Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98632Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉俊麟 | zh_TW |
| dc.contributor.advisor | Chun-Lin Liu | en |
| dc.contributor.author | 邱馨柔 | zh_TW |
| dc.contributor.author | Hsing-Jou Chiu | en |
| dc.date.accessioned | 2025-08-18T01:09:11Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] M. W. Akhtar, S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, “The shift to 6G communications: vision and requirements,” Human-centric Computing and Information Sciences, vol. 10, pp. 1–27, 2020.
[2] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and applications above 100 ghz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019. [3] O. Kanhere, H. Poddar, Y. Xing, D. Shakya, S. Ju, and T. S. Rappaport, “A power efficiency metric for comparing energy consumption in future wireless networks in the millimeter-wave and terahertz bands,” IEEE Wireless Commun., vol. 29, no. 6, pp. 56–63, 2022. [4] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems. Pearson, 1997. [5] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Elsevier, 2011. [6] B. Razavi, Principles of Data Conversion System Design. Wiley-IEEE Press, 1994. [7] R. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, 1999. [8] Z. Hu, B. Chen, Y. Zhang, and L. Yu, “Kalman-like filter under binary sensors,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022. [9] A. Li, C. Masouros, F. Liu, and A. L. Swindlehurst, “Massive MIMO 1-bit DAC transmission: A low-complexity symbol scaling approach,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7559–7575, 2018. [10] D. Zhang, C. Svensson, and A. Alvandpour, “Power consumption bounds for SAR ADCs,” in 2011 20th European Conference on Circuit Theory and Design (ECCTD), 2011, pp. 556–559. [11] Y. Xu, X. Han, Z. Yang, S. Wang, Q. Zhu, Z. Liu, W. Liu, and W. Che, “Onebit: Towards extremely low-bit large language models,” arXiv preprint arXiv:2402.11295, 2024. [12] Y. Shen, J. Fang, and H. Li, “One-bit compressive sensing and source localization in wireless sensor networks,” in 2013 IEEE China Summit and International Conference on Signal and Information Processing, 2013, pp. 379–383. [13] G. Joseph, V. Gandikota, A. Bhandari, J. Choi, I.-S. Kim, G. Lee, M. Matthaiou, C. R. Murthy, H. Q. Ngo, P. K. Varshney, T. Wimalajeewa, W. Yi, Y. Yuan, and G. Zhang, “Low-resolution compressed sensing and beyond for communications and sensing: Trends and opportunities,” Signal Processing, vol. 235, p. 110020, 2025. [14] A. Gersho, “Principles of quantization,” IEEE Trans. Circuits Syst., vol. 25, no. 7, pp. 427–436, 1978. [15] A. Eamaz, F. Yeganegi, and M. Soltanalian, “One-bit phase retrieval: More samples means less complexity?” IEEE Trans. Signal Process., vol. 70, pp. 4618–4632, 2022. [16] Y.-H. Xiao, D. Ramírez, L. Huang, X. P. Li, and H. C. So, “One-bit target detection in colocated MIMO radar with colored background noise,” IEEE Trans. Signal Process., vol. 72, pp. 5274–5290, 2024. [17] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle River, New Jersey 07458: Prentice Hall, 2005, pp. 159–164. [18] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969. [19] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 984–995, 1989. [20] J. Fang and H. Li, “Adaptive distributed estimation of signal power from one-bit quantized data,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 4, pp. 1893–1905, 2010. [21] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and L. Liu, “Channel estimation and performance analysis of one-bit massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4075–4089, 2017. [22] T. Yang, J. Maly, S. Dirksen, and G. Caire, “Plug-in channel estimation with dithered quantized signals in spatially non-stationary massive MIMO systems,” IEEE Trans. Commun., vol. 72, no. 1, pp. 387–402, 2024. [23] J. Dahmen, D. Keysers, M. Pitz, and H. Ney, “Structured covariance matrices for statistical image object recognition,” in Mustererkennung 2000: 22. DAGM-Symposium. Kiel, 13.–15. September 2000. Springer, 2000, pp. 99–106. [24] J. Van Vleck and D. Middleton, “The spectrum of clipped noise,” Proc. IEEE, vol. 54, no. 1, pp. 2–19, 1966. [25] F. Chapeau-Blondeau, S. Blanchard, and D. Rousseau, “Fisher information and noise-aided power estimation from one-bit quantizers,” Digital Signal Processing, vol. 18, no. 3, pp. 434–443, 2008. [26] C. Gianelli, L. Xu, J. Li, and P. Stoica, “One-bit compressive sampling with time-varying thresholds for sparse parameter estimation,” in 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016, pp. 1–5. [27] A. Eamaz, F. Yeganegi, and M. Soltanalian, “Covariance recovery for one-bit sampled non-stationary signals with time-varying sampling thresholds,” IEEE Trans. Signal Process., vol. 70, pp. 5222–5236, 2022. [28] S. Dirksen and J. Maly, “Tuning-free one-bit covariance estimation using data-driven dithering,” IEEE Trans. Inf., vol. 70, no. 7, pp. 5228–5247, 2024. [29] C.-L. Liu and Z.-M. Lin, “One-bit autocorrelation estimation with non-zero thresholds,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4520–4524. [30] R. Price, “A useful theorem for nonlinear devices having Gaussian inputs,” IRE Trans. Inf., vol. 4, no. 2, pp. 69–72, 1958. [31] Y.-H. Chou, “One-bit power and autocorrelation estimation: Cramér–Rao bounds and adaptive methods,” Master’s thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2023. [32] C.-L. Liu and Y.-H. Chou, “Approximation and analysis of the one-bit Hermite law,” in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025, pp. 1–5. [33] M. López-Benítez and F. Casadevall, “Versatile, accurate, and analytically tractable approximation for the Gaussian Q-Function,” IEEE Trans. Commun., vol. 59, no. 4, pp. 917–922, 2011. [34] M. Boas, Mathematical Methods in the Physical Sciences. Wiley, 2005. [Online]. Available: https://books.google.com.tw/books?id=C3-NQgAACAAJ [35] Z.-M. Lin, “Range estimation for single stationary target via statistics one-bit quantized radar signals,” Master’s thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2020. [36] W. Kibble, “An extension of a theorem of Mehler’s on Hermite polynomials,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 41, no. 1. Cambridge University Press, 1945, pp. 12–15. [37] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, ser. Applied Optimization. Springer US, 2003. [Online]. Available: https://books.google.com.tw/books?id=VyYLem-l3CgC [38] L. Bottou, On-line Learning and Stochastic Approximations, ser. Publications of the Newton Institute. Cambridge University Press, 1999, p. 9–42. [39] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of Mathematical Statistics, pp. 400–407, 1951. [40] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” Advances in Neural Information Processing Systems, vol. 20, 2007. [41] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications. Wiley, 2013. [Online]. Available: https://books.google.com.tw/books?id=Fmf8TumgxEYC [42] M. Amin and Y. Zhang, “Chapter 6 - spatial time-frequency distributions and DOA estimation,” in Classical and Modern Direction-of-Arrival Estimation, T. E. Tuncer and B. Friedlander, Eds. Boston: Academic Press, 2009, pp. 185–217. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B978012374524800012X [43] P. McCullagh and J. Nelder, Generalized Linear Models. Routledge, 1989. [44] F.-C. Chen, “Back-propagation neural networks for nonlinear self-tuning adaptive control,” IEEE Control Systems Magazine, vol. 10, no. 3, pp. 44–48, 1990. [45] P. J. Huber and E. M. Ronchetti, Robust Statistics, 2nd ed., ser. Wiley Series in Probability and Statistics. John Wiley & Sons, 2009. [46] P. M. M. Esfahani and D. Kuhn, “Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations,” Mathematical Programming, vol. 171, no. 1–2, pp. 115–166, 2018. [47] P. J. Huber, “Robust estimation of a location parameter,” The Annals of Mathematical Statistics, vol. 35, no. 1, pp. 73 – 101, 1964. [Online]. Available: https://doi.org/10.1214/aoms/1177703732 [48] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004. [Online]. Available: https://books.google.com.tw/books?id=mYm0bLd3fcoC [49] D. Levy, “Introduction to numerical analysis,” Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, pp. 2–2, 2010. [50] G. B. Dantzig, Linear Programming and Extensions. Princeton University Press, 1963. [51] M. J. Powell, “On search directions for minimization algorithms,” Mathematical Programming, vol. 4, no. 1, pp. 193–201, 1973. [52] S. Haykin, Adaptive Filter Theory, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2013. [53] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., ser. Graduate Texts in Mathematics. Springer, 1991, vol. 113. [54] G. A. F. Seber, A Matrix Handbook for Statisticians. Hoboken, NJ, USA: Wiley-Interscience, 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98632 | - |
| dc.description.abstract | 單位元自相關函數重建 (One-bit ACF reconstruction) 旨在利用單位元量化數據來估計原始訊號的自相關函數 (autocorrelation function)。目前已有一些方法重建位量化訊號之自相關函數,如: 修正反正弦律 (modified arcsine law) 和埃爾米特定理 (Hermite law)。修正反正弦律選用時變閥值的量化器,且涉及積分項;埃爾米特定理選用恆定閥值量化器,卻涉及無窮多項加總。為了緩解無窮項加總,有學者提出埃爾米定律的諧波近似 (harmonic approximation)。然而,修正反正弦律以及埃爾米特定理在資料量不足的情況下,估計的均方誤差 (MSE) 浮動都很大。
在本文中,我們引用諧波近似來逼近埃爾米特定理,以降低無窮級數的計算複雜度,同時保留恆定量化閾值的優勢。選用恆定量化閾值,我們就不需要產生隨機程序作為位量化器的閥值。我們基於諧波近似構造最佳化問題,該問題的最佳解即為提出的自相關函數估計子。其目標函是對應於單位量化資料之平均值與自相關函數估計子的均方誤差線性組和。 此外,我們應用變數變換,以消除估計自相關函數時對標準差與相關係數的自然限制。透過這種目標函數的設計,可以一次更新原始的自相關函數,而不需分為兩步驟進行。在本論文中,我們採用數值最佳化求解問題。接下來,我們利用指數加權移動平均(EWMA)來設計單位量化資料的區塊可適性 (block adaptive) 平均值與相關矩陣估計子。為了降低計算複雜度並可適性地更新自相關函數估計結果,我們亦將隨機梯度下降法(SGD)應用於該最佳化問題。 我們證明了在本論文中基於 EWMA 的估計子是不偏的 (unbiased)。此外,我們進一步推導了平均值估計子的變異數,其變異數受區塊長度控制。最後透過模擬實驗證明,與修正反正弦律相比,我們的估計子無需蒐集大量樣本即可達到良好的效果。提出的估計子每次更新所需的運行時間不到修正反正弦律的一半,除此之外,在適應信號分布的快速變化方面也更具優勢。 | zh_TW |
| dc.description.abstract | One-bit autocorrelation (ACF) estimation reconstructs the original signal’s ACF with received one-bit quantized data. Some present theorems specify the relations among one-bit correlation, such as the modified arcsine law and Hermite law. The modified arcsine law adopts time-varying quantization thresholds and involves integral-based terms. On the other hand, Hermite law employs a constant quantization threshold but involves an infinite sum. The harmonic approximation of the Hermite law has been proposed to relieve the endless sum. However, the modified arcsine and Hermite laws exhibit significant mean-square error (MSE) fluctuations in estimation for insufficient data.
In this thesis, we employ a harmonic approximation of the Hermite law to reduce the computational complexity of infinite series while retaining the advantage of a positive threshold. With a constant threshold, we do not have to generate a random process for the quantizer. We formulate the optimization problem based on the harmonic approximation. The optimal solution to the problem is the proposed ACF estimator. The objective function is a linear combination of MSEs corresponding to mean and ACF estimators of one-bit data. Besides, we apply variable transformations to eliminate the natural constraints on standard deviation and correlation coefficients estimated to recover ACF. With the objective function design, the original ACF can be estimated in one step rather than two stages. In this thesis, the problem is addressed using numerical optimization. Next, we utilize the exponentially weighted moving average (EWMA) to design block adaptive mean and correlation matrix estimators of one-bit data. To reduce computational complexity and adaptively update the ACF estimation, we also apply stochastic gradient descent (SGD) to the optimization problem. In the thesis, we prove that the EWMA-based estimators are unbiased. We further derive the variance of the mean estimator, which is controlled by block length. Finally, through simulation experiments, we demonstrate that our estimator does not require collecting many samples compared to the modified arcsine law. Moreover, the run time of each update is less than half that of the modified arcsine law. The proposed estimator is also more capable of adapting to rapid changes in the signal distribution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:09:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:09:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xv List of Tables xxi Chapter 1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Preliminaries 5 2.1 Review of Gaussian Distribution and Autocorrelation . . . . . . . . . 5 2.1.1 Probability Density Function of Gaussian Random Variable . . . . . 5 2.1.2 Q-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Autocorrelation Function of Random Processes . . . . . . . . . . . 6 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 One-Bit Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Assumption of the Input Signal of the One-Bit Quantizer . . . . . . 8 2.3 Statistics of One-Bit Quantized Signals . . . . . . . . . . . . . . . . 9 2.3.1 The Arcsine Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 The Modified Arcsine Law . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 The Hermite Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 One-Bit ACF Reconstruction in Previous Works . . . . . . . . . . . 17 2.4.1 NACF Estimation by Zero Threshold One-Bit Quantization . . . . . 17 2.4.2 ACF Estimation by Time-Varying Threshold One-Bit Quantization . 18 2.4.3 ACF Estimation by Constant Threshold One-Bit Quantization . . . 23 2.4.4 The Approximated Hermite law . . . . . . . . . . . . . . . . . . . 25 2.5 Adaptive Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Difference between Batch and Adaptive Estimation . . . . . . . . . 29 2.5.3 Adaptive Mean Estimator . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.4 Adaptive Correlation Matrix Estimator . . . . . . . . . . . . . . . . 31 Chapter 3 Adaptive Estimation of the Autocorrelation 35 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Designing Optimization Problem of ACF estimation . . . . . . . . . 35 3.3 Non-convexity of the Objective Function . . . . . . . . . . . . . . . 41 3.4 Estimating the ACF by Stochastic Gradient Descent Technique . . . . 42 3.5 Finitude of Gradient of the Objective Function . . . . . . . . . . . . 47 3.6 Simulation for the Gradient of the Objective Function . . . . . . . . 52 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Chapter 4 Analysis of the Block Adaptive Estimators 55 4.1 Recursive Relation of the Mean and Correlation Estimators . . . . . . 55 4.1.1 Recursion of the Block Adaptive Mean Estimator . . . . . . . . . . 59 4.1.2 Recursion of the Block Adaptive Correlation Matrix Estimator . . . 60 4.2 Discrete Variable Transformation Properties . . . . . . . . . . . . . . 61 4.3 Statistics of Mean and Correlation Estimators for One-Bit Quantized data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 Expected Value and Variance of the Mean Estimator for y(n) . . . . 67 4.3.2 Expected Value of the Correlation Matrix Estimator for y(n) . . . . 79 4.4 Statistics of Estimator for ACF of Unquantized Data . . . . . . . . . 82 4.4.1 Expected Value of Correlation Matrix Estimator for x(n) . . . . . . 82 4.4.2 Variance of the Power Estimator for x(n) . . . . . . . . . . . . . . 84 4.5 Validation for Variance of the Estimators . . . . . . . . . . . . . . . 85 4.5.1 Numerical Examples for Mean Estimator of y(n) . . . . . . . . . . 87 4.5.2 Numerical Examples for Correlation Estimator of x(n) . . . . . . . 90 4.6 Conclusion for the Block Adaptive Estimators . . . . . . . . . . . . 93 Chapter 5 Numerical Outcomes 97 5.1 Procedure for Proposed One-Bit ACF Reconstruction Method . . . . 98 5.2 Impact of Block Length on Stochastic Gradient . . . . . . . . . . . . 99 5.3 Converged Performance of One-Bit and Unquantized ACF Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 Details of simulation for Adaptive ACF Estimation . . . . . . . . . . 106 5.4.1 Definition of the Normalized MSE . . . . . . . . . . . . . . . . . . 111 5.4.2 Procedure and Parameters for ACF Reconstruction Methods . . . . 111 5.5 Comparison under Stationary Scenarios . . . . . . . . . . . . . . . . 114 5.5.1 Moderate Correlation: γ = −0.65 . . . . . . . . . . . . . . . . . . 114 5.5.2 Low Correlation: γ = 0.02 . . . . . . . . . . . . . . . . . . . . . . 115 5.5.3 High Correlation: γ = 0.95 . . . . . . . . . . . . . . . . . . . . . . 120 5.5.4 Conclusion for Stationary Cases . . . . . . . . . . . . . . . . . . . 125 5.6 Comparison under Non-Stationary Scenarios . . . . . . . . . . . . . 129 5.6.1 Block Length L = 1000 . . . . . . . . . . . . . . . . . . . . . . . . 130 5.6.2 Block Length L = 100 . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6.3 Conclusion for Non-Stationary Cases . . . . . . . . . . . . . . . . . 138 Chapter 6 Conclusion 143 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 References 145 Appendix A — Detailed Derivations for the Gradient of the Objective Function 153 A.1 The Gradient of the Objective Function Gi(ϕ) . . . . . . . . . . . . 153 Appendix B — Prove the Gradient of the Objective Function is Finite 165 B.1 Upper and Lower Bound of Partial Derivative of the Objective Function166 B.2 Expanding the Partial Derivatives . . . . . . . . . . . . . . . . . . . 170 B.2.1 Elements in Limits of Expanded Partial Derivatives . . . . . . . . . 171 B.3 Limit of qi When σ Approaches 0 . . . . . . . . . . . . . . . . . . . 180 B.4 Limit of qi When σ Approaches infinity . . . . . . . . . . . . . . . . 184 Appendix C — Discrete Variable transformation for MSE Analysis 189 C.1 Partition of S(La, Ua, Lb, Ub) on the uv-Plane . . . . . . . . . . . . . 189 C.2 Variance of Block Adaptive Estimator for Zero-Mean Gaussian Process192 C.3 Shifted Summation in MSE analysis for ˆRx,block(τ, k) . . . . . . . . . 202 | - |
| dc.language.iso | en | - |
| dc.subject | 可適性估計 | zh_TW |
| dc.subject | 單位元量化 | zh_TW |
| dc.subject | 零均值高斯程序 | zh_TW |
| dc.subject | 自相關函數估計 | zh_TW |
| dc.subject | 隨機梯度下降 | zh_TW |
| dc.subject | stochastic gradient descent | en |
| dc.subject | autocorrelation function reconstruction | en |
| dc.subject | zero-mean Gaussian processes | en |
| dc.subject | adaptive estimation | en |
| dc.subject | One-bit quantization | en |
| dc.title | 基於埃爾米特定理的單位元可適性自相關函數估計與分析 | zh_TW |
| dc.title | Hermite-Law-Based Adaptive One-Bit Autocorrelation Estimation and Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張大中;陳柏志 | zh_TW |
| dc.contributor.oralexamcommittee | Dah-Chung Chang;Po-Chih Chen | en |
| dc.subject.keyword | 單位元量化,可適性估計,隨機梯度下降,自相關函數估計,零均值高斯程序, | zh_TW |
| dc.subject.keyword | One-bit quantization,adaptive estimation,stochastic gradient descent,autocorrelation function reconstruction,zero-mean Gaussian processes, | en |
| dc.relation.page | 205 | - |
| dc.identifier.doi | 10.6342/NTU202503252 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 電信工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 9.11 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
