請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳逸民 | zh_TW |
| dc.contributor.advisor | Yih-Min Wu | en |
| dc.contributor.author | 楊佳悅 | zh_TW |
| dc.contributor.author | Chia-Yueh Yang | en |
| dc.date.accessioned | 2025-08-18T01:10:42Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | 1. Allen, R. (1982). Automatic phase pickers: Their present use and future prospects. Bulletin of the Seismological Society of America, 72(6B), S225–S242. doi: https://doi.org/10.1785/BSSA07206B0225
2. Boesch, G. (2023). What’s the difference between Machine Learning and Deep Learning? https://viso.ai/deep-learning/deep-learning-vs-machine-learning/ 3. Chen, C., & Holland, A. A. (2016). PhasePApy: A robust pure Python package for automatic identification of seismic phases. Seismological Research Letters, 87(6), 1384–1396. doi: https://doi.org/10.1785/0220160019 4. Chen, Y., Zhang, G., Bai, M., Zu, S., Guan, Z., & Zhang, M. (2019). Automatic waveform classification and arrival picking based on convolutional neural network. Geophysical Research Letters, 46(8), 4062–4069. doi: https://doi.org/10.1029/2018EA000466 5. Cheng, Y., Hauksson, E., & Ben-Zion, Y. (2023). Refined earthquake focal mechanism catalog for southern California derived with deep learning algorithms. Journal of Geophysical Research: Solid Earth, 128(2), e2022JB025975. doi: https://doi.org/10.1029/2022jb025975 6. Chen, Y., Saad, O. M., Savvaidis, A., Zhang, F., Chen, Y., & Huang, D. (2024). Deep learning for P-wave first-motion polarity determination and its application in focal mechanism inversion. IEEE Transactions on Geoscience and Remote Sensing, 62, Article 5917411, 1–11. doi: https://doi.org/10.1109/TGRS.2024.3407060 7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. doi: https://doi.org/10.48550/arXiv.2010.11929 8. Dreger, D. S., & Helmberger, D. V. (1993). Determination of source parameters at regional distances with three-component sparse network data. Journal of Geophysical Research: Solid Earth, 98(B5), 8107–8125. doi: https://doi.org/10.1029/93JB00023 9. Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. doi: https://doi.org/10.1029/JB086iB04p02825 10. Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004–2010: The centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 146(3–4), 1–9. doi: https://doi.org/10.1016/j.pepi.2012.04.002 11. Hardebeck, J. L., & Shearer, P. M. (2002). A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(8), 2264-2276. doi: https://doi.org/10.1785/0120010200 12. Hardebeck, J. L., & Shearer, P. M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6), 2434–2444. doi: https://doi.org/10.1785/0120020236 13. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. doi: https://doi.org/10.48550/arXiv.1512.03385 14. Huang, S.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191.doi: https://doi.org/10.1016/j.epsl.2014.02.026 15. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning, 37, 448–456. doi: https://doi.org/10.48550/arXiv.1502.03167 16. Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3), 709–716. doi: https://doi.org/10.1111/j.1365-246X.1991.tb06343.x 17. Kao, H., & Jian, P. R. (2001). Seismogenic patterns in the Taiwan region: Insights from source parameter inversion of BATS data. Tectonophysics, 333(1–2), 179–198. doi: https://doi.org/10.1016/S0040-1951(00)00274-2 18. Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. International Conference on Learning Representations (ICLR). doi: https://doi.org/10.48550/arXiv.1412.6980 19. Kobayashi, R., & Nakanishi, I. (1994). Application of genetic algorithms to focal mechanism determination. Geophysical Research Letters, 21, 729–732. doi: https://doi.org/10.1029/94GL00593 20. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 25, pp. 1097–1105). Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 21. Kuang, W., Yuan, C., & Zhang, J. (2021). Real-time determination of earthquake focal mechanism via deep learning. Nature Communications, 12, Article 1432. doi: https://doi.org/10.1038/s41467-021-21670-x 22. Lee, S. J., Liang, W. T., Cheng, H. W., Tu, F. S., Ma, K. F., Tsuruoka, H., Kawakatsu, H., Huang, B.-S., & Liu, C.-C. (2014). Towards real-time regional earthquake simulation I: Real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophysical Journal International, 196(1), 432–446. doi: https://doi.org/10.1093/gji/ggt371 23. Li, J., Zhu, W., Biondi, E., & Zhan, Z. (2023). Earthquake focal mechanisms with distributed acoustic sensing. Nature Communications, 14, 4181. doi: https://doi.org/10.1038/s41467-023-39639-3 24. Li, S., Fang, L., Xiao, Z., Zhou, Y., Liao, S., & Fan, L. (2023). FocMech-Flow: Automatic Determination of P-Wave First-Motion Polarity and Focal Mechanism Inversion and Application to the 2021 Yangbi Earthquake Sequence. Applied Sciences, 13(4), 2233. doi: https://doi.org/10.3390/app13042233 25. Logunova, I. (2023). Backpropagation in Neural Networks. https://serokell.io/blog/understanding-backpropagation 26. Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature Communications, 11, 3952. doi: https://doi.org/10.1038/s41467-020-17591-w 27. Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016). Seismic features and automatic discrimination of deep and shallow induced microearthquakes using neural network and logistic regression. Geophysical Journal International, 207(1), 29–46. doi: https://doi.org/10.1093/gji/ggw258 28. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (pp. 807–814). Haifa, Israel. https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf 29. Nakamura, M. (2004). Automatic determination of focal mechanism solutions using initial motion polarities of P and S waves. Physics of the Earth and Planetary Interiors, 146(3–4), 531–549. doi: https://doi.org/10.1016/j.pepi.2004.05.009 30. O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint, arXiv:1511.08458. doi: https://doi.org/10.48550/arXiv.1511.08458 31. Perol, T., Ghorbani, A., & Denolle, M. A. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(5), e1700578. doi: https://doi.org/10.1126/sciadv.1700578 32. Pugh, D. J., White, R. S., & Christie, P. A. F. (2016). Automatic Bayesian polarity determination. Geophysical Journal International, 206(1), 275–291. doi: https://doi.org/10.1093/gji/ggw146 33. Reasenberg, P. A., & Oppenheimer, D. (1985). FPFIT, FPPLOT, and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. (U.S. Geological Survey Open-File Report 85-739). U.S. Geological Survey. 34. Ross, Z. E., Meier, M. A., & Hauksson, E. (2018). P wave arrival picking and first-motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123(6), 5120–5129. doi: https://doi.org/10.1029/2017JB015251 35. Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. doi: https://doi.org/10.1038/323533a0 36. Saad, O. M., Chen, Y., Savvaidis, A., Fomel, S., & Chen, Y. (2022). Real-time earthquake detection and magnitude estimation using vision transformer. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023657. doi: https://doi.org/10.1029/2023EA003363 37. Shelly, D. R., Hardebeck, J. L., Ellsworth, W. L., & Hill, D. P. (2016). A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm. Journal of Geophysical Research: Solid Earth, 121(11), 8622–8641. doi: https://doi.org/10.1002/2016JB013437 38. Skoumal, R. J., Hardebeck, J. L., & Shearer, P. M. (2024). SKHASH: A Python package for computing earthquake focal mechanisms. Seismological Research Letters, 95(4), 2519–2526. doi: https://doi.org/10.1785/0220230329 39. Thabtah, F., Hammoud, S., Kamalov, F., & Gonsalves, A. (2020). Data imbalance in classification: Experimental evaluation. Information Sciences, 513, 429–441. doi: https://doi.org/10.1016/j.ins.2019.11.004 40. Trnkoczy, A. (2002). Understanding and parameter setting of STA/LTA trigger algorithm. IASPEI New Manual of Seismological Observatory Practice, 2, 1–19. 41. Uchide, T. (2020). Focal mechanisms of small earthquakes beneath the Japanese islands based on first-motion polarities picked using deep learning. Geophysical Journal International, 223(3), 1658–1671. doi: https://doi.org/10.1093/gji/ggaa401 42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. doi: https://doi.org/10.48550/arXiv.1706.03762 43. Wang, Z., Yan, W., & Oates, T. (2017). Time series classification from scratch with deep neural networks: A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1578-1585). doi: https://doi.org/10.1109/IJCNN.2017.7966039 44. Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2023). Transformers in time series: A survey. arXiv preprint arXiv:2202.07125. doi: https://doi.org/10.48550/arXiv.2202.07125 45. Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008). Focal mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651–661. doi: https://doi.org/10.1785/0120070115 46. Yang, W., Hauksson, E., & Shearer, P. M. (2012). Computing a large refined catalog of focal mechanisms for Southern California (1981–2010): Temporal stability of the style of faulting. Bulletin of the Seismological Society of America, 102(3), 1179–1194. doi: https://doi.org/10.1785/0120110311 47. Zhao, M., Xiao, Z., Zhang, M., Yang, Y., Tang, L., & Chen, S. (2023). DiTingMotion: A deep-learning first-motion-polarity classifier and its application to focal mechanism inversion. Frontiers in Earth Science, 11, Article 1103914. doi: https://doi.org/10.3389/feart.2023.1103914 48. 游翔孟 (2018)。利用高密度強地動觀測網開發震源機制初動解自動解算系統。國立台灣大學理學院地質科學研究所,共60頁。 doi: https://doi.org/10.6342/NTU201803691 49. 劉子菱 (2023)。基於注意力機制之神經網路運用於現地型地震預警。國立台灣大學理學院地質科學研究所,共96頁。 doi: https://doi.org/10.6342/NTU202303062 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98639 | - |
| dc.description.abstract | 台灣的地震頻繁且常伴隨災害發生。震源機制解提供斷層機制和應力場資訊,有助於理解斷層破裂過程及評估緊急災害應變。因此,除了震源、發震時間、位置及規模等基本資訊外,迅速獲取震源機制解對及災害減輕也至關重要。傳統決定震源機制解的方法主要分為質心地震矩逆推法(Centroid Moment Tensor, CMT)和P波初動法兩類。大地震的破裂機制往往複雜且與初始破裂行為不一致;CMT方法提供的震源機制解能反映震源破裂的完整過程,而使用P波初動法所獲得的震源機制解則反映震源初期的破裂行為。雖然兩方法得到的解代表著不同的物理意義,但這些方法通常需要幾分鐘到數十分鐘才能獲得震源機制解。
近年來,深度學習的迅速興起在地震學取得重大突破,例如地震偵測、地震相位拾取和P波初動極性確定等,與傳統方法相比提供了更高效且自動化的數據分析能力。本研究提出一種基於深度學習的方法,用於識別地震波的極性,並應用於決定震源機制解,目標旨在短時間內獲得與CMT相近的解。本研究以台灣P-alert測網2012年至2024年4月間規模大於4的島內事件,使用短時間窗的三分量加速度紀錄作為訓練資料,將地震波極性以GCMT目錄為參考解標記為上動、下動與不確定三類別進行訓練。透過交叉驗證,模型以平均97.3%的準確率區分上下動之極性。在對台灣各區域10起獨立地震事件的進一步性能測試中,模型預測結果成功應用於所有測試事件之震源機制解解算,整體準確率達82.21%,表明模型具備良好的泛化能力。同時,本研究也透過Kagan角量化測試結果與GCMT、CWA、AutoBATS目錄中震源機制解的相似程度。結果顯示,所有事件的Kagan角均低於50度,其中與參考解GCMT目錄更是低於35度。這顯示本研究提出的模型能準確判斷地震波的極性,並與現有的震源機制解目錄具有高度的相似性。此外,在模擬P波到時不確定性的時間窗平移測試中,模型在±0.2秒的平移範圍內也展現出穩定的極性辨識能力,顯示其對於P波到時之精準性的容錯性與適應性良好,進一步凸顯本研究模型在實際應用中的可靠性與發展潛力。 | zh_TW |
| dc.description.abstract | In Taiwan, earthquakes are common and often lead to disasters. Focal mechanism solutions reveal the faulting mechanism and stress field, contributing to understanding the rupture process and assessing seismic hazards. Therefore, in addition to essential earthquake information such as origin time, location, and magnitude, rapidly obtaining focal mechanism solutions is crucial for emergency response and damage mitigation. The inversion methods of focal mechanism solutions can be sorted into two main categories: Centroid Moment Tensor (CMT) and P-wave first-motion. The rupture mechanism of large earthquakes often differs from their initial rupture. Focal mechanism solutions derived from CMT represent the overall focal rupture process, while those obtained through the P-wave first-motion method capture the initial focal rupture behavior. Although the physical meaning of focal mechanism solutions from the two methods is different, these conventional approaches generally require several to tens of minutes to resolve the solutions.
In recent years, the rise of deep learning has led to significant breakthroughs in seismology, such as earthquake detection, seismic phase picking and P-wave first motion polarity determination. Compared to conventional methods, deep learning offers a more efficient and automated approach to data analysis. In this study, we proposed a deep learning approach for identifying the polarity of seismic waves and applied it to determine the focal mechanisms. Our goal is to enhance the efficiency of obtaining focal mechanisms. The data used in this study were collected from the Taiwan P-alert network, covering inland earthquakes with magnitudes greater than 4 that occurred between 2012 and April 2024. Unlike previous studies, our model was trained using three-component acceleration signals within a short time window, with waveform polarities labeled as up, down, and uncertain based on the GCMT catalog. Through cross-validation, the model achieved an average accuracy of 97.3% in distinguishing the polarities. In a further performance test involving 10 independent earthquake events from different regions in Taiwan, the model’s predictions were successfully applied to carry out all the focal mechanism solutions. The evaluation resulted in an overall accuracy of 82.21%, indicating strong generalization capability of the model. Additionally, we used the Kagan angle to quantify the similarity between our results and focal mechanism solutions from GCMT, CWA, and AutoBATS CMT catalogs. The results show that the Kagan angles between our solutions and three reference catalogs are below 50°. Particularly, those compared to the GCMT reference solutions are consistently below 35°. This demonstrates that the deep learning model in this study can accurately determine waveform polarity, and the focal mechanism solutions derived from our approach exhibit a high degree of similarity with those in existing public catalogs. Furthermore, in the time-shifting test simulating uncertainty in P- arrival time, our model maintains consistent polarity classification performance within a ± 0.2 second shifting range. This highlights the model’s robustness against P-arrival time uncertainty and indicates its reliability and potential for practical applications in rapid and reliable focal mechanism determination. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:10:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:10:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract v 目次 vii 圖次 x 表次 xiii 第一章 緒論 1 1.1 前言 1 1.2 深度學習在地震學中的應用 3 1.3 研究動機與目的 3 第二章 資料來源 5 2.1 臺灣P-alert觀測網 5 2.2 全球質心地震矩張量目錄(Global Centroid-Moment-Tensor, GCMT) 6 2.3 資料選取(Data selection) 7 2.4 資料標籤(Data labeling) 8 第三章 研究方法 10 3.1 資料預處理(Data preprocessing) 10 3.2 資料增強(Data augmentation) 12 3.3 深度學習(Deep Learning, DL) 13 3.4 卷積神經網路(Convolutional Neural Networks, CNN) 15 3.5 採用自注意力機制之深度學習模型(Transformer) 16 3.5.1 位置編碼(Positional Encoding) 17 3.5.2 編碼器(Encoder)-解碼器(Decoder) 17 3.5.3 自注意力機制(Self-Attention) 18 3.5.4 前饋神經網路(Feed-forward Networks) 19 3.6 運用基因演算法(Genetic Algorithm)決定震源機制解 20 第四章 模型訓練結果 22 4.1 模型評估指標 22 4.2 模型訓練表現與最佳時間窗選擇 23 4.3 卷積神經網路模型 24 4.3.1 超參數設定 24 4.3.2 模型架構調整 25 4.4 Transformer模型 27 4.4.1 模型架構調整 27 第五章 模型測試結果與討論 29 5.1 測試資料集 29 5.2 CNN模型預測結果 31 5.2.1 2013年327南投地震 32 5.2.2 2017年古坑地震 34 5.2.3 2019年海端地震 36 5.2.4 2020年大同地震 38 5.2.5 2021年花蓮地震 40 5.2.6 2022年918池上地震 42 5.2.7 2022年富里地震 44 5.2.8 2023年新港地震 46 5.2.9 2024年萬榮地震 48 5.2.10 2025年大埔地震 50 5.3 震源機制解的比較 52 5.3.1 Kagan angle分析 55 第六章 討論 57 6.1 模型訓練表現探討 57 6.2 CNN與Transformer模型表現比較分析 58 6.3 不同資料處理條件對模型效能之影響分析 59 6.3.1 縮短時間窗長度之測試 59 6.3.2 不同濾波範圍之測試 60 6.3.3 降低訊噪比(SNR)門檻 62 6.3.4 移除 P 波初動訊號 62 6.4 移除 P 波初動訊號對模型測試結果之影響 63 6.5 以時間窗平移檢驗模型預測穩定性 64 第七章 結論 65 參考文獻 66 附錄 71 附錄一 : 模型於不同時間窗下的訓練過程、損失函數及表現。 71 附錄二 : 測試資料各測站之預測結果 75 附錄三 : 模型類別權重調整之分析 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 地震波極性 | zh_TW |
| dc.subject | 震源機制解 | zh_TW |
| dc.subject | focal mechanism solutions | en |
| dc.subject | waveform polarity | en |
| dc.subject | deep learning | en |
| dc.title | 透過深度學習判斷地震波極性及其在決定震源機制解中之應用 | zh_TW |
| dc.title | Waveform Polarity Determination via Deep Learning and Its Application to Focal Mechanism Determination | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李恩瑞;温士忠;金台齡;黃鼎中 | zh_TW |
| dc.contributor.oralexamcommittee | En-Jui Lee;She-Chung Wen;Tai-Lin Chin;Ting-Chung Huang | en |
| dc.subject.keyword | 地震波極性,深度學習,震源機制解, | zh_TW |
| dc.subject.keyword | waveform polarity,deep learning,focal mechanism solutions, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202503240 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
