Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬zh_TW
dc.contributor.advisorChii-wann Linen
dc.contributor.author黃士翰zh_TW
dc.contributor.authorShih-Han Huangen
dc.date.accessioned2025-08-18T01:08:31Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationLee, H., Lee, J., Jung, W., & Lee, G. (2007). The periodic moving average filter for removing motion artifacts from PPG signals. International Journal of Control, Automation and Systems, 5(6), 701–706.
Ortega, R., Hansen, C. J., Elterman, K., & Woo, A. (2011). Pulse oximetry. The New England Journal of Medicine, Massachusetts Medical Society.
Sinex, J. E. (1999). Pulse oximetry: Principles and limitations. American Journal of Emergency Medicine, 17(1), 59–66.
Glaros, K. N. (2011). Low-power pulse oximetry and transimpedance amplifiers (Master’s thesis, Imperial College London, Department of Bioengineering).
Peng, F., Zhang, Z., Gou, X., Liu, H., & Wang, W. (2014). Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter. BioMedical Engineering Online, 13(50), 1–17.
Townsend, N. (2001). Pulse oximetry. Medical Electronics, Michaelmas Term, Lecture Notes.
Einthoven, W. (1895). Ueber die Form des menschlichen Electrocardiogramms. Pflügers Archiv European Journal of Physiology, 60(3), 101–123.
Einthoven, W. (1906). The telecardiogramme. Archives Internationales de Physiologie, 4, 132–141.
Rahul, J., & Sharma, L. D. (2022). Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model. Biocybernetics and Biomedical Engineering, 42(1), 312–324.
Luz, E. J., et al. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164.
Chen, W. (2018). Electrocardiogram. In Seamless Healthcare Monitoring (pp. 344). Springer.
Sattar, Y., & Chhabra, L. (2023). Electrocardiogram. StatPearls [Internet].
Drew, B. J., et al. (2014). Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients. PLOS ONE, 9(10), e110274.
Sola, A., Chow, L., & Rogido, M. (2005). Pulse oximetry in neonatal care: A comprehensive state-of-the-art review. Anales de Pediatría, 62(3), 266–280.
Pérez-Riera, A. R., Barbosa-Barros, R., Daminello-Raimundo, R., & de Abreu, L. C. (2018). Main artifacts in electrocardiography. Annals of Noninvasive Electrocardiology, 23(2), e12494.
Liu, Y., & Pecht, M. G. (2011). Reduction of motion artifacts in electrocardiogram monitoring using an optical sensor. Biomedical Instrumentation & Technology, 45(2), 155–163.
Haykin, S. (2002). Adaptive filter theory (4th ed.). Prentice Hall.
Hayes, M. H. (1996). Statistical digital signal processing and modeling. John Wiley & Sons.
Gratz, I., et al. (2017). Continuous non-invasive finger cuff CareTaker comparable to invasive intra-arterial pressure in patients undergoing major intra-abdominal surgery. BMC Anesthesiology, 17(48), 1–9.
Baruch, M. C., et al. (2014). Validation of the pulse decomposition analysis algorithm using central arterial blood pressure. Biomedical Engineering Online, 13(96), 1–15.
Nichols, W. W., O’Rourke, M. F., & Vlachopoulos, C. (2011). McDonald's blood flow in arteries: Theoretical, experimental and clinical principles (6th ed.). CRC Press.
Zhang, G., Gao, M., & Xu, D. (2014). Estimation of blood pressure using pulse transit time: A comparison from ECG and PPG signals. Sensors, 14(10), 18871–18886.
Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3), R1–R39.
Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable photoplethysmographic sensors—Past and present. Electronics, 3(2), 282–302.
Zong, W., Moody, G. B., & Jiang, D. (2003). A robust open-source algorithm to detect onset and duration of QRS complexes. Computers in Cardiology, 30, 737–740.
Luo, H., & Wu, H. T. (2019). Motion artifact removal for wearable photoplethysmography based on synchrosqueezing transform. IEEE Transactions on Biomedical Engineering, 66(9), 2507–2516.
Zhang, Z. (2015). Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Transactions on Biomedical Engineering, 62(8), 1902–1910.
Zhang, Z. (2015). Heart rate monitoring using wrist-type photoplethysmographic (PPG) signals during physical exercise. Biomedical Signal Processing and Control, 18, 290–296.
Zhao, Y., et al. (2017). Motion artifact removal based on EMD in wearable PPG signal. Sensors, 17(8), 1730.
Lee, S. Y., et al. (2016). Motion-tolerant heart rate monitoring using PPG and RLS filter. In IEEE Engineering in Medicine and Biology Society (EMBC).
Ali, A., et al. (2022). Comprehensive analysis of motion artifact removal techniques in wearable PPG. IEEE Access, 10, 123456–123470.
Wang, L., Li, C., Liu, J., & Fang, Q. (2022). Adaptive motion artifact reduction in photoplethysmography based on recursive least squares filtering. IEEE Journal of Biomedical and Health Informatics, 26(2), 543–553.
Xie, J., Lin, L., & Wang, Z. (2024). Removal of motion artifacts in PPG signals based on the CEEMDAN MPE and VS LMS adaptive filter. IEEE Transactions on Biomedical Engineering.
Zhang, Q., Zhang, H., Shabir, A., & Kassab, G. S. (2019). Regional hydraulic pressure-flow dynamics and pulse wave transmission in the human arterial system. American Journal of Physiology-Heart and Circulatory Physiology, 317(5), H1053–H1063.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98629-
dc.description.abstract在非侵入式生理監測裝置中,連續血壓(Continuous Non-invasive Blood Pressure, CNBP)與心率量測技術已廣泛應用於臨床與穿戴式照護領域。其中,力學式脈搏感測器相較於傳統光學感測(PPG)具備抗光源干擾與適用範圍更廣等優勢。然而,於實際應用過程中,裝置容易受到使用者移動、姿勢改變與外力觸碰等動作造成的運動偽影(Motion Artifact)影響,進而降低量測準確度。
本研究針對機械式脈搏波感測器所面臨之運動偽影問題,提出一套模擬資料建立、自適應濾波訓練與實際驗證之系統性處理流程。首先,依據臨床情境建構三種常見干擾類型:震動型高頻干擾、基線飄移與低頻滑移,並透過頻譜分析掌握其特性。接著,以乾淨的脈搏波信號與合成干擾相加,建立具備「真實答案」之訓練資料,供 Recursive Least Squares(RLS)自適應濾波器進行訓練與參數優化。
實驗結果顯示,於模擬情境下濾波後之 RMSE 平均改善 42%,SNR 則提升 6.1 dB,尤以震動干擾處理成效最佳。進一步於實際干擾情境下測試五位受測者之資料,在三種動作干擾(手掌晃動、手部輕拍、指夾施壓)下,濾波後之心率與血壓參數均明顯穩定,心率誤差由 ±10.2 bpm 降至 ±2.9 bpm,血壓平均誤差減少達 75%。
本研究證實 RLS 濾波器搭配模擬訓練資料可有效處理機械式脈搏感測器之運動偽影問題,並提升量測參數之準確性與穩定性,為連續血壓監測於手術或高動態情境下的應用提供實用可行之解法。
zh_TW
dc.description.abstractContinuous non-invasive blood pressure (CNBP) and heart rate monitoring technologies are essential in clinical and wearable healthcare systems. Compared to optical sensors like photoplethysmography (PPG), mechanical pulse sensors offer reduced sensitivity to ambient light and better robustness. However, they remain highly susceptible to motion artifacts caused by movement, posture shifts, or mechanical contact, which degrade measurement accuracy.
This study presents a framework to suppress motion artifacts in mechanical pulse wave signals via synthetic data generation, adaptive filtering, and performance validation. Three typical artifact types—high-frequency vibration, baseline drift, and low-frequency shifts—were modeled from clinical scenarios. Their frequency characteristics were analyzed, and synthetic noisy signals were created by blending clean waveforms with artifacts. These were used to train a Recursive Least Squares (RLS) adaptive filter.
Simulated results showed a 42% RMSE reduction and a 6.1 dB SNR gain, with optimal performance in high-frequency interference. Real data validation with five participants under three motion conditions (hand shaking, tapping, and sensor displacement) showed significant improvements: heart rate error dropped from ±10.2 bpm to ±2.9 bpm, and blood pressure estimation error was reduced by up to 75%.
The findings confirm that the proposed RLS filter, trained with synthetic artifact-contaminated data, effectively mitigates motion artifacts in mechanical pulse sensors, enhancing CNBP and heart rate reliability in dynamic clinical environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:08:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:08:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目次 iv
圖次 vii
表次 viii
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 章節架構 5
Chapter 2 文獻探討 7
2.1 脈搏波與血壓生理機制 7
2.2 力學式與光學式感測技術比較 9
2.2.1 光學式感測(PPG) 9
2.2.2 力學式感測(Mechanical Sensing) 11
2.3 運動偽影(Motion Artifact)定義與分類 12
2.3.1 運動偽影的定義與特性 13
2.3.2 偽影來源分類 13
2.3.3 對感測器的影響與應對 14
2.4 PPG與心電圖訊號中偽影處理方法 16
2.4.1 無參考訊號法(Blind Filtering / No Reference) 16
2.4.2 合成參考訊號法(Synthetic Reference) 17
2.4.3 加速度輔助濾波法(Motion-Aware Filtering) 17
2.4.4 應用挑戰與比較分析 18
2.5 自適應濾波技術應用於生理訊號的現況與挑戰 19
Chapter 3 實驗設計及資料處理 21
3.1 實驗裝置與平台介紹 21
3.1.1 脈搏感測器預期用途(ArteVu 系統簡介) 22
3.1.2 設備構成與運作原理 22
3.1.3 心率及血壓計算準確性驗證 23
3.2 干擾類型定義與模擬設計 24
3.2.1 干擾來源頻率特性分析 24
3.2.2 合成雜訊資料建構方法 25
3.3 自適應濾波器介紹與參數設計 26
3.3.1 LMS/NLMS/RLS 理論概述 26
3.3.2 RLS參數優化方法(Grid Search) 28
3.3.3 訊號評估指標(RMSE/SNR等) 29
Chapter 4 實驗驗證與結果 32
4.1 人為干擾模擬與濾波效果展示 32
4.1.1 三種模擬干擾情境與頻譜分析 33
4.1.2 干擾前後波形與RMSE/SNR統計結果 36
4.2 心率訊號之濾波效果與臨床參數改善 40
4.3 血壓訊號之濾波效果與臨床參數改善 42
Chapter 5 討論與分析 45
5.1 濾波器對不同干擾類型之適應能力探討 45
5.2 ArteVu 所提供之連續血壓參數在臨床應用之潛力與改善 46
5.3 濾波後血壓與心率參數穩定度之整體評估 47
5.4 現有濾波法選擇與調參機制之彈性與挑戰 49
5.5 本研究限制與未來建議方向 50
參考文獻 52
-
dc.language.isozh_TW-
dc.subject運動偽影zh_TW
dc.subject自適應濾波zh_TW
dc.subject連續血壓zh_TW
dc.subject力學式脈搏感測器zh_TW
dc.subject心率監測zh_TW
dc.subjectadaptive filteringen
dc.subjectmotion artifacten
dc.subjectheart rate monitoringen
dc.subjectmechanical pulse sensoren
dc.subjectcontinuous blood pressureen
dc.title力學脈搏感測器的運動偽影減少方法之研究zh_TW
dc.titleMotion artifact reduction in Mechanical Pulse Sensoren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee施文彬;黃承俊zh_TW
dc.contributor.oralexamcommitteeWen-Pin Shih;Cheng-Chun Huangen
dc.subject.keyword運動偽影,自適應濾波,連續血壓,力學式脈搏感測器,心率監測,zh_TW
dc.subject.keywordmotion artifact,adaptive filtering,continuous blood pressure,mechanical pulse sensor,heart rate monitoring,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202503658-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved