Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲zh_TW
dc.contributor.advisorLing Chaoen
dc.contributor.author金哲綸zh_TW
dc.contributor.authorChe-Lun Chinen
dc.date.accessioned2025-08-18T01:08:43Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation1. Chin, C.-L., C.-E. Chang, and L. Chao, Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes. ACS Sensors, 2025. 10(4): p. 2652-2666.
2. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 1958. 65(6): p. 386-408.
3. Goodfellow, I., Deep learning. 2016, MIT press.
4. Gomes, J., et al., Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv preprint arXiv:1703.10603, 2017.
5. Silva, R., et al., Optimization of fermentation conditions for the production of human soluble catechol-O-methyltransferase by Escherichia coli using artificial neural network. Journal of Biotechnology, 2012. 160(3): p. 161-168.
6. Costello, Z. and H.G. Martin, A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ systems biology and applications, 2018. 4(1): p. 1-14.
7. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
8. Qi, Y., et al., High-precision intelligent cancer diagnosis method: 2D Raman figures combined with deep learning. Analytical Chemistry, 2022. 94(17): p. 6491-6501.
9. Caicedo, J.C., et al., Data-analysis strategies for image-based cell profiling. Nature methods, 2017. 14(9): p. 849-863.
10. Matousek, P., Deep non-invasive Raman spectroscopy of living tissue and powders. Chemical Society Reviews, 2007. 36(8): p. 1292-1304.
11. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. 2019: John Wiley & Sons.
12. Li, P., et al., Fundamentals and applications of surface-enhanced Raman spectroscopy–based biosensors. Current Opinion in Biomedical Engineering, 2020. 13: p. 51-59.
13. Serebrennikova, K.V., et al., Raman scattering-based biosensing: New prospects and opportunities. Biosensors, 2021. 11(12): p. 512.
14. Niaura, G., Raman Spectroscopy in Analysis of Biomolecules, in Encyclopedia of Analytical Chemistry. 2014. p. 1-34.
15. Laing, S., et al., Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry, 2017. 1(8): p. 0060.
16. Cialla-May, D., et al., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017. 46(13): p. 3945-3961.
17. Horgan, C.C., et al., High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. Analytical Chemistry, 2021. 93(48): p. 15850-15860.
18. Lussier, F., et al., Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends in Analytical Chemistry, 2020. 124: p. 115796.
19. Liu, J., et al., Deep convolutional neural networks for Raman spectrum recognition: a unified solution. Analyst, 2017. 142(21): p. 4067-4074.
20. Qi, Y., et al., Recent progresses in machine learning assisted Raman spectroscopy. Advanced Optical Materials, 2023. 11(14): p. 2203104.
21. Szymborski, T.R., et al., Machine Learning for COVID-19 Determination Using Surface-Enhanced Raman Spectroscopy. Biomedicines, 2024. 12(1): p. 167.
22. Grossutti, M., et al., Deep Learning and Infrared Spectroscopy: Representation Learning with a β-Variational Autoencoder. The Journal of Physical Chemistry Letters, 2022. 13(25): p. 5787-5793.
23. Kazemzadeh, M., et al., Deep autoencoder as an interpretable tool for Raman spectroscopy investigation of chemical and extracellular vesicle mixtures. Biomedical Optics Express, 2024. 15(7): p. 4220-4236.
24. Fang, C., et al., Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging. Chemosphere, 2022. 286: p. 131736.
25. Luo, Y., et al., Dual-Principal Component Analysis of the Raman Spectrum Matrix to Automatically Identify and Visualize Microplastics and Nanoplastics. Analytical Chemistry, 2022. 94(7): p. 3150-3157.
26. Kobayashi, S., et al., Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics. ACS Omega, 2022. 7(6): p. 5578-5583.
27. Engel, J., et al., Breaking with trends in pre-processing? TrAC Trends in Analytical Chemistry, 2013. 50: p. 96-106.
28. Kazemzadeh, M., et al., Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Optics Communications, 2022. 510: p. 127977.
29. Thrift, W.J., et al., Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. ACS Nano, 2020. 14(11): p. 15336-15348.
30. Li, M., et al., A Novel and Rapid Serum Detection Technology for Non-Invasive Screening of Gastric Cancer Based on Raman Spectroscopy Combined With Different Machine Learning Methods. Frontiers in Oncology, 2021. 11: p. 665176.
31. Ma, D., et al., Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021. 256: p. 119732.
32. Wu, X., et al., Rapid and accurate identification of colon cancer by Raman spectroscopy coupled with convolutional neural networks. Japanese Journal of Applied Physics, 2021. 60(6): p. 067001.
33. Li, Z., et al., Machine-learning-assisted spontaneous Raman spectroscopy classification and feature extraction for the diagnosis of human laryngeal cancer. Computers in Biology and Medicine, 2022. 146: p. 105617.
34. Du, Y., et al., Diagnoses in multiple types of cancer based on serum Raman spectroscopy combined with a convolutional neural network: Gastric cancer, colon cancer, rectal cancer, lung cancer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023. 298: p. 122743.
35. Li, Z., et al., Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Neural Networks, 2021. 144: p. 455-464.
36. Mozaffari, M.H. and L.-L. Tay, Convolutional neural networks for raman spectral analysis of chemical mixtures, in 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI). 2021, IEEE. p. 1-6.
37. Wu, J., Introduction to Convolutional Neural Networks. National Key Lab for Novel Software Technology. Nanjing University. China, 2017. 5(23): p. 495.
38. Tsai, H.-F., et al., Usiigaci: Instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning. SoftwareX, 2019. 9: p. 230-237.
39. Zhao, M., et al., Deep learning approach for classifying contamination levels with limited samples. Electronic Imaging, 2022. 34: p. 1-5.
40. Deng, L., et al., Scale-Adaptive Deep Model for Bacterial Raman Spectra Identification. IEEE Journal of Biomedical and Health Informatics, 2022. 26(1): p. 369-378.
41. Ding, J., et al., Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network. Analytical and bioanalytical chemistry, 2021. 413(14): p. 3801-3811.
42. Yu, B., et al., Multi-modality multi-scale cardiovascular disease subtypes classification using Raman image and medical history. Expert Systems with Applications, 2023. 224: p. 119965.
43. Di Foggia, M., et al., Self-assembling peptides for biomedical applications: IR and Raman spectroscopies for the study of secondary structure. Proteomics Research Journal, 2011. 2(3): p. 231.
44. Ho, M. and J.E. Pemberton, Alkyl Chain Conformation of Octadecylsilane Stationary Phases by Raman Spectroscopy. 1. Temperature Dependence. Analytical Chemistry, 1998. 70(23): p. 4915-4920.
45. Sjöberg, B., et al., An experimental and theoretical study of the amino acid side chain Raman bands in proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 128: p. 300-311.
46. Ye, J., et al., Accurate virus identification with interpretable Raman signatures by machine learning. Proceedings of the National Academy of Sciences, 2022. 119(23): p. e2118836119.
47. Kirchberger-Tolstik, T., et al., Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy. Analytical Chemistry, 2020. 92(20): p. 13776-13784.
48. Liu, W., et al., Rapid discrimination of Shigella spp. and Escherichia coli via label-free surface enhanced Raman spectroscopy coupled with machine learning algorithms. Frontiers in Microbiology, 2023. 14: p. 1101357.
49. Selvaraju, R.R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision. 2017.
50. Wang, H., et al. Score-CAM: Score-weighted visual explanations for convolutional neural networks. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020.
51. Cheng, N., B. Lou, and H. Wang, Discovering the digital biomarker of hepatocellular carcinoma in serum with SERS-based biosensors and intelligence vision. Colloids and Surfaces B: Biointerfaces, 2023. 226: p. 113315.
52. Ibtehaz, N., et al., RamanNet: a generalized neural network architecture for Raman spectrum analysis. Neural Computing and Applications, 2023. 35(25): p. 18719-18735.
53. Lundberg, S.M. and S.-I. Lee, A unified approach to interpreting model predictions. Advances in neural information processing systems, 2017. 30.
54. Hashizume, T. and B.-W. Ying, Challenges in developing cell culture media using machine learning. Biotechnology Advances, 2024. 70: p. 108293.
55. Zhang, S., H. Aida, and B.-W. Ying, Employing Active Learning in Medium Optimization for Selective Bacterial Growth. Applied Microbiology, 2023. 3(4): p. 1355-1369.
56. Zournas, A., et al., Machine learning-led semi-automated medium optimization reveals salt as key for flaviolin production in Pseudomonas putida. Communications Biology, 2025. 8(1): p. 630.
57. Hashizume, T., Y. Ozawa, and B.-W. Ying, Employing active learning in the optimization of culture medium for mammalian cells. npj Systems Biology and Applications, 2023. 9(1): p. 20.
58. Singh, V., et al., Strategies for fermentation medium optimization: an in-depth review. Frontiers in microbiology, 2017. 7: p. 2087.
59. Zhou, T., et al., A review of algorithmic approaches for cell culture media optimization. Frontiers in bioengineering and biotechnology, 2023. 11: p. 1195294.
60. Helleckes, L.M., et al., Machine learning in bioprocess development: from promise to practice. Trends in biotechnology, 2023. 41(6): p. 817-835.
61. Zhang, H., et al., mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.
62. Baumgart, T., et al., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences, 2007. 104(9): p. 3165-3170.
63. Sezgin, E., et al., Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature protocols, 2012. 7(6): p. 1042-1051.
64. Scott, R.E., Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science, 1976. 194(4266): p. 743-745.
65. Shi, J., et al., GM1 Clustering Inhibits Cholera Toxin Binding in Supported Phospholipid Membranes. Journal of the American Chemical Society, 2007. 129(18): p. 5954-5961.
66. Tanaka, K., et al., Reduced expression of gangliosides with GM2-determinant in cervical carcinoma-derived cells after subcutaneous transplantation into nude mice. Human Cell, 2023. 36(3): p. 1199-1203.
67. Quinn, P.J. and D. Chapman, The dynamics of membrane structure. Critical Reviews in Biochemistry, 1980. 8(1): p. 1-117.
68. Ramamurthy, T., et al., Evaluation of the bead enzyme-linked immunosorbent assay for detection of cholera toxin directly from stool specimens. Journal of clinical microbiology, 1992. 30(7): p. 1783-1786.
69. Zhu, G., et al., Raman spectra of amino acids and their aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 78(3): p. 1187-1195.
70. Guicheteau, J., et al. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification. in Chemical and Biological Sensing VII. 2006. SPIE.
71. Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. pmlr.
72. Wu, H. and X. Gu, Towards dropout training for convolutional neural networks. Neural Networks, 2015. 71: p. 1-10.
73. Lis, L., J. Kauffman, and D. Shriver, Raman spectroscopic detection and examination of the interaction of amino acids, polypeptides and proteins with the phosphatidylcholine lamellar structure. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1976. 436(3): p. 513-522.
74. Kang, J., et al. The effect of aqueous solution in Raman spectroscopy. in Eighth International Conference on Photonics and Imaging in Biology and Medicine. 2009. SPIE.
75. Maiti, N.C., et al., Raman Spectroscopic Characterization of Secondary Structure in Natively Unfolded Proteins:  α-Synuclein. Journal of the American Chemical Society, 2004. 126(8): p. 2399-2408.
76. Tang, J.-W., et al., Determination of Shigella spp. via label-free SERS spectra coupled with deep learning. Microchemical Journal, 2023. 189: p. 108539.
77. Simonyan, K., A. Vedaldi, and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.
78. Lin-Vien, D., et al., The handbook of infrared and Raman characteristic frequencies of organic molecules. 1991: Elsevier.
79. Podstawka, E., Y. Ozaki, and L.M. Proniewicz, Part I: Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Applied spectroscopy, 2004. 58(5): p. 570-580.
80. Silva, B., et al., Polarized Raman spectra and infrared analysis of vibrational modes in L-threonine crystals. Brazilian Journal of Physics, 1998. 28: p. 19-24.
81. Herlinger, A.W. and T.V. Long, Laser-Raman and infrared spectra of amino acids and their metal complexes. III. Proline and bisprolinato complexes. Journal of the American Chemical Society, 1970. 92(22): p. 6481-6486.
82. O’Neal, P.D., et al., Feasibility study using surface-enhanced Raman spectroscopy for the quantitative detection of excitatory amino acids. Journal of Biomedical Optics, 2003. 8(1): p. 33-39.
83. Jarmelo, S., et al., Infrared and Raman spectroscopic characterization of the hydrogen-bonding network in l-serine crystal. Vibrational Spectroscopy, 2007. 43(2): p. 395-404.
84. Hauptmann, A., et al., Raman Marker Bands for Secondary Structure Changes of Frozen Therapeutic Monoclonal Antibody Formulations During Thawing. Journal of Pharmaceutical Sciences, 2023. 112(1): p. 51-60.
85. Premasiri, W., et al., Characterization of the surface enhanced Raman scattering (SERS) of bacteria. The journal of physical chemistry B, 2005. 109(1): p. 312-320.
86. Podstawka, E., Y. Ozaki, and L.M. Proniewicz, Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Applied spectroscopy, 2005. 59(12): p. 1516-1526.
87. Suh, J. and M. Moskovits, Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. Journal of the American Chemical Society, 1986. 108(16): p. 4711-4718.
88. Hernández, B., et al., Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. VI. Amino Acids with Positively Charged Side Chains: l-Lysine and l-Arginine. The Journal of Physical Chemistry B, 2010. 114(2): p. 1077-1088.
89. Naumann, D., FT-infrared and FT-Raman spectroscopy in biomedical research. Applied spectroscopy reviews, 2001. 36(2-3): p. 239-298.
90. Kitagawa, T. and S. Hirota, R aman Spectroscopy of Proteins. Handbook of vibrational spectroscopy, 2001.
91. Ramirez, F., I. Tunon, and E. Silla, Amino acid chemistry in solution: Structural study and vibrational dynamics of glutamine in solution. An ab initio reaction field model. The Journal of Physical Chemistry B, 1998. 102(32): p. 6290-6298.
92. Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
93. Movasaghi, Z., S. Rehman, and I.U. Rehman, Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2007. 42(5): p. 493-541.
94. Shetty, G., et al., Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 2006. 94(10): p. 1460-1464.
95. Jyothi Lakshmi, R., et al., Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice. Radiation Research, 2002. 157(2): p. 175-82.
96. Settles, B., Active learning literature survey. 2009.
97. Tao, Z., et al., Yeast Extract: Characteristics, Production, Applications and Future Perspectives. Journal of Microbiology and Biotechnology, 2023. 33(2): p. 151-166.
98. Tomé, D., Yeast Extracts: Nutritional and Flavoring Food Ingredients. ACS Food Science & Technology, 2021. 1(4): p. 487-494.
99. Li, Y., G. Wei, and J. Chen, Glutathione: a review on biotechnological production. Applied Microbiology and Biotechnology, 2004. 66(3): p. 233-242.
100. Cheah, I.K. and B. Halliwell, Ergothioneine; antioxidant potential, physiological function and role in disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2012. 1822(5): p. 784-793.
101. Pocsi, I., R.A. Prade, and M.J. Penninckx, Glutathione, altruistic metabolite in fungi. Advances in microbial physiology, 2004. 49(1): p. 1-76.
102. Sadeghi, A., et al., Emerging functionalities of yeast cell-wall components; the value-added food-grade pre- and post-biotics. Applied Food Research, 2025. 5(2): p. 101072.
103. Pathak, L., et al., Artificial intelligence versus statistical modeling and optimization of cholesterol oxidase production by using Streptomyces sp. PloS one, 2015. 10(9): p. e0137268.
104. Desai, K.M., et al., Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochemical Engineering Journal, 2008. 41(3): p. 266-273.
105. Kučerka, N., S. Tristram-Nagle, and J.F. Nagle, Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. The Journal of Membrane Biology, 2006. 208(3): p. 193-202.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98630-
dc.description.abstract人工神經網路的技術近年來已經被應用在各個領域當中,包含影像辨識、輔助醫療診斷以及自然語言模型之基礎,然而目前較少能將結果與系統的物理化學知識進行連結並給予解釋。本論文探討可解釋式機器學習框架於生物分子感測與微生物培養系統中的分析與優化應用。內容涵蓋兩項主要研究,分別結合深度學習與主動式學習策略,以解決光譜分類與培養基配方設計中的核心挑戰。
論文的第一部分,我們設計了一套多尺度一維卷積神經網路(1D-CNN),用以分類霍亂毒素次單元B(Cholera Toxin B Subunit, CTB)與細胞膜結合後所產生的表面增強拉曼散射(SERS)光譜。透過調整卷積核大小等超參數以優化結構,我們成功提取多尺度光譜特徵,並在準確度、靈敏度、特異性與精密度方面優於傳統機器學習方法以及先前研究所提出之多尺度一維神經卷積網路。此外,我們應用了資料增強以緩解因生物樣本數據稀少而產生的過擬合問題。我們進一步提出基於卷積網路中活化層的解釋方法—單位元梯度加權類激活映射(Grad-AM),以可視化模型在分類決策中所依據的關鍵光譜區段,證明卷積網路其在低濃度樣本中也能有效捕捉具生物意義的特徵。
論文的第二部分,我們提出一套結合人工神經網路(ANN)與主動式學習(active learning)的框架,用於優化植物乳桿菌(Lactobacillus plantarum)的培養基配方。該模型整合經濟成本考量與設計特徵,成功預測出同時具備高活菌濃度與資源使用效率的配方。透過多輪迭代訓練與實驗驗證,人工神經網路模型展現出收斂性,並提出可使活菌濃度顯著提升之配方。綜合而言,這兩項研究展現了結合光譜學知識或物理性質的可解釋機器學習方法,在生化研究中的潛力,提供了在生物感測與生物製程工程中進行光譜分類、模型可視化與配方優化的實用框架。
zh_TW
dc.description.abstractArtificial neural network (ANN) has been widely applied in fields such as image recognition, medical diagnostics, and natural language modeling. However, their results are rarely linked to the physicochemical knowledge of systems, limiting the interpretability. This dissertation explores interpretable machine learning frameworks for analysis and optimization in biomolecular sensing and microbial cultivation systems. It encompasses two main studies integrating deep learning and active learning to address core challenges in spectral classification and culture medium formulation.
The first part develops a multiscale one-dimensional convolutional neural network (1D-CNN) to classify surface-enhanced Raman scattering (SERS) spectra generated by cholera toxin B subunit (CTB) binding to cell membranes. By optimizing hyperparameters, such as convolutional kernel size, we extracted multiscale spectral features, achieving superior accuracy, sensitivity, specificity, and precision compared to traditional machine learning algorithms and prior multiscale 1D-CNNs. Data augmentation was applied to mitigate overfitting due to scarce biological data. We further proposed Grad-AM, a pixel-based gradient-weighted class activation mapping method, to visualize critical spectral regions driving classification decisions, demonstrating the model’s ability to capture biologically meaningful features even in low-concentration samples.
The second part proposes an ANN and active learning framework to optimize Lactobacillus plantarum culture medium formulations. Integrating economic cost and feature engineering, the model predicted formulations with high viable cell density and resource efficiency. Through iterative training and experimental validation, the ANN demonstrated convergence and proposed formulations with substantially enhanced viable cell density. Collectively, these studies highlight the potential of interpretable machine learning, combining spectroscopic knowledge and physical properties, offering practical frameworks for spectral classification, model visualization, and formulation optimization in biosensing and bioprocess engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:08:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:08:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgment ii
摘要 iv
Abstract v
Table of Content vii
Figure Captions xi
Table Captions xviii
Chapter 1 Introduction 1
1.1 Artificial Neural Networks in Biochemical Systems 1
1.2 Opportunities and Challenges of Applying CNNs to Raman Spectroscopy in Biomolecular Analysis 3
1.3 Convolutional Neural Networks for Classification and Feature Visualization of Weak Raman Spectra 4
1.4 Machine Learning in Medium Optimization and Existing Challenges 6
Chapter 2 Materials and Methods 8
2.1 Materials 8
2.1.1 Raman Spectra of Cholera Toxin Subunit B on Cell Membrane Platform 8
2.1.2 Medium Optimization Data Set of Lactobacillus plantarum 9
2.2 Apparatus 9
2.3 Multiscale 1D-CNN Training and Evaluation for Raman Spectra 10
2.4 Saliency Scores and Heatmaps of Visualization Methods for CNNs 12
2.4.1 Gradient on Activation Map (Grad-AM) 12
2.4.2 Gradient on Input (Grad-Input) 13
2.4.3 Grad-CAM 14
2.5 Normalization of Saliency Scores for Plotting 15
2.5.1 Normalization of Saliency Scores for Grad-input, Grad-AM and Grad-CAM 15
2.5.2 Normalization of Saliency Scores for each Kernel Size of Grad-AM 16
2.6 Calculation of Difference in Normalized Standard Deviation between CTB and Non-CTB Samples 17
2.7 Artificial Neural Networks (ANN) Training and Evaluation 17
2.8 SHAP-Based Interpretation of ANN Predictions 18
2.9 Workflow of Code Implementations 21
2.9.1 Workflow of Code Implementation in Raman Spectrum Classification (Chapter 3) 21
2.9.2 Workflow of Code Implementation in Medium Optimization (Chapter 4) 22
2.9.3 Code Availability and Disclaimer 23
Chapter 3 Interpretable Multiscale Convolutional Neural Network for Classification and Feature Visualization of Weak Raman Spectra of Biomolecules at Cell Membranes 24
3.1 Use of Cell Membrane Platform to Detect CTB via Raman Spectra 24
3.1.1 Cell Membrane SERS Chip Platform 24
3.1.2 Statistical Analysis of Raw SERS Spectra 27
3.2 Multiscale 1D-CNN for Raman Spectrum Classification 30
3.3 Convolutional Kernel Size Selection for Multiscale Feature Extraction 32
3.4 Analysis of Data Augmentation 35
3.5 Comparison of Multiscale 1D-CNN with Other Machine Learning Algorithms 37
3.6 Visualization of Spectrum Classification with Saliency Heatmaps 41
3.7 Correlation between Grad-AM Saliency Score and Sample Variation 46
3.8 Interpretable Multiscale Spectral Features Revealed by Grad-AM Saliency Score 49
3.8.1 Kernel-wise Contributions to Spectral Interpretation Across Scales 49
3.8.2 Analysis of Single-Kernel Grad-AM Profiles and Oscillatory Artifacts 56
3.8.3 Evaluation of an Alternative Kernel Combination: Missed Peaks and Implications 59
3.9 Conclusion 62
Chapter 4 Active Learning with Artificial Neural Network in Medium Optimization for Lactobacillus plantarum 64
4.1 Overview of Active Learning Framework for Medium Optimization 64
4.2 Comparison of Machine Learning Models for Results of Initial Design 67
4.2.1 Overview of the Initial Design of Formulations 67
4.2.2 Information Embedding for Compositions of Different Sources 68
4.2.3 Evaluation of Machine Learning Algorithms for Initial Design of Medium Formulation 70
4.3 Medium Compositions Constraints Based on Cost Consideration 79
4.4 Iterations with Artificial Neural Networks 81
4.4.1 Overview of Iterations with Artificial Neural Networks 81
4.4.2 First Round of Iteration 82
4.4.3 Second Round of Iteration 86
4.4.4 Third Round of Iteration: Model Convergence and Final Predictions 90
4.5 Interpreting Optimization Progress Using Shapley Values: Trends in Top Formulations 94
4.6 Discussion: Potential Issues in Experimental Design and Suggestions in Future Implementations 98
4.7 Conclusion 101
Chapter 5 Conclusions 102
Reference 104
Appendix 111
A1 Supplementary Information of Chapter 3 111
A1.1 Estimating the Number of CTB Molecules in the Laser-Illuminated Area 111
A1.2 Structure of our proposed CNN 113
A1.3 Effect of Convolutional Kernel Sizes on Spectrum Smoothing 115
A1.4 Tuned Hyperparameters of the Various Kernel Combinations for Our Proposed 1D-CNN with 5-Fold Cross-Validation 117
A1.5 Gradient plots with the activation maps in the trained multiscale CNN model 120
A.2 Supplementary Information of Chapter 4 127
A2.1 Raw Data and Formulations of Medium Optimization Experiments 127
A2.2 Tuned Hyperparameters of Machine Learning Models and Artificial Neural Networks 134
A2.3 Interpretation of the Co-influence of Y2, Y3, and Y10 in the Third Iteration ANN Using Dependence Plots 136
-
dc.language.isoen-
dc.subject人工神經網路zh_TW
dc.subject可解釋性模型zh_TW
dc.subject拉曼光譜zh_TW
dc.subject生物分子光譜zh_TW
dc.subject培養基最適化zh_TW
dc.subjectinterpretableen
dc.subjectartificial neural networks (ANN)en
dc.subjectmedium optimizationen
dc.subjectbiomolecular spectraen
dc.subjectRaman spectroscopyen
dc.title發展可解釋性人工神經網路以提取生化系統之資訊zh_TW
dc.titleDevelopment of Interpretable Artificial Neural Networks to Extract Information from Biochemical Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee涂熊林;謝之真;游佳欣;杜育銘zh_TW
dc.contributor.oralexamcommitteeHsiung-Lin Tu;Chih-Chen Hsieh;Jia-Shing Yu;Yu-Ming Tuen
dc.subject.keyword人工神經網路,可解釋性模型,拉曼光譜,生物分子光譜,培養基最適化,zh_TW
dc.subject.keywordartificial neural networks (ANN),Raman spectroscopy,interpretable,biomolecular spectra,medium optimization,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202503304-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved