online Learningen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許嘉裕;楊惟婷zh_TW
dc.contributor.oralexamcommitteeChia-Yu Hsu;Wei-Ting Yangen
dc.subject.keyword線上學習,概念飄移偵測,不確定性量化,深度證據分位數迴歸,高不確定性區域,zh_TW
dc.subject.keywordonline learning,concept drift detection,uncertainty quantification,deep evidential quantile regression (DEQR),high uncertainty area,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202503278-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved