請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁 | zh_TW |
| dc.contributor.advisor | Li-Jen Chen | en |
| dc.contributor.author | 羅際群 | zh_TW |
| dc.contributor.author | Chi-Chun Lo | en |
| dc.date.accessioned | 2025-08-18T01:10:03Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Gu, X.; Chen, F.; Sun, Y. Multilevel Design Strategies of High-Performance Interfacial Solar Vapor Generation: A State of the Art Review. J. Chem. Eng. 2023, 460, 141716-141716.
2. Du, C.; Huang, C. A Floating Vapor Condensation Structure in a Heat-Localized Solar Evaporation System for Facile Solar Desalination. Appl. Therm. Eng. 2022, 201, 117834-117834. 3. Rao, Z.; Wang, S.; Wu, M.; Lin, Z.; Li, F. Experimental Investigation on Thermal Management of Electric Vehicle Battery with Heat Pipe. Energy Convers. Manag. 2013, 65, 92-97. 4. Boreyko, J. B.; Chen, C. H. Vapor Chambers with Jumping-Drop Liquid Return from Superhydrophobic Condensers. Int. J. Heat Mass Transf. 2013, 61, 409-418. 5. Liu, Z.; Preston, D. J. Enhanced Condensation for Improved Energy Efficiency. Joule 2019, 3(5), 1182-1184. 6. El Fil, B.; Kini, G.; Garimella, S. A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications. Int. J. Heat Mass Transf. 2020, 160, 120172. 7. Zheng, S. F.; Gross, U.; Wang, X. D. Dropwise Condensation: From Fundamentals of Wetting, Nucleation, and Droplet Mobility to Performance Improvement by Advanced Functional Surfaces. Adv. Colloid Interface Sci. 2021, 295, 102503. 8. Liu, L.; Wang, S.; Zeng, X.; Pi, P.; Wen, X. Dropwise Condensation by Nanoengineered Surfaces: Design, Mechanism, and Enhancing Strategies. Adv. Mater. Interfaces 2021, 8(24),2101603. 9. Khandekar, S.; Muralidhar, K. Dropwise Condensation on Inclined Textured Surfaces; Springer: New York, 2013. 10. Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial Control in the Heterogeneous Nucleation of Water. Appl. Phys. Lett. 2009, 95(9), 094101. 11. Volmer, M.; Weber, A. Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 1926, 119U(1), 277-301. 12. Guo, L.; Tang, G. H. Dropwise Condensation on Bioinspired Hydrophilic-Slippery Surface. RSC Adv. 2018, 8(69), 39341-39351. 13. Good, R. J. Contact Angle, Wetting, and Adhesion: A Critical Review. J. Adhes. Sci. Technol. 1992, 6(12), 1269-1302. 14. Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65-87. 15. Song, J. W.; Fan, L. W. Temperature Dependence of the Contact Angle of Water: A Review of Research Progress, Theoretical Understanding, and Implications for Boiling Heat Transfer. Adv. Colloid Interface Sci. 2021, 288, 102339. 16. Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. Res. 1936, 28(8), 988-994. 17. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. 18. Yolcu, H. Analogies to Demonstrate the Effect of Roughness on Surface Wettability. Sci. Act. 2017, 54(3), 70-73. 19. Rodríguez-Valverde, M. A.; Ruiz-Cabello, F. J. M.; Cabrerizo-Vilchez, M. A. Wetting on Axially-Patterned Heterogeneous Surfaces. Adv. Colloid Interface Sci. 2007, 138(2), 84-100. 20. Marmur, A. Thermodynamic Aspects of Contact Angle Hysteresis. Adv. Colloid Interface Sci. 1994, 50, 121-141. 21. Kung, C. H.; Sow, P. K.; Zahiri, B.; Mérida, W. Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. Adv. Mater. Interfaces 2019, 6(18), 1900839. 22. Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nat. Protoc. 2018, 13(7), 1521-1538. 23. Hasegawa, M.; Endo, H.; Morita, K.; Hirotaka Sakaue; Kimura, S. Behavior of Sliding Angle as Function of Temperature Difference between Droplet and Superhydrophobic Coating for Aircraft Ice Protection Systems. Aerosp. 2021, 8(8), 219-219. 24. Forsberg, P. S. H.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State. Langmuir 2009, 26(2), 860-865. 25. Eral, H. B.; Mannetje, D. J. C. M.; Oh, J. M. Contact Angle Hysteresis: A Review of Fundamentals and Applications. Colloid Polym. Sci. 2012, 291(2), 247-260. 26. Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces. Planta 1997, 202(1), 1-8. 27. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir 2008, 24(8), 4114-4119. 28. Zheng, Y.; Chen, C.; Zhang, C.; Zhang, Y.; Wang, Y.; Song, Y. Robust Adhesion of Droplets via Heterogeneous Dynamic Petal Effects. J. Colloid Interface Sci. 2019, 557, 737-745. 29. Chakraborty, M.; Weibel, J. A.; Schaber, J. A.; Garimella, S. V. The Wetting State of Water on a Rose Petal. Adv. Mater. Interfaces 2019, 6(17), 1900652. 30. Parra-Vicente, S.; Ibáñez-Ibáñez, P. F.; Cabrerizo-Vílchez, M.; Sánchez-Almazo, I.; Rodríguez-Valverde, M. Á.; Montes Ruiz-Cabello, F. J. Understanding the Petal Effect: Wetting Properties and Surface Structure of Natural Rose Petals and Rose Petal-Derived Surfaces. Colloids Surf. B Biointerfaces 2024, 236, 113832. 31. Yeh, K. Y.; Cho, K. H.; Yeh, Y. H.; Promraksa, A.; Huang, C. H.; Hsu, C. C.; Chen, L. J. Observation of the Rose Petal Effect over Single- and Dual-Scale Roughness Surfaces. Nanotechnology 2014, 25(34), 345303. 32. Oh, J.; Zhang, R.; Shetty, P. P.; Krogstad, J. A.; Braun, P. V.; Miljkovic, N. Thin Film Condensation on Nanostructured Surfaces. Adv. Funct. Mater. 2018, 28(16), 1707000. 33. Goswami, A.; Pillai, S. C.; McGranaghan, G. Surface Modifications to Enhance Dropwise Condensation. Surf. Interfaces 2021, 25, 101143. 34. Topper, L.; Baer, E. Dropwise Condensation of Vapors and Heat Transfer Rates. J. Colloid Sci. 1955, 10(2), 225-226. 35. Edwards, J. A.; Doolittle, J. S. Tetrafluoroethylene Promoted Dropwise Condensation. Int. J. Heat Mass Transf. 1965, 8(4), 663-666. 36. Holden, K. M.; Wanniarachchi, A. S.; Marto, P. J.; Boone, D. H.; Rose, J. W. The Use of Organic Coatings to Promote Dropwise Condensation of Steam. J. Heat Transfer 1987, 109(3), 768-774. 37. Ma, X. H.; Wang, B. X.; Xu, D. Q.; Lin, J. F. Lifetime Test of Dropwise Condensation on Polymer-Coated Surfaces. Heat Transf. - Asian Res. 1999, 28(7), 551-558. 38. Chang, H. C.; Rajagopal, M. C.; Hoque, M. J.; Oh, J.; Li, L.; Li, J.; Zhao, H.; Kuntumalla, G.; Sundar, S.; Meng, Y.; Shao, C.; Ferreira, P. M.; Salapaka, S. M.; Sinha, S.; Miljkovic, N. Composite Structured Surfaces for Durable Dropwise Condensation. Int. J. Heat Mass Transf. 2020, 156, 119890. 39. Yang, Q.; Gu, A. Dropwise Condensation on SAM and Electroless Composite Coating Surfaces. J. Chem. Eng. Jpn. 2006, 39(8), 826-830. 40. Lara, J. R.; Holtzapple, M. T. Experimental Investigation of Dropwise Condensation on Hydrophobic Heat Exchangers. Part II: Effect of Coatings and Surface Geometry. Desalination 2011, 280(1-3), 363-369. 41. Parin, R.; Rigon, M.; Stefano Bortolin; Martucci, A.; Col, D. D. Optimization of Hybrid Sol-Gel Coating for Dropwise Condensation of Pure Steam. Materials 2020, 13(4), 878-878. 42. Das, A.; Kilty, H. P.; Marto, P. J.; Kumar, A.; Andeen, G. B. Dropwise Condensation of Steam on Horizontal Corrugated Tubes Using an Organic Self-Assembled Monolayer Coating. J. Enhanc. Heat Transf. 2000, 7(2), 109-123. 43. Das, A. K.; Kilty, H. P.; Marto, P. J.; Andeen, G. B.; Kumar, A. The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes. J. Heat Transfer. 1999, 122(2), 278-286. 44. Bonner, R. W. Dropwise Condensation Life Testing of Self Assembled Monolayers. 2010 14th Int. Heat Transf. Conf. IHTC 14, 2010, 221-226. 45. Chen, C. H.; Cai, Q.; Tsai, C.; Chen, C. L.; Xiong, G.; Yu, Y.; Ren, Z. Dropwise Condensation on Superhydrophobic Surfaces with Two-Tier Roughness. Appl. Phys. Lett. 2007, 90(17), 173108. 46. Boreyko, J. B.; Chen, C. H. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Phys. Rev. Lett. 2009, 103(18), 184501. 47. Yan, X.; Zhang, L.; Sett, S.; Feng, L.; Zhao, C.; Huang, Z.; Vahabi, H.; Kota, A. K.; Chen, F.; Miljkovic, N. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. ACS Nano 2019, 13, 1309-1323. 48. Wang, K.; Li, R.; Liang, Q.; Jiang, R.; Zheng, Y.; Lan, Z.; Ma, X. Critical Size Ratio for Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces. Appl. Phys. Lett. 2017, 111(6), 61603. 49. Saeed Zarei; Hamid; Hamid Saffari. Effects of Geometry and Dimension of Micro/Nano-Structures on the Heat Transfer in Dropwise Condensation: A Theoretical Study. Appl. Therm. Eng. 2018, 137, 440-450. 50. Nam, Y.; Seo, D.; Lee, C.; Shin, S. Droplet Coalescence on Water Repellant Surfaces. Soft Matter 2015, 11(1), 154-160. 51. Liu, C.; Zhao, M.; Zheng, Y.; Cheng, L.; Zhang, J.; Tee, C. A. T. H. Coalescence-Induced Droplet Jumping. Langmuir 2021, 37(3), 983-1000. 52. Mukherjee, R.; Berrier, A. S.; Murphy, K. R.; Vieitez, J. R.; Boreyko, J. B. How Surface Orientation Affects Jumping-Droplet Condensation. Joule 2019, 3(5), 1360-1376. 53. Chen, X.; Wang, P.; Zhang, D.; Ou, J. Rational Fabrication of Superhydrophobic Surfaces with Coalescence-Induced Droplet Jumping Behavior for Atmospheric Corrosion Protection. J. Chem. Eng. 2022, 428, 132029. 54. Mulroe, M. D.; Srijanto, B. R.; Ahmadi, S. F.; Collier, C. P.; Boreyko, J. B. Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation. ACS Nano 2017, 11(8), 8499-8510. 55. Yu, Z.; Zhang, K.; Zhao, J.; Chen, S.; Lin, C.; Liu, Y. Coalescence-Induced Jumping of Droplets on Superhydrophobic Substrates with a Beam Structure. Appl. Surf. Sci. 2022, 582, 152284. 56. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318(5849), 426-430. 57. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27(23), 14180-14187. 58. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M.-J.; Freeman, B. D.; Park, H. B. Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry. ACS Appl. Mater. Interfaces 2013, 5(2), 233-238. 59. Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-Inspired Adhesives and Coatings. Annual Review of Materials Research 2011, 41 (1), 99–132. 60. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C. Oxidant-Induced Dopamine Polymerization for Multifunctional Coatings. Polym. Chem. 2010, 1(9), 1430. 61. Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. SU-8: a low-cost negative resist for MEMS. J. Micromech. Microeng. 1997, 7(3), 121-124. 62. del Campo, A.; Greiner, C. SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography. J. Micromech. Microeng. 2007, 17(6), R81-R95. 63. Wang, C.; Chen, Y. S.; Chen, L. J. Evaporation-Induced Deposition Morphology of Suspension Droplets on Hydrophobic Surfaces Manipulated by Controlling the Relative Humidity. Int. J. Heat Mass Transf. 2022, 202, 123709-123709. 64. Yang, K. C.; Wang, C.; Hu, T. Y.; Lin, H. P.; Cho, K. H.; Chen, L. J. Self-Pinning of Silica Suspension Droplets on Hydrophobic Surfaces. J. Colloid Interface Sci. 2020, 579, 212-220. 65. Chuang, Y. C.; Chu, C. K.; Lin, S. Y.; Chen, L. J. Evaporation of Water Droplets on Soft Patterned Surfaces. Soft Matter 2014, 10(19), 3394. 66. Liu, B.-Y.; Seemann, R.; Chen, L. J.; Brinkmann, M. Directional Liquid Wicking in Regular Arrays of Triangular Posts. Langmuir 2019, 35(50), 16476-16486. 67. Law, K. Y. Contact Angle Hysteresis on Smooth/Flat and Rough Surfaces. Interpretation, Mechanism, and Origin. Acc. Mater. Res. 2022, 3, 1-7 68. Choi, W.; Tuteja, A.; Mabry, J. M.; Cohen, R. E.; McKinley, G. H. A Modified Cassie–Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces. J. Colloid Interface Sci. 2009, 339(1), 208-216. 69. Lin, H. P.; Chen, L. J. Direct Observation of Wetting Behavior of Water Drops on Single Micro-Scale Roughness Surfaces of Rose Petal Effect. J. Colloid Interface Sci. 2021, 603, 539-549. 70. Yeh, Y. H.; Cho, K. H.; Chen, L. J. Effect of Softness of Polydimethylsiloxane on the Hydrophobicity of Pillar-like Patterned Surfaces. Soft Matter 2012, 8(4), 1079-1086. 71. Yeh, K. Y.; Chen, L. J.; Chang, J. Y. Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces. Langmuir 2007, 24(1), 245-251. 72. Lo, C. C.; Chen, L. J. Dropwise Condensation on Single-Micro-Scale Roughness Hydrophobic Surfaces. Surf. Interfaces 2022, 33, 102281. 73. Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C. V.; Wang, E. N. Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale. Langmuir 2012, 28(40), 14424-14432. 74. Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169(2), 80-105. 75. Nagayama, G.; Zhang, D. Intermediate Wetting State at Nano/Microstructured Surfaces. Soft Matter 2020, 16(14), 3514-3521. 76. Patankar, N. A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces. Langmuir 2003, 19(4), 1249-1253. 77. Patankar, N. A. Transition between Superhydrophobic States on Rough Surfaces. Langmuir 2004, 20(17), 7097-7102. 78. Vrancken, R. J.; Kusumaatmaja, H.; Hermans, K.; Prenen, A. M.; Pierre-Louis, O.; Bastiaansen, C. W. M.; Broer, D. J. Fully Reversible Transition from Wenzel to Cassie-Baxter States on Corrugated Superhydrophobic Surfaces. Langmuir 2009, 26(5), 3335-3341. 79. Boreyko, J. B.; Collier, C. P. Dewetting Transitions on Superhydrophobic Surfaces: When Are Wenzel Drops Reversible? J. Phys. Chem. C 2013, 117(35), 18084-18090. 80. Cheng, Z.; Lai, H.; Zhang, N.; Sun, K.; Jiang, L. Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface. J. Phys. Chem. C 2012, 116(35), 18796-18802. 81. Vandadi A.; Zhao, L.; Cheng, J. Resistant Energy Analysis of Self-Pulling Process during Dropwise Condensation on Superhydrophobic Surfaces. Nanoscale Adv. 2019, 1(3), 1136-1147. 82. Lo, C. C.; Chen, L. J. Comparative Wetting Behavior of Condensed and Sessile Drops on Single Micro-Scale Textured Hydrophobic Surfaces: Physical Insights for Condenser Design. Surf. Interfaces 2024, 36, 102456. 83. Kim, H.-Y.; Lee, H.-J.; Kang, B.-H. Sliding of Liquid Drops Down an Inclined Solid Surface. J. Colloid Interface Sci. 2002, 247(2), 372-380. 84. Dimitrakopoulos, P.; Higdon, J. J. L. On the Gravitational Displacement of Three-Dimensional Fluid Droplets from Inclined Solid Surfaces. J. Fluid Mech. 1999, 395, 181-209. 85. Weisensee, P. B.; Wang, Y.; Hongliang, Q.; Schultz, D.; King, W. P.; Miljkovic, N. Condensate Droplet Size Distribution on Lubricant-Infused Surfaces. Int. J. Heat Mass Transfer 2017, 109, 187-199. 86. Miljkovic, N.; Enright, R.; Wang, E. N. Modeling and Optimization of Superhydrophobic Condensation. J. Heat Transfer 2013, 135(11), 111004. 87. Ölçeroğlu, E.; McCarthy, M. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces. ACS Appl. Mater. Interfaces 2016, 8(8), 5729-5736. 88. Lo, C. W.; Chu, Y. C.; Yan, M. H.; Lu, M. C. Enhancing Condensation Heat Transfer on Three-Dimensional Hybrid Surfaces. Joule 2019, 3, 2806-2823. 89. Cheng, J.; Vandadi, A.; Chen, C. L. Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces. Appl. Phys. Lett. 2012, 101, 131909. 90. Ghosh, A.; Beaini, S.; Zhang, B. J.; Ganguly, R.; Megaridis, C. M. Enhancing Dropwise Condensation through Bioinspired Wettability Patterning. Langmuir 2014, 30(43), 13103-13115. 91. Song, Z.; Lu, M.; Chen, X. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces. ACS Omega 2020, 5(37), 23588-23595. 92. Oestreich, J. L.; van der Geld, C. W. M.; Oliveira, J. L. G.; da Silva, A. K. Experimental Condensation Study of Vertical Superhydrophobic Surfaces Assisted by Hydrophilic Constructal-like Patterns. Int. J. Therm. Sci. 2019, 135, 319-330. 93. Wang, X.; Xu, B.; Chen, Z.; Davide Del Col; Liu, D.; Zhang, L.; Mou, X.; Liu, Q.; Yang, Y.; Cao, Q. Review of Droplet Dynamics and Dropwise Condensation Enhancement: Theory, Experiments and Applications. Adv. Colloid Interface Sci. 2022, 305, 102684-102684. 94. Cho, H.; Park, B.; Kim, M.; Lee, S.; Hwang, W. A Large-Scale Water-Harvesting Device with β-Al(OH)3 Microcone Arrays by Simple Hydrothermal Synthesis. J. Mater. Chem. A. 2017, 5(48), 25328-25337. 95. Thomas, T. M.; Sinha Mahapatra, P.; Ganguly, R.; Tiwari, M. K. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise? Langmuir 2023, 39(15), 5396-5407. 96. Choo, S.; Choi, H. J.; Lee, H. Water-Collecting Behavior of Nanostructured Surfaces with Special Wettability. Appl. Surf. Sci. 2015, 324, 563-568. 97. Lu, Y.; Sathasivam, S.; Song, J.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or Oil. Science 2015, 347(6226), 1132-1135. 98. Li, P.; Xie, J.; Cheng, J.; Wu, K. K. Anisotropic Wetting Properties on a Precision-Ground Micro-V-Grooved Si Surface Related to Their Micro-Characterized Variables. J. Micromech. Microeng. 2014, 24(7), 075004. 99. Zhong, Y.; Jacobi, A. M.; Georgiadis, J. G. Effects of Surface Chemistry and Groove Geometry on Wetting Characteristics and Droplet Motion of Water Condensate on Surfaces with Rectangular Microgrooves. Int. J. Heat Mass Transf. 2013, 57(2), 629-641. 100. Qi, B.; Zhou, J.; Wei, J.; Li, X. Study on the Wettability and Condensation Heat Transfer of Sine-Shaped Micro-Grooved Surfaces. Exp. Therm. Fluid Sci. 2018, 90, 28-36. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98636 | - |
| dc.description.abstract | 隨著全球氣候變遷與人口成長導致水資源日益匱乏,發展高效且具永續性的水資源回收技術已成為全球關注的焦點。其中,利用大氣水分凝結進行集水與熱管理的技術,因其可不依賴現有水源基礎建設,展現出極大潛力,尤其在乾旱及偏遠地區更具應用價值。液滴式凝結(dropwise condensation, DWC)因能在固體表面形成離散液滴,避免液膜熱阻覆蓋,顯著提升熱傳效能,成為目前熱能轉換與水資源回收領域的關鍵研究方向之一。因此,提升DWC的穩定性與效率已成為表面材料設計的關鍵課題。
本研究結合半導體微影與軟壓印技術,系統性製備170種具高度可控性的工程化表面,涵蓋多種表面粗糙度(單層微米與雙層微奈米)、表面濕潤性及幾何圖案設計。藉此全面探討各種基材對液滴濕潤行為、凝結機制、集水效率與熱傳效能之影響。實驗與理論分析結果顯示,凝結液滴於這些表面上可呈現Wenzel狀態、Cassie狀態、partial Cassie(Wenzel-Cassie混合型)狀態及三相接觸線不規則的Wenzel狀態,並建立了濕潤行為與接觸角量測之間的對應關係。 研究結果顯示,雖然親水性表面因具較低的成核能障,能有效促進凝結初期的成核速率,但凝結液滴與表面之強烈附著性,限制了液滴的排除與更新,導致整體熱傳效能受限。相對而言,具有微/奈米雙層粗糙度的超疏水表面可實現穩定的Cassie態DWC,顯著提升單位面積的熱傳係數,但由於液滴滾落後不易被再利用,造成整體集水效率偏低,限制其實際應用價值。進一步分析發現,僅具單層微米尺度粗糙度之疏水表面,在微結構幾何參數(如方柱高度控制於3.31至6.56 μm且間距小於5.0 μm)優化設計下,即可穩定實現具高液滴移動性與自發排除能力之Cassie態DWC機制。相較於平坦基材,此類表面不僅展現出顯著提升的熱傳效能(提升幅度達346.4%),亦能同步提升凝結液的集水效率(提升幅度達33.0%),達成性能與實用性兼具的設計目標。然而,若微結構高度過高,則在長時間凝結過程中易形成水膜覆蓋表面,而使凝結機制轉變為薄膜式凝結,進而導致熱傳效能明顯衰退,較平坦基材降低63.9%。綜上所述,本研究建立了單層微米粗糙度表面實現高效Cassie態DWC的設計準則,並為未來大氣水分收集與熱管理材料之開發提供關鍵設計依據與技術指引。 | zh_TW |
| dc.description.abstract | With the increasing severity of global water scarcity driven by climate change and population growth, the development of efficient and sustainable technologies for atmospheric water harvesting and thermal management has become a pressing challenge. Among these, dropwise condensation (DWC), which enables the formation of discrete droplets on solid surfaces and avoids the thermal resistance associated with continuous liquid films, has emerged as a key strategy for enhancing both water collection and heat transfer. Accordingly, improving the stability and efficiency of DWC is a critical objective in surface design.
In this study, 170 engineered surfaces with varying surface roughness, surface wettability, and geometric patterns were fabricated via photolithography and soft embossing techniques. The effects of these surfaces on droplet wetting behavior, condensation mechanisms, water harvesting efficiency, and heat transfer were comprehensively investigated. Four distinct wetting states were identified during condensation: Wenzel state, Cassie state, partial Cassie (mixed Wenzel-Cassie) state, and Wenzel state with irregular three-phase contact lines. Experimental results reveal that although hydrophilic surfaces facilitate nucleation due to lower energy barriers, their strong droplet adhesion limits droplet removal and thereby reduces overall heat transfer performance. Conversely, superhydrophobic surfaces with dual-scale roughness can significantly enhance heat transfer through stable Cassie-state DWC but suffer from poor water harvesting. Notably, hydrophobic surfaces with only single-micro-scale roughness can achieve both high heat transfer and efficient water harvesting by optimizing geometric parameters (e.g., pillar height between 3.31 and 6.56 μm, with pillar spacing equals to or less than 5.0 μm). Such surfaces achieve stable Cassie-state condensation with enhancements of 33.0% in water harvesting and 346.4% in heat transfer compared to a flat hydrophobic substrate. However, excessively tall micropillars promote water film accumulation over time, leading to a transition to filmwise condensation and a significant performance decline, with heat transfer reduced by 63.9% relative to a flat surface. This study establishes practical design criteria for achieving efficient Cassie-state DWC on single-micro-scale roughness surfaces and offers valuable insights for the development of advanced materials for atmospheric water harvesting and passive thermal management applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:10:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:10:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
摘要 II Abstract iv 目次 vi 圖次 viii 表次 xviii 第一章 前言 1 第二章 文獻回顧 3 2.1 濕潤現象與接觸角 3 2.1.1 理想表面上之濕潤行為 3 2.1.2 非理想表面上之濕潤行為 5 2.1.3 動態接觸角、滑動角與接觸角遲滯 6 2.2 超疏水表面與玫瑰花瓣效應 9 2.3 蒸氣凝結機制 11 2.4 增進液滴式凝結熱傳效能方式 12 2.4.1 聚合物塗層(以含氟聚合物為例) 13 2.4.2 聚合物複合材料塗層 13 2.4.3 自組裝單分子層(SAMs) 14 2.4.4 微米、奈米及雙層粗糙度結構 14 2.5 多巴胺聚合物的親水性表面改質 16 第三章 實驗方法 18 3.1 實驗材料與藥品 18 3.2 實驗設備與儀器 19 3.3 實驗流程與步驟 20 3.3.1 單層微米粗糙度SU-8結構母片製作 20 3.3.2 單層微米粗糙度圖案基材製備 21 3.3.3 不同濕潤性化學品塗佈方法 23 3.3.4 動態接觸角量測量測與表面濕潤性評估 24 3.3.5 液滴滑動角量測 25 3.3.6 水平式凝結實驗 25 3.3.7 垂直式凝結實驗 28 第四章 結果與討論 30 4.1 附著液滴(sessile drop)在單層微米柱狀疏水表面之濕潤行為探討 33 4.1.1 低固體覆蓋率(Φ_SL=0.25 & 0.44)方柱基材上之濕潤區間 35 4.1.2 高固體覆蓋率(Φ_SL=0.64 & 0.81)方柱基材上之濕潤區間 44 4.2 凝結液滴(condensed droplet)在單層微米柱狀疏水表面之濕潤行為探討 47 4.2.1 凝結過程之成長機制與統計分析 47 4.2.2 凝結水滴碰撞過程之表面自由能分析 62 4.2.3 低固體覆蓋率(Φ_SL=0.25 & 0.44)方柱基材上之濕潤狀態 68 4.2.4 高固體覆蓋率(Φ_SL=0.64 & 0.81)方柱基材上之濕潤狀態 73 4.3 單層微米方柱疏水基材上附著液滴與凝結液滴的濕潤行為比較 78 4.4 凝結液滴濕潤狀態對凝結水收集與表面熱傳之影響 80 4.5 表面濕潤性對凝結水收集與表面熱傳之影響 95 4.6 非對稱結構表面對凝結水收集與表面熱傳之影響 108 第五章 結論 124 參考文獻 126 附錄 137 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 液滴式凝結 | zh_TW |
| dc.subject | 表面粗糙度 | zh_TW |
| dc.subject | 表面濕潤性 | zh_TW |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | 濕潤狀態 | zh_TW |
| dc.subject | 集水效率 | zh_TW |
| dc.subject | 熱傳效能 | zh_TW |
| dc.subject | surface roughness | en |
| dc.subject | heat transfer performance | en |
| dc.subject | water-harvesting efficiency | en |
| dc.subject | contact angle | en |
| dc.subject | wetting state | en |
| dc.subject | surface wettability | en |
| dc.subject | dropwise condensation | en |
| dc.title | 微奈米結構表面濕潤行為調控對凝結熱傳及表面優化之分析 | zh_TW |
| dc.title | Condensation Heat Transfer and Surface Optimization through Wetting Behavior Regulation on Micro/Nano-Structured Surfaces | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 孫一明;曹恆光;廖英志;崔宏瑋;楊宏達;葉冠瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ming Sun;Heng-Kwong Tsao;Ying-Chih Liao;Hung-Wei Tsui;Hongta Yang;Kuan-Yu Yeh | en |
| dc.subject.keyword | 液滴式凝結,表面粗糙度,表面濕潤性,接觸角,濕潤狀態,集水效率,熱傳效能, | zh_TW |
| dc.subject.keyword | dropwise condensation,surface roughness,surface wettability,wetting state,contact angle,water-harvesting efficiency,heat transfer performance, | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202503443 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 28.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
