Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維婷zh_TW
dc.contributor.advisorWei-Ting Chenen
dc.contributor.author張淯翔zh_TW
dc.contributor.authorYu-Hsiang Changen
dc.date.accessioned2025-08-18T01:08:18Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationCarbone, R. E., Wilson, J. W., Keenan, T. D., & Hacker, J. M. (2000). Tropical Island Convection in the Absence of Significant Topography. Part I: Life Cycle of Diurnally Forced Convection. Monthly Weather Review, 128(10), 3459-3480. https://doi.org/10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2
Chen, C.-S., Lin, C.-Y., Chuang, Y.-J., & Yeh, H.-C. (2002). A study of afternoon heavy rainfall in Taiwan during the mei-yu season. Atmospheric Research, 65(1-2), 129-149. https://doi.org/10.1016/S0169-8095(02)00061-3
Chen, G. T.-J., Chou, H.-C., Liao, P.-C., & Yang, J.-S. (2009a). Climatological Characteristics of the Warm Season Afternoon Convection over Northern and Central Taiwan under Weak Synoptic Forcings. Atmos. Sci., 37(1), 49–86. (in Chinese with English abstract).
Chen, G. T.-J., Chou, H.-C., Liao, P.-C., & Yang, J.-S. (2009b). Study on the warm season afternoon convection over northern and Central Taiwan. Atmos. Sci., 37(2), 155–194. (in Chinese with English abstract).
Chen, T.-C., Wang, S.-Y., & Yen, M.-C. (2007). Enhancement of Afternoon Thunderstorm Activity by Urbanization in a Valley: Taipei. Journal of Applied Meteorology and Climatology, 46(9), 1324-1340. https://doi.org/10.1175/jam2526.1
Chen, T.-C., Yen, M.-C., Tsay, J.-D., Liao, C.-C., & Takle, E. S. (2014). Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. Journal of Applied Meteorology and Climatology, 53(7), 1714-1738. https://doi.org/10.1175/jamc-d-13-098.1
Chen, W.-T., Chang, Y.-H., Wu, C.-M., & Huang, H.-Y. (2024). The future extreme precipitation systems of orographically locked diurnal convection: the benefits of using large-eddy simulation ensembles. Environmental Research: Climate, 3(3), 035008. https://doi.org/10.1088/2752-5295/ad557d
Choi, W., & Kim, K.-Y. (2019). Summertime variability of the western North Pacific subtropical high and its synoptic influences on the East Asian weather. Scientific Reports, 9(1), 7865. https://doi.org/10.1038/s41598-019-44414-w
Guan, W., Hu, H., Ren, X., & Yang, X.-Q. (2019). Subseasonal zonal variability of the western Pacific subtropical high in summer: climate impacts and underlying mechanisms. Climate Dynamics, 53(5), 3325-3344. https://doi.org/10.1007/s00382-019-04705-4
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,…Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
Hilario, M. R. A., Olaguera, L. M., Narisma, G. T., & Matsumoto, J. (2021). Diurnal characteristics of summer precipitation over Luzon Island, Philippines. Asia-Pacific Journal of Atmospheric Sciences, 57, 573-585. https://doi.org/10.1007/s13143-020-00214-1
Hsieh, M.-K., & Wu, C.-M. (2024). Developing an Explainable Variational Autoencoder (VAE) Framework for Accurate Representation of Local Circulation in Taiwan. Journal of Geophysical Research: Atmospheres, 129(12), e2024JD041167. https://doi.org/10.1029/2024JD041167
Hsu, T.-H., Chen, W.-T., Wu, C.-M., & Hsieh, M.-K. (2023). The Observation-Based Index to Investigate the Role of the Lee Vortex in Enhancing Air Pollution over Northwestern Taiwan. Journal of Applied Meteorology and Climatology, 62(3), 427-439. https://doi.org/10.1175/JAMC-D-22-0102.1
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., & Zhang, H.-M. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30(20), 8179-8205. https://doi.org/10.1175/JCLI-D-16-0836.1
Huang, W.-R., Hsu, H.-H., Wang, S.-Y., & Chen, J.-P. (2015). Impact of atmospheric changes on the low-frequency variations of convective afternoon rainfall activity over Taiwan. Journal of Geophysical Research: Atmospheres, 120(17), 8743-8758. https://doi.org/10.1002/2015JD023568
Huang, W.-R., Chang, Y.-H., & Huang, P.-H. (2019). Relationship between the Interannual Variations of Summer Convective Afternoon Rainfall Activity in Taiwan and SSTA(Niño3.4) during 1961–2012: Characteristics and Mechanisms. Scientific Reports, 9(1), 9378. https://doi.org/10.1038/s41598-019-45901-w
Huang, Z., Zhang, W., Geng, X., & Jin, F.-F. (2020). Recent Shift in the State of the Western Pacific Subtropical High due to ENSO Change. Journal of Climate, 33(1), 229-241. https://doi.org/10.1175/JCLI-D-18-0873.1
Ichikawa, H., & Yasunari, T. (2008). Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. Journal of Climate, 21(12), 2852-2868. https://doi.org/10.1175/2007JCLI1784.1
Jou, B. J.-D., Kao, Y.-C., Hsiu, R.-G. R., Jung, C.-J. U., Lee, J.-R., & Kuo, H.-C. (2016). Observational Characteristics and Forecast Challenge of Taipei Flash Flood Afternoon Thunderstorm: Case Study of 14 June 2015. Atmos. Sci., 44(1), 57–82. (in Chinese with English abstract).
Kuo, K.-T., & Wu, C.-M. (2019). The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. Journal of the Meteorological Society of Japan. Ser. II, 97(2), 501-517. https://doi.org/10.2151/jmsj.2019-031
Liang, Z., & Wang, D. (2017). Sea breeze and precipitation over Hainan Island. Quarterly Journal of the Royal Meteorological Society, 143(702), 137-151. https://doi.org/10.1002/qj.2952
Lin, C.-Y., Chen, W.-C., Chang, P.-L., & Sheng, Y.-F. (2011). Impact of the Urban Heat Island Effect on Precipitation over a Complex Geographic Environment in Northern Taiwan. Journal of Applied Meteorology and Climatology, 50(2), 339-353. https://doi.org/10.1175/2010jamc2504.1
Lin, P.-F., Chang, P.-L., Jong-Dao Jou, B., Wilson, J. W., & Roberts, R. D. (2012). Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Weather and Forecasting, 27(5), 1178-1197. https://doi.org/10.1175/waf-d-11-00105.1
LinHo, & Wang, B. (2002). The Time–Space Structure of the Asian–Pacific Summer Monsoon: A Fast Annual Cycle View. Journal of Climate, 15(15), 2001-2019. https://doi.org/10.1175/1520-0442(2002)015<2001:TTSSOT>2.0.CO;2
Lu, J., Li, T., & Wang, L. (2021). Precipitation Diurnal Cycle over the Maritime Continent Modulated by the Climatological Annual Cycle. Journal of Climate, 34(4), 1387-1402. https://doi.org/10.1175/JCLI-D-20-0130.1
Lu, R. (2001). Interannual Variability of the Summertime North Pacific Subtropical High and its Relation to Atmospheric Convection over the Warm Pool. Journal of the Meteorological Society of Japan. Ser. II, 79(3), 771-783. https://doi.org/10.2151/jmsj.79.771
Lu, R., & Dong, B. (2001). Westward Extension of North Pacific Subtropical High in Summer. Journal of the Meteorological Society of Japan. Ser. II, 79(6), 1229-1241. https://doi.org/10.2151/jmsj.79.1229
Mao, J., Sun, Z., & Wu, G. (2010). 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dynamics, 34(5), 747-761. https://doi.org/10.1007/s00382-009-0628-2
Miao, J.-E., & Yang, M.-J. (2022). The Impacts of Midlevel Moisture on the Structure, Evolution, and Precipitation of Afternoon Thunderstorms: A Real-Case Modeling Study at Taipei on 14 June 2015. Journal of the Atmospheric Sciences, 79(7), 1837-1857. https://doi.org/10.1175/jas-d-21-0257.1
Nesbitt, S. W., & Zipser, E. J. (2003). The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements. Journal of Climate, 16(10), 1456-1475. https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2
National Oceanic and Atmospheric Administration (NOAA). (2019). Cold and warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
Peng, Y., Wang, Q., & Zhai, P. (2024). Differentiated influences of anomalous subtropical high on extreme persistent precipitation and heatwave events in the Yangtze River Valley. Quarterly Journal of the Royal Meteorological Society, 150(765), 4856-4869. https://doi.org/10.1002/qj.4845
Qian, J.-H., Robertson, A. W., & Moron, V. (2010). Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. Journal of the Atmospheric Sciences, 67(11), 3509-3524. https://doi.org/10.1175/2010JAS3348.1
Qian, J.-H., Robertson, A. W., & Moron, V. (2013). Diurnal Cycle in Different Weather Regimes and Rainfall Variability over Borneo Associated with ENSO. Journal of Climate, 26(5), 1772-1790. https://doi.org/10.1175/JCLI-D-12-00178.1
Saito, K., Keenan, T., Holland, G., & Puri, K. (2001). Numerical Simulation of the Diurnal Evolution of Tropical Island Convection over the Maritime Continent. Monthly Weather Review, 129(3), 378-400. https://doi.org/10.1175/1520-0493(2001)129<0378:NSOTDE>2.0.CO;2
Sui, C.-H., Chung, P.-H., & Li, T. (2007). Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophysical Research Letters, 34(11). https://doi.org/10.1029/2006GL029204
Tseng, K.-C., & Ho, Y.-H. (2024). The subseasonal predictability of the western North Pacific subtropical high and the 2020 record-breaking event. npj Climate and Atmospheric Science, 7(1), 53. https://doi.org/10.1038/s41612-024-00596-3
Tsujino, S., Kuo, H.-C., Yu, H., Chen, B.-F., & Tsuboki, K. (2021). Effects of mid-level moisture and environmental flow on the development of afternoon thunderstorms in Taipei. Terrestrial, Atmospheric and Oceanic Sciences, 32(4). https://doi.org/10.3319/tao.2021.11.17.01
Tung, Y.-S., Wang, C.-Y., Weng, S.-P., & Yang, C.-D. (2022). Extreme index trends of daily gridded rainfall dataset (1960–2017) in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 8. https://doi.org/10.1007/s44195-022-00009-z
Wang, B., Wu, R., & Lau, K.-M. (2001). Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific–East Asian Monsoons. Journal of Climate, 14(20), 4073-4090. https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
Wang, B., Xiang, B., & Lee, J.-Y. (2013). Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences, 110(8), 2718-2722. https://doi.org/10.1073/pnas.1214626110
Wang, S., & Sobel, A. H. (2017). Factors Controlling Rain on Small Tropical Islands: Diurnal Cycle, Large-Scale Wind Speed, and Topography. Journal of the Atmospheric Sciences, 74(11), 3515-3532. https://doi.org/10.1175/JAS-D-16-0344.1
Ward Jr, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. https://doi.org/10.1080/01621459.1963.10500845
Weng, SP. and Yang, CD. (2012). Construction of monthly rainfall and temperature 1-km grid dataset for Taiwan (1960-2009) and its climate estimation application in the near future (2015-2039). Atmospheric Science, 40, 349-370. (in Chinese)
Weng, SP. and Yang, CD. (2018). Construction and verification of daily rainfall gridded database in Taiwan (1960-2015). Taiwan Water Conservancy, 66(4), 33-52. (in Chinese)
Weng, SP. and Yang, CD. (2020). Construction and verification of daily rainfall gridded observation data in Taiwan. Taiwan Climate Change Projection Information and Adaptation Knowledge Platform Electronic Newsletter, 37. (in Chinese) https://tccip.ncdr.nat.gov.tw/km_newsletter_one.aspx?nid=20200515170742
Wu, C.-M., Lin, H.-C., Cheng, F.-Y., & Chien, M.-H. (2019). Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701-717. https://doi.org/10.1007/s13143-019-00116-x
Yang, CD. and Lin, SY. (2021). Gridded daily rainfall observation data production history (version 4.0). Retrieved from Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (in Chinese): https://tccip.ncdr.nat.gov.tw/upload/data_profile/20200117105621.pdf
Yang, G.-Y., & Slingo, J. (2001). The Diurnal Cycle in the Tropics. Monthly Weather Review, 129(4), 784-801. https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2
Zhou, T.-J., & Yu, R.-C. (2005). Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. Journal of Geophysical Research: Atmospheres, 110(D8). https://doi.org/10.1029/2004JD005413
Zhu, L., Bai, L., Chen, G., Sun, Y. Q., & Meng, Z. (2021). Convection Initiation Associated With Ambient Winds and Local Circulations Over a Tropical Island in South China. Geophysical Research Letters, 48(16), e2021GL094382. https://doi.org/10.1029/2021GL094382
Zhu, L., Chen, X., & Bai, L. (2020). Relative Roles of Low-Level Wind Speed and Moisture in the Diurnal Cycle of Rainfall Over a Tropical Island Under Monsoonal Flows. Geophysical Research Letters, 47(8), e2020GL087467. https://doi.org/10.10 29/2020GL087467
Zhu, Y., Wang, H., Zhou, W., & Ma, J. (2011). Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dynamics, 36(7), 1463-1473. https://doi.org/10.1007/s00382-010-0852-9
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98628-
dc.description.abstract熱帶島嶼上的日夜對流降雨分布對環境相當敏感。當臺北發生夏季午後對流時,西北太平洋副熱帶高壓(副高)可作為判斷綜觀環境的指標。過去的個案研究雖已指出副熱帶高壓環流對午後對流環境的影響,然而利用長期觀測資料的分析在臺灣仍相對缺乏。本研究利用28年期間資料(包含1796個弱綜觀日,其中有627個午後對流日),探討副高配置和臺北午後對流降雨分布之關係。首先,我們診斷了在不同綜觀環境配置下發生的四個代表性個案,突顯對流肇始位置及傳播方向的差異,推測中低層背景風與降雨分布有關。接著,對所有弱綜觀日的位勢高度擾動場 (eddy geopotential height) 進行階層式聚類分析 (hierarchical clustering),辨識出六種典型的副高配置,其中五種型態常伴隨降雨發生。針對午後對流日的合成分析,則顯示不同副高分群在背景流、降雨熱區及對流發展特徵上的差異。
研究結果提出副高配置可能影響臺北降雨空間變異的機制:一、副高的位置調節臺灣附近的背景流,當脊線偏北,背景風場的西南風偏強;若脊線北抬,東風分量增加,風速減弱。二、對流的肇始位置受低層背景風影響,當背景風為西南風時,局地環流經過基隆河和淡水河谷的海風輻合,易促使對流發生於臺北盆地;當背景風具有東風分量時,盆地西側的局地環流則受北風主導,更易在西南側山麓一帶誘發對流。三、對流的傳播方向受中層風速影響,當700百帕層風速超過約每秒6公尺(12 節)時,對流傳播方向趨向和背景風一致;若風速偏弱,傳播方向則更多元,可能受對流外流及海風交互作用影響。
此外,針對降雨分布的階層式聚類分析顯示,儘管副高配置部分控制了強對流事件中降雨的位置,對流強度的發展則可能受其他因子影響,尚待後續研究進一步釐清。同時,午後對流的發生頻率及副高分群組成皆具有明顯的年際變異,其中對流發生頻率與聖嬰現象 (ENSO) 相位有關,但副高配置的組成與ENSO並無明確的關聯。整體而言,本研究的結果有助於拓展過去研究僅著重於對流是否發生之層面,提供在面對不同大尺度環境下預報午後對流降雨空間分布的指引。
zh_TW
dc.description.abstractRainfall distribution of diurnal convection over tropical islands is sensitive to the environment. When Taipei experiences afternoon convection in summer, the Western Pacific Subtropical High (WPSH) can be the indicator of synoptic environment. While previous case studies have suggested that WPSH circulation modulates the convective environment, long-term observational analyses remain limited in Taiwan. This study investigates the relationship between WPSH patterns and rainfall distribution of afternoon convection in Taipei, using 1796 weak-synoptic days (including 627 convection events) over a 28-year period. We first diagnose four representative events under contrasting synoptic environments, highlighting differences in initiation locations and propagation directions that suggest a link between mid- and low-level background winds and rainfall distribution. To examine this relationship, we apply hierarchical clustering to eddy geopotential height fields on weak-synoptic days and identify six typical WPSH patterns, five of which are commonly occur rainfall events. Composite analyses of convection days reveal differences in background flows, rainfall hotspots, and convection evolution across clusters.
These results suggest possible mechanisms linking WPSH patterns to rainfall variability in Taipei: (1) The position of the WPSH modulates regional background flow around Taiwan, with stronger southwesterly winds shifting to weaker winds with increasing easterly components as the ridge moves northward. (2) Convection initiation locations vary with low-level background winds, likely due to their modulation on local circulations. Under southwesterly flow, convergence between sea breezes channeled through the Keelung and Tamsui River valleys is frequently observed and favors initiation within the Taipei Basin. In contrast, when the background flow contains easterly components, the circulation over the western basin becomes dominated by northerlies directed toward the Dahan River Valley, favoring initiation near the southwestern foothills. (3) Propagation direction appears to be influenced by mid-level wind speed. When 700-Pa winds exceed ~6m/s (12 kt), propagation tends to align with the background flow. Under weaker winds, more diverse directions emerge, which may reflect interactions between convective outflows and sea breezes.
Additional rainfall pattern clustering shows that WPSH patterns partly constrain where strong convection occurs, but its development likely depends on other factors modulating convective intensity, warranting further investigation. Afternoon convection frequency and WPSH cluster composition both exhibit substantial interannual variability. While convection frequency varies with ENSO phase, WPSH cluster composition shows no clear ENSO-related pattern. Overall, our results provide guidance for forecasting spatial distribution of afternoon convection under varying synoptic conditions, extending beyond previous studies that only predicted their occurrence.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:08:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:08:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
Contents viii
Figure Captions x
Table Captions xiii
1 Introduction 1
2 Data and Methodology 7
2.1 Data 7
2.2 Methodology 8
2.2.1 Diagnosing Key Environmental Features from Case Studies 9
2.2.2 Identifying Weak-Synoptic and Convection Events 9
2.2.3 Hierarchical Clustering of WPSH Patterns 10
2.2.4 Composite Analysis of Convection Events across Clusters 12
3 Result 15
3.1 Diagnosis of Representative Cases under Variant Environment 15
3.1.1 Case 1: 20240616 16
3.1.2 Case 2: 20240623 17
3.1.3 Case 3: 20240713 19
3.1.4 Case 4: 20240716 20
3.1.5 Summary of the Diagnosis 22
3.2 Clusters of WPSH and Associated Environmental Conditions 23
3.2.1 WPSH Pattern Clustering 23
3.2.2 Synoptic Flow and Thermodynamic Background 28
3.2.3 Frequency of Afternoon Rainfall Events 30
3.3 Composite Analysis of Convection Events Across Clusters 31
3.3.1 Background Flow and Local Circulations 32
3.3.2 Thermodynamic Conditions in Northern Taiwan 35
3.3.3 Daily Rainfall Characteristics 38
3.3.4 Convection Evolution 42
4 Discussion 47
4.1 Key Environmental Features Governing the Rainfall Pattern 47
4.1.1 Background Flow 47
4.1.2 Initiation Location 48
4.1.3 Propagation Direction 49
4.2 Perspective from Rainfall Pattern Clustering 50
4.2.1 Rainfall Pattern Clustering 50
4.2.2 Internal Rainfall Variability within WPSH Clusters 51
4.3 Interannual Variability 54
4.3.1 Annual Variations in Event Frequency and Cluster Composition 55
4.3.2 Variations under Different ENSO Phases 56
5 Conclusion 62
References 71
Figures 77
Tables 119
Appendix 120
A.1 Statistical Significance Testing 120
A.1.1. Procedure Design 120
A.1.2. Significance Testing for WPSH Clusters 122
A.1.3. Significance Testing for Convection Event Composites 124
A.2 Moisture Field Analysis 127
A.2.1. Moisture and Transport 128
A.2.2. Moisture Convergence 129
A.3 Appendix Figures 131
-
dc.language.isoen-
dc.subject降雨分布zh_TW
dc.subject午後對流zh_TW
dc.subject臺北zh_TW
dc.subject局地環流zh_TW
dc.subject對流環境條件zh_TW
dc.subject西北太平洋副熱帶高壓zh_TW
dc.subjectrainfall patternen
dc.subjectafternoon convectionen
dc.subjectTaipeien
dc.subjectlocal circulationen
dc.subjectconvective environmenten
dc.subjectWest Pacific Subtropical Highen
dc.title臺北午後對流在西北太平洋副熱帶高壓相關綜觀環境配置下之降雨分布zh_TW
dc.titleRainfall Patterns of Afternoon Convection in Taipei under Variant Synoptic Environment Associated with the West Pacific Subtropical Highen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾開治;羅敏輝;楊舒芝zh_TW
dc.contributor.oralexamcommitteeKai-Chih Tseng;Min-Hui Lo;Shu-Chih Yangen
dc.subject.keyword午後對流,降雨分布,西北太平洋副熱帶高壓,對流環境條件,局地環流,臺北,zh_TW
dc.subject.keywordafternoon convection,rainfall pattern,West Pacific Subtropical High,convective environment,local circulation,Taipei,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202502897-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved