請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98627完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 柯秉良 | zh_TW |
| dc.contributor.author | Ping-Liang Ko | en |
| dc.date.accessioned | 2025-08-18T01:08:04Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Feng, K.-d., Wang, Z., & Yang, Y. (2020). Development of medical imaging sensors. International Journal of Distributed Sensor Networks, 16(1), 1550147720903607.
[2] Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. The Journal of antibiotics, 70(5), 520-526. [3] Wells, P. N. (2006). Ultrasound imaging. Physics in medicine & biology, 51(13), R83. [4] Mettler Jr, F. A., Huda, W., Yoshizumi, T. T., & Mahesh, M. (2008). Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology, 248(1), 254-263. [5] Mallum, A., Mkhize, T., Akudugu, J. M., Ngwa, W., & Vorster, M. (2022). The role of positron emission tomography and computed tomographic (PET/CT) imaging for radiation therapy planning: a literature review. Diagnostics, 13(1), 53. [6] Saif, M. W., Tzannou, I., Makrilia, N., & Syrigos, K. (2010). Role and cost effectiveness of PET/CT in management of patients with cancer. The Yale journal of biology and medicine, 83(2), 53. [7] Vijayakumar, S., Yang, J., Nittala, M. R., Velazquez, A. E., Huddleston, B. L., Rugnath, N. A., Adari, N., Yajurvedi, A. K., Komanduri, A., & Yang, C. C. (2022). Changing role of PET/CT in cancer care with a focus on radiotherapy. Cureus, 14(12), e32840. [8] O'connor, J. P., Aboagye, E. O., Adams, J. E., Aerts, H. J., Barrington, S. F., Beer, A. J., Boellaard, R., Bohndiek, S. E., Brady, M., & Brown, G. (2017). Imaging biomarker roadmap for cancer studies. Nature reviews Clinical oncology, 14(3), 169-186. [9] Khan, A., Barapatre, A. R., Babar, N., Doshi, J., Ghaly, M., Patel, K. G., Nawaz, S., Hasana, U., Khatri, S. P., & Pathange, S. (2025). Genomic medicine and personalized treatment: a narrative review. Annals of Medicine and Surgery, 87(3), 1406-1414. [10] Azeez, S. S., Hamad, R. S., Hamad, B. K., Shekha, M. S., & Bergsten, P. (2024). Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Frontiers in genome editing, 6, 1509924. [11] Moskalev, A., Anisimov, V., Aliper, A., Artemov, A., Asadullah, K., Belsky, D., Baranova, A., de Grey, A., Dixit, V. D., & Debonneuil, E. (2017). A review of the biomedical innovations for healthy longevity. Aging (Albany NY), 9(1), 7. [12] Nosrati, H., & Nosrati, M. (2023). Artificial intelligence in regenerative medicine: applications and implications. Biomimetics, 8(5), 442. [13] Farag, V. E., Devey, E. A., & Leong, K. W. (2024). The interface of gene editing with regenerative medicine. Engineering. 467, 73-100. [14] Calvino, G., Farro, J., Zampatti, S., Peconi, C., Megalizzi, D., Trastulli, G., Andreucci, S., Cascella, R., Strafella, C., & Caltagirone, C. (2025). From Genomics to AI: Revolutionizing Precision Medicine in Oncology. Applied Sciences, 15(12), 6578. [15] Sherry, L., Kenneth, D., Jiaquan, X., & Elizabeth, A. (2021). Mortality in the United States, 2020. NCHS Data Brief No. 427. [16] Frąk, W., Wojtasińska, A., Lisińska, W., Młynarska, E., Franczyk, B., & Rysz, J. (2022). Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines, 10(8), 1938. [17] Zhang, B., & Schmidlin, T. (2024). Recent advances in cardiovascular disease research driven by metabolomics technologies in the context of systems biology. npj Metabolic Health and Disease, 2(1), 25. [18] Vaccarino, V., & Bremner, J. D. (2024). Stress and cardiovascular disease: an update. Nature Reviews Cardiology, 21(9), 603-616. [19] O'Donnell, D. E., Elbehairy, A. F., Berton, D. C., Domnik, N. J., & Neder, J. A. (2017). Advances in the evaluation of respiratory pathophysiology during exercise in chronic lung diseases. Frontiers in physiology, 8, 82. [20] Bourdin, A., Burgel, P., Chanez, P., Garcia, G., Perez, T., & Roche, N. (2009). Recent advances in COPD: pathophysiology, respiratory physiology and clinical aspects, including comorbidities. European Respiratory Review, 18(114), 198-212. [21] Fuchs, E., & Weber, K. (1994). Intermediate filaments: structure, dynamics, function and disease. Annual review of biochemistry, 63(1), 345-382. [22] Bao, G., & Suresh, S. (2003). Cell and molecular mechanics of biological materials. Nature materials, 2(11), 715-725. [23] Ingber, D. E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation research, 91(10), 877-887. [24] Mardomi, A., Sabzichi, M., Somi, M. H., Shanehbandi, D., Rahbarghazi, R., Sanjarani, O. T., & Samadi, N. (2016). Cellular and molecular biology. [25] Boal, D. H. (2012). Mechanics of the Cell. Cambridge university press. [26] Krishnan, R., Park, C. Y., Lin, Y.-C., Mead, J., Jaspers, R. T., Trepat, X., Lenormand, G., Tambe, D., Smolensky, A. V., & Knoll, A. H. (2009). Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PloS one, 4(5), e5486. [27] Cooke, B. M., Mohandas, N., & Coppel, R. L. (2001). The malaria-infected red blood cell: structural and functional changes. [28] Miller, L. H., Baruch, D. I., Marsh, K., & Doumbo, O. K. (2002). The pathogenic basis of malaria. nature, 415(6872), 673-679. [29] Suwanarusk, R., Cooke, B. M., Dondorp, A. M., Silamut, K., Sattabongkot, J., White, N. J., & Udomsangpetch, R. (2004). The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. The Journal of infectious diseases, 189(2), 190-194. [30] Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences, 94(3), 849-854. [31] Moyano, J. V., Maqueda, A., Casanova, B., & Garcia-Pardo, A. (2003). α4β1 integrin/ligand interaction inhibits α5β1-induced stress fibers and focal adhesions via down-regulation of RhoA and induces melanoma cell migration. Molecular biology of the cell, 14(9), 3699-3715. [32] Bershadsky, A., Kozlov, M., & Geiger, B. (2006). Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Current opinion in cell biology, 18(5), 472-481. [33] Moore, S. W., Roca-Cusachs, P., & Sheetz, M. P. (2010). Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Developmental cell, 19(2), 194-206. [34] Katz, J. L., & Meunier, A. (1987). The elastic anisotropy of bone. Journal of biomechanics, 20(11-12), 1063-1070. [35] Katz, J. L., Spencer, P., Wang, Y., Misra, A., Marangos, O., & Friis, L. (2008). On the anisotropic elastic properties of woods. Journal of materials science, 43(1), 139-145. [36] Mazumder, D., Kar, G., Vasu, R. M., Roy, D., & Kanhirodan, R. (2017). Orthotropic elastic moduli of biological tissues from ultrasound-assisted diffusing-wave spectroscopy. Journal of the Optical Society of America A, 34(11), 1945-1956. [37] Nestor-Bergmann, A., Johns, E., Woolner, S., & Jensen, O. E. (2018). Mechanical characterization of disordered and anisotropic cellular monolayers. Physical Review E, 97(5), 052409. [38] Efremov, Y. M., Velay-Lizancos, M., Weaver, C. J., Athamneh, A. I., Zavattieri, P. D., Suter, D. M., & Raman, A. (2019). Anisotropy vs isotropy in living cell indentation with AFM. Scientific reports, 9(1), 5757. [39] Discher, D., Mohandas, N., & Evans, E. (1994). Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science, 266(5187), 1032-1035. [40] Tsai, M., Frank, R., & Waugh, R. (1994). Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophysical Journal, 66(6), 2166-2172. [41] Evans, E., & Yeung, A. (1989). Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophysical Journal, 56(1), 151-160. [42] Thoumine, O., & Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. Journal of cell science, 110(17), 2109-2116. [43] Dembo, M., & Wang, Y.-L. (1999). Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical Journal, 76(4), 2307-2316. [44] Henon, S., Lenormand, G., Richert, A., & Gallet, F. (1999). A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical Journal, 76(2), 1145-1151. [45] Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C., & Käs, J. (2000). Optical deformability of soft biological dielectrics. Physical review letters, 84(23), 5451. [46] Bushell, G. R., Cahill, C., Clarke, F. M., Gibson, C. T., Myhra, S., & Watson, G. S. (1999). Imaging and force‐distance analysis of human fibroblasts in vitro by atomic force microscopy. Cytometry: The Journal of the International Society for Analytical Cytology, 36(3), 254-264. [47] Bushell, G. R., Cahill, C., Myhra, S., & Watson, G. S. (2004). Analysis of human fibroblasts by atomic force microscopy. In Atomic force microscopy: biomedical methods and applications (pp. 53-67). Springer. [48] Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A., & Zhdanov, R. I. (2007). Atomic force microscopy probing of cell elasticity. Micron, 38(8), 824-833. [49] Lin, C.-H., Wang, C.-K., Chen, Y.-A., Peng, C.-C., Liao, W.-H., & Tung, Y.-C. (2016). Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Scientific reports, 6(1), 36425. [50] Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal, 78(1), 520-535. [51] Starodubtseva, M., Chizhik, S., Yegorenkov, N., Nikitina, I., Drozd, E., & Gomel, S. (2010). Study of the mechanical properties of single cells as biocomposites by atomic force microscopy. Microscopy: Science, Technology, Applications and Education, 1, 470-477. [52] Tomankova, K., Kolar, P., Malohlava, J., & Kolarova, H. (2012). Mechanical characterisation of HeLa cells using atomic force microscopy. Current microscopy contributions to advances in science and technology, 1, 549-554. [53] Wu, H., Kuhn, T., & Moy, V. (1998). Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning: The Journal of Scanning Microscopies, 20(5), 389-397. [54] Chang, C.-W., Cheng, Y.-J., Tu, M., Chen, Y.-H., Peng, C.-C., Liao, W.-H., & Tung, Y.-C. (2014). A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on a Chip, 14(19), 3762-3772. [55] Chang, C.-W., Peng, C.-C., Liao, W.-H., & Tung, Y.-C. (2015). Polydimethylsiloxane SlipChip for mammalian cell culture applications. Analyst, 140(21), 7355-7365. [56] Lötters, J. C., Olthuis, W., Veltink, P. H., & Bergveld, P. (1996). Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer. Journal of micromechanics and microengineering, 6(1), 52. [57] Lötters, J. C., Olthuis, W., Veltink, P. H., & Bergveld, P. (1997). The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of micromechanics and microengineering, 7(3), 145. [58] Hoshino, K., & Shimoyama, I. (2001). An elastic thin-film microlens array with a pneumatic actuator. Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems, 01CH37090, [59] Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., & Quake, S. R. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288(5463), 113-116. [60] Wu, C.-Y., Liao, W.-H., & Tung, Y.-C. (2011). Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip, 11(10), 1740-1746. [61] Wu, C.-Y., Lu, J.-C., Liu, M.-C., & Tung, Y.-C. (2012). Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Lab on a Chip, 12(20), 3943-3951. [62] Liu, M.-C., Shih, H.-C., Wu, J.-G., Weng, T.-W., Wu, C.-Y., Lu, J.-C., & Tung, Y.-C. (2013). Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab on a Chip, 13(9), 1743-1753. [63] Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H. M., Ananthakrishnan, R., & Mitchell, D. (2005). Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophysical Journal, 88(5), 3689-3698. [64] Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C., Beil, M., & Seufferlein, T. (2005). Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta biomaterialia, 1(1), 15-30. [65] Xu, W., Mezencev, R., Kim, B., Wang, L., McDonald, J., & Sulchek, T. (2012). Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. [66] Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta biomaterialia, 3(4), 413-438. [67] Cross, S. E., Jin, Y.-S., Rao, J., & Gimzewski, J. K. (2020). Nanomechanical analysis of cells from cancer patients. Nano-enabled medical applications, 547-566. [68] Silverthorn, D. U., Ober, W. C., Garrison, C. W., Silverthorn, A. C., & Johnson, B. R. (2013). Human physiology: an integrated approach (Vol. 3). Pearson Education Indianapolis, IN. [69] Ebrahimi, A. P. (2009). Mechanical properties of normal and diseased cerebrovascular system. Journal of vascular and interventional neurology, 2(2), 155-162. [70] Marti, C. N., Gheorghiade, M., Kalogeropoulos, A. P., Georgiopoulou, V. V., Quyyumi, A. A., & Butler, J. (2012). Endothelial Dysfunction, Arterial Stiffness, and Heart Failure. Journal of the American College of Cardiology, 60(16), 1455-1469. [71] Jay Widmer, R., & Lerman, A. (2014). Endothelial dysfunction and cardiovascular disease. Global Cardiology Science and Practice, 2014(3), 43. [72] Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J.-C., Marquez, M., Klibanov, A. M., Griffiths, A. D., & Weitz, D. A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107(9), 4004-4009. [73] Tennant, M., & McGeachie, J. K. (1990). Blood vessel structure and function: a brief update on recent advances. Australian and New Zealand Journal of Surgery, 60(10), 747-753. [74] Carmeliet, P., & Collen, D. (1997). Molecular analysis of blood vessel formation and disease. American Journal of Physiology-Heart and Circulatory Physiology, 273(5), H2091-H2104. [75] Cleaver, O. (2004). Blood vessel signals during development and beyond. Current Topics in Developmental Biology, 62, 1-36. [76] Herbert, S. P., & Stainier, D. Y. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature reviews Molecular cell biology, 12(9), 551-564. [77] Nerem, R. M. (2000). Tissue engineering a blood vessel substitute: the role of biomechanics. Yonsei Medical Journal, 41(6), 735-739. [78] Jones, E. A. (2011). Mechanical factors in the development of the vascular bed. Respiratory physiology & neurobiology, 178(1), 59-65. [79] Simsa, R., Vila, X. M., Salzer, E., Teuschl, A., Jenndahl, L., Bergh, N., & Fogelstrand, P. (2019). Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. PloS one, 14(8), e0220743. [80] Camasão, D., & Mantovani, D. (2021). The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio, 10, 100106. [81] Zhou, J., & Fung, Y. (1997). The degree of nonlinearity and anisotropy of blood vessel elasticity. Proceedings of the National Academy of Sciences, 94(26), 14255-14260. [82] Han, H.-C. (2011). Determination of the critical buckling pressure of blood vessels using the energy approach. Annals of biomedical engineering, 39(3), 1032-1040. [83] Han, H.-C. (2007). A biomechanical model of artery buckling. Journal of biomechanics, 40(16), 3672-3678. [84] Qi, H., Bai, X., Zhou, H., & Wu, B. (2012). Elasticity of blood vessel decreased induced by aging is the main factor of vascular senescence. Heart, 98(Suppl 2), E146-E146. [85] Tao, J., Jin, Y.-f., Yang, Z., Wang, L.-c., Gao, X.-r., Lei, L., & Ma, H. (2004). Reduced arterial elasticity is associated with endothelial dysfunction in persons of advancing age: comparative study of noninvasive pulse wave analysis and laser Doppler blood flow measurement. American journal of hypertension, 17(8), 654-659. [86] Darling, E. M., & Di Carlo, D. (2015). High-throughput assessment of cellular mechanical properties. Annual review of biomedical engineering, 17(1), 35-62. [87] Qi, D., Kaur Gill, N., Santiskulvong, C., Sifuentes, J., Dorigo, O., Rao, J., Taylor-Harding, B., Ruprecht Wiedemeyer, W., & Rowat, A. C. (2015). Screening cell mechanotype by parallel microfiltration. Scientific reports, 5(1), 17595. [88] Park, Y., Best, C. A., Kuriabova, T., Henle, M. L., Feld, M. S., Levine, A. J., & Popescu, G. (2011). Measurement of the nonlinear elasticity of red blood cell membranes. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(5), 051925. [89] Deng, Y., Davis, S. P., Yang, F., Paulsen, K. S., Kumar, M., Sinnott DeVaux, R., Wang, X., Conklin, D. S., Oberai, A., & Herschkowitz, J. I. (2017). Inertial microfluidic cell stretcher (iMCS): fully automated, high‐throughput, and near real‐time cell mechanotyping. Small, 13(28), 1700705. [90] Dudani, J. S., Gossett, D. R., Henry, T., & Di Carlo, D. (2013). Pinched-flow hydrodynamic stretching of single-cells. Lab on a Chip, 13(18), 3728-3734. [91] Merna, N., Wong, A. K., Barahona, V., Llanos, P., Kunar, B., Palikuqi, B., Ginsberg, M., Rafii, S., & Rabbany, S. Y. (2018). Laminar shear stress modulates endothelial luminal surface stiffness in a tissue‐specific manner. Microcirculation, 25(5), e12455. [92] Mathur, A. B., Truskey, G. A., & Reichert, W. M. (2000). Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophysical Journal, 78(4), 1725-1735. [93] Ohashi, T., Ishii, Y., Ishikawa, Y., Matsumoto, T., & Sato, M. (2002). Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Bio-medical materials and engineering, 12(3), 319-327. [94] Sato, H., Kataoka, N., Kajiya, F., Katano, M., Takigawa, T., & Masuda, T. (2004). Kinetic study on the elastic change of vascular endothelial cells on collagen matrices by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 34(2), 141-146. [95] Pesen, D., & Hoh, J. H. (2005). Micromechanical architecture of the endothelial cell cortex. Biophysical Journal, 88(1), 670-679. [96] Harris, A. R., & Charras, G. (2011). Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology, 22(34), 345102. [97] Dewey, C., Bussolari, S., Gimbrone, M., & Davies, P. F. (1981). The dynamic response of vascular endothelial cells to fluid shear stress. Journal of biomechanical engineering, 103(3), 177-185. [98] Eskin, S., Ives, C., McIntire, L., & Navarro, L. (1984). Response of cultured endothelial cells to steady flow. Microvascular research, 28(1), 87-94. [99] Frangos, J. A., Eskin, S. G., McIntire, L. V., & Ives, C. (1985). Flow effects on prostacyclin production by cultured human endothelial cells. Science, 227(4693), 1477-1479. [100] Remuzzi, A., Dewey Jr, C. F., Davies, P. F., & Gimbrone Jr, M. A. (1984). Orientation of endothelial cells in shear fields in vitro. Biorheology, 21(4), 617-630. [101] Feugier, P., Black, R., Hunt, J., & How, T. (2005). Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials, 26(13), 1457-1466. [102] Morgan, J. T., Wood, J. A., Shah, N. M., Hughbanks, M. L., Russell, P., Barakat, A. I., & Murphy, C. J. (2012). Integration of basal topographic cues and apical shear stress in vascular endothelial cells. Biomaterials, 33(16), 4126-4135. [103] Furukawa, K. S., Ushida, T., Nagase, T., Nakamigawa, H., Noguchi, T., Tamaki, T., Tanaka, J., & Tateishi, T. (2001). Quantitative analysis of cell detachment by shear stress. Materials Science and Engineering: C, 17(1-2), 55-58. [104] Li, Y.-S. J., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of biomechanics, 38(10), 1949-1971. [105] Vion, A.-C., Kheloufi, M., Hammoutene, A., Poisson, J., Lasselin, J., Devue, C., Pic, I., Dupont, N., Busse, J., & Stark, K. (2017). Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences, 114(41), E8675-E8684. [106] Liu, M.-C., Shih, H.-C., Wu, J.-G., Weng, T.-W., Wu, C.-Y., Lu, J.-C., & Tung, Y.-C. (2013). Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab on a Chip, 13(9), 1743-1753. [107] Song, J. W., Gu, W., Futai, N., Warner, K. A., Nor, J. E., & Takayama, S. (2005). Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Analytical chemistry, 77(13), 3993-3999. [108] Bacci, C., Wong, V., Barahona, V., & Merna, N. (2021). Cardiac and lung endothelial cells in response to fluid shear stress on physiological matrix stiffness and composition. Microcirculation, 28(1), e12659. [109] Jannatbabaei, A., Tafazzoli‐Shadpour, M., Seyedjafari, E., & Fatouraee, N. (2019). Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells. Journal of Biomedical Materials Research Part A, 107(1), 71-80. [110] Whitesides, G. M. (2006). The origins and the future of microfluidics. nature, 442(7101), 368-373. [111] Niculescu, A.-G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International journal of molecular sciences, 22(4), 2011. [112] Iakovlev, A. P., Erofeev, A. S., & Gorelkin, P. V. (2022). Novel pumping methods for microfluidic devices: a comprehensive review. Biosensors, 12(11), 956. [113] Zhang, C., Xing, D., & Li, Y. (2007). Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology advances, 25(5), 483-514. [114] Annabestani, M., & Fardmanesh, M. (2019). Ionic electro active polymer-based soft actuators and their applications in microfluidic micropumps, microvalves, and micromixers: a review. arXiv preprint arXiv:1904.07149. [115] Lei, K. F. (2012). Microfluidic Systems for Diagnostic Applications:A Review. Journal of Laboratory Automation, 17(5), 330-347. [116] Gharib, G., Bütün, İ., Muganlı, Z., Kozalak, G., Namlı, İ., Sarraf, S. S., Ahmadi, V. E., Toyran, E., van Wijnen, A. J., & Koşar, A. (2022). Biomedical Applications of Microfluidic Devices: A Review. Biosensors, 12(11), 1023. [117] Li, Q., Tong, Z., & Mao, H. (2023). Microfluidic Based Organ-on-Chips and Biomedical Application. Biosensors, 13(4), 436. [118] Lee, T.-A., Liao, W.-H., Wu, Y.-F., Chen, Y.-L., & Tung, Y.-C. (2018). Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures. Analytical chemistry, 90(3), 2317-2325. [119] Sun, J., Warden, A. R., & Ding, X. (2019). Recent advances in microfluidics for drug screening. Biomicrofluidics, 13(6), 061503. [120] Damiati, S., Kompella, U. B., Damiati, S. A., & Kodzius, R. (2018). Microfluidic devices for drug delivery systems and drug screening. Genes, 9(2), 103. [121] Eribol, P., Uguz, A. K., & Ulgen, K. O. (2016). Screening applications in drug discovery based on microfluidic technology. Biomicrofluidics, 10(1), 011502. [122] Bruus, H. (2007). Theoretical microfluidics (Vol. 18). Oxford university press. [123] Zhang, Y., Tseng, T.-M., & Schlichtmann, U. (2021). Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism. Scientific reports, 11(1), 19189. [124] Bruus, H. (2014). Governing equations in microfluidics. [125] Malloggi, F. (2015). Microfluidics: from basic principles to applications. In Soft matter at aqueous interfaces (pp. 515-546). Springer. [126] Nguyen, N.-T., Wereley, S. T., & Shaegh, S. A. M. (2019). Fundamentals and applications of microfluidics. Artech house. [127] Narayanan, S. (2005). Miniaturization in futuristic clinical laboratory medicine. Laboratory Medicine, 36(12), 748-752. [128] Hardt, S., & Schönfeld, F. (2007). Microfluidic technologies for miniaturized analysis systems. Springer Science & Business Media. [129] Yildiz-Ozturk, E., & Yesil-Celiktas, O. (2015). Diffusion phenomena of cells and biomolecules in microfluidic devices. Biomicrofluidics, 9(5), 052606. [130] Lee, C.-Y., Chang, C.-L., Wang, Y.-N., & Fu, L.-M. (2011). Microfluidic mixing: a review. International journal of molecular sciences, 12(5), 3263-3287. [131] Cha, J., Kim, J., Ryu, S.-K., Park, J., Jeong, Y., Park, S., Park, S., Kim, H. C., & Chun, K. (2006). A highly efficient 3D micromixer using soft PDMS bonding. Journal of micromechanics and microengineering, 16(9), 1778. [132] Lambert, C. L., van Mierlo, G., Bues, J. J., Guillaume-Gentil, O. J., & Deplancke, B. (2025). The evolution of DNA sequencing with microfluidics. Nature Reviews Genetics, 26(1), 1-2. [133] Zheng, B., Roach, L. S., & Ismagilov, R. F. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American chemical society, 125(37), 11170-11171. [134] Zhou, W.-m., Yan, Y.-y., Guo, Q.-r., Ji, H., Wang, H., Xu, T.-t., Makabel, B., Pilarsky, C., He, G., & Yu, X.-y. (2021). Microfluidics applications for high-throughput single cell sequencing. Journal of nanobiotechnology, 19(1), 312. [135] Paegel, B. M., Blazej, R. G., & Mathies, R. A. (2003). Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Current opinion in biotechnology, 14(1), 42-50. [136] Zheng, B., L.S. Roach, and R.F. Ismagilov. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American chemical society, 125(37), 11170-11171. [137] Maeki, M., Yamaguchi, H., Tokeshi, M., & Miyazaki, M. (2016). Microfluidic approaches for protein crystal structure analysis. Analytical Sciences, 32(1), 3-9. [138] Mousah, R. K., & Zageer, D. S. (2024). Microfluidic devices to monitor water pollution. [139] Aryal, P., Hefner, C., Martinez, B., & Henry, C. S. (2024). Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab on a Chip, 24(5), 1175-1206. [140] Alhalaili, B., Popescu, I. N., Rusanescu, C. O., & Vidu, R. (2022). Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability, 14(19), 12844. [141] Lace, A., & Cleary, J. (2021). A review of microfluidic detection strategies for heavy metals in water. Chemosensors, 9(4), 60. [142] Xie, X., Wang, Y., Siu, S.-Y., Chan, C.-W., Zhu, Y., Zhang, X., Ge, J., & Ren, K. (2022). Microfluidic synthesis as a new route to produce novel functional materials. Biomicrofluidics, 16(4), 041301. [143] Agha, A., Waheed, W., Stiharu, I., Nerguizian, V., Destgeer, G., Abu-Nada, E., & Alazzam, A. (2023). A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. Discover Nano, 18(1), 18. [144] Zhang, D., Jia, S., Jin, Z., Bu, J., Guo, G., Deng, J., & Wang, X. (2025). Microfluidic technology: a new strategy for controllable synthesis of metal nanomaterials. ChemElectroChem, 12(7), e202400666. [145] Luo, Z., Zhao, G., Panhwar, F., Akbar, M. F., & Shu, Z. (2017). Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release. Journal of drug delivery science and technology, 39, 379-384. [146] Ejeta, F. (2021). Recent advances of microfluidic platforms for controlled drug delivery in nanomedicine. Drug design, development and therapy, 3881-3891. [147] Zhao, X., Li, M., & Liu, Y. (2019). Microfluidic-based approaches for foodborne pathogen detection. Microorganisms, 7(10), 381. [148] Trinh, T. N. D., Trinh, K. T. L., & Lee, N. Y. (2024). Microfluidic advances in food safety control. Food Research International, 176, 113799. [149] Martinez-Duarte, R., & Madou, M. (2011). SU-8 photolithography and its impact on microfluidics. Microfluidics and nanofluidics handbook(2006), 231-268. [150] McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., & Whitesides, G. M. (2000). Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 21(1), 27-40. [151] Scott, S. M., & Ali, Z. (2021). Fabrication methods for microfluidic devices: An overview. Micromachines, 12(3), 319. [152] Kim, P., Kwon, K. W., Park, M. C., Lee, S. H., Kim, S. M., & Suh, K. Y. (2008). Soft lithography for microfluidics: a review. Biochip journal, 2(1), 1-11. [153] Chien, R.-D. (2006). Hot embossing of microfluidic platform. International communications in heat and mass transfer, 33(5), 645-653. [154] Chang, C.-Y. (2021). Nonuniform heating method for hot embossing of polymers with multiscale microstructures. Polymers, 13(3), 337. [155] Kodihalli Shivaprakash, N., Ferraguto, T., Panwar, A., Banerjee, S. S., Barry, C. F., & Mead, J. (2019). Fabrication of flexible polymer molds for polymer microstructuring by roll-to-roll hot embossing. ACS omega, 4(7), 12480-12488. [156] Konari, P. R., Clayton, Y.-D., Vaughan, M. B., Khandaker, M., & Hossan, M. R. (2021). Experimental analysis of laser micromachining of microchannels in common microfluidic substrates. Micromachines, 12(2), 138. [157] Hossan, M. R., & Konari, P. R. (2021). Laser micromachining of glass substrates for microfluidics devices. AIP Conference Proceedings, 2324, 1. [158] Nielsen, A. V., Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2020). 3D printed microfluidics. Annual Review of Analytical Chemistry, 13(1), 45-65. [159] Zhang, H., Yao, Y., Hui, Y., Zhang, L., Zhou, N., & Ju, F. (2022). A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-Design and Manufacturing, 5(1), 210-219. [160] Nguyen, T., Sarkar, T., Tran, T., Moinuddin, S. M., Saha, D., & Ahsan, F. (2022). Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment. Micromachines, 13(8), 1357. [161] Tsur, E. E. (2020). Computer-aided design of microfluidic circuits. Annual review of biomedical engineering, 22(1), 285-307. [162] Carvalho, V., Rodrigues, R. O., Lima, R. A., & Teixeira, S. (2021). Computational simulations in advanced microfluidic devices: A review. Micromachines, 12(10), 1149. [163] Bakuova, N., Toktarkan, S., Dyussembinov, D., Azhibek, D., Rakhymzhanov, A., Kostas, K., & Kulsharova, G. (2023). Design, simulation, and evaluation of polymer-based microfluidic devices via computational fluid dynamics and cell culture “on-chip”. Biosensors, 13(7), 754. [164] Shakeri, A., Khan, S., & Didar, T. F. (2021). Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab on a Chip, 21(16), 3053-3075. [165] Beh, C. W., Zhou, W., & Wang, T.-H. (2012). PDMS–glass bonding using grafted polymeric adhesive–alternative process flow for compatibility with patterned biological molecules. Lab on a Chip, 12(20), 4120-4127. [166] Miranda, I., Souza, A., Sousa, P., Ribeiro, J., Castanheira, E. M., Lima, R., & Minas, G. (2021). Properties and applications of PDMS for biomedical engineering: A review. Journal of functional biomaterials, 13(1), 2. [167] Lima, R. A. (2025). The Impact of Polydimethylsiloxane (PDMS) in Engineering: Recent Advances and Applications. Fluids, 10(2), 41. [168] Lin, L., & Chung, C.-K. (2021). PDMS microfabrication and design for microfluidics and sustainable energy application. Micromachines, 12(11), 1350. [169] Wu, C.-Y., Liao, W.-H., & Tung, Y.-C. (2011). Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip, 11(10), 1740-1746. [170] Wu, C.-Y., Lu, J.-C., Liu, M.-C., & Tung, Y.-C. (2012). Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics. Lab on a Chip, 12(20), 3943-3951. [171] Kontomaris, S.-V. (2018). The Hertz model in AFM nanoindentation experiments: applications in biological samples and biomaterials. Micro and Nanosystems, 10(1), 11-22. [172] Norman, M. D., Ferreira, S. A., Jowett, G. M., Bozec, L., & Gentleman, E. (2021). Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nature Protocols, 16(5), 2418-2449. [173] Sokolov, I., Dokukin, M. E., & Guz, N. V. (2013). Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods, 60(2), 202-213. [174] Bilodeau, G. (1992). Regular pyramid punch problem. Journal of applied mechanics, 59.(3), 519-523. [175] Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., & Ingber, D. E. (2001). Soft lithography in biology and biochemistry. Annual review of biomedical engineering, 3(1), 335-373. [176] Reddy, J. N. (2003). Mechanics of laminated composite plates and shells: theory and analysis. CRC press. [177] Ugural, A. C. (2009). Stresses in beams, plates, and shells. CRC press. [178] Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. [179] Ferreira, A. J. (2009). MATLAB codes for finite element analysis: solids and structures. Springer. [180] Reddy, J. N. (1993). An introduction to the finite element method. New York, 27(14). [181] Mittelstedt, C. (2023). Theory of plates and shells. Heidelberg: Springer Vieweg. [182] Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates. [183] Madabhusi-Raman, P., & Davalos, J. F. (1996). Static shear correction factor for laminated rectangular beams. Composites Part B: Engineering, 27(3-4), 285-293. [184] Srinivas, S. (1973). A refined analysis of composite laminates. Journal of Sound and Vibration, 30(4), 495-507. [185] Lekhnitskii, S. G. (1968). Anisotropic plates. [186] Jean, R. P., Gray, D. S., Spector, A. A., & Chen, C. S. (2004). Characterization of the nuclear deformation caused by changes in endothelial cell shape. Journal of Biomechanical Engineering, 126(5), 552-558. [187] Gross, W., & Kress, H. (2017). Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers. Soft Matter, 13(5), 1048-1055. [188] Vargas-Pinto, R., Gong, H., Vahabikashi, A., & Johnson, M. (2013). The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophysical Journal, 105(2), 300-309. [189] Trickey, W. R., Baaijens, F. P., Laursen, T. A., Alexopoulos, L. G., & Guilak, F. (2006). Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. Journal of biomechanics, 39(1), 78-87. [190] Boudou, T., Ohayon, J., Picart, C., & Tracqui, P. (2006). An extended relationship for the characterization of Young's modulus and Poisson's ratio of tunable polyacrylamide gels. Biorheology, 43(6), 721-728. [191] Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E., & Truskey, G. A. (2001). Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of biomechanics, 34(12), 1545-1553. [192] Shin, D., & Athanasiou, K. (1999). Cytoindentation for obtaining cell biomechanical properties. Journal of Orthopaedic Research, 17(6), 880-890. [193] Liu, Y., Mollaeian, K., & Ren, J. (2019). Finite element modeling of living cells for AFM indentation-based biomechanical characterization. Micron, 116, 108-115. [194] Wu, P.-H., Aroush, D. R.-B., Asnacios, A., Chen, W.-C., Dokukin, M. E., Doss, B. L., Durand-Smet, P., Ekpenyong, A., Guck, J., & Guz, N. V. (2018). A comparison of methods to assess cell mechanical properties. Nature methods, 15(7), 491-498. [195] Brangwynne, C. P., MacKintosh, F. C., Kumar, S., Geisse, N. A., Talbot, J., Mahadevan, L., Parker, K. K., Ingber, D. E., & Weitz, D. A. (2006). Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. The Journal of cell biology, 173(5), 733-741. [196] Wirtz, D., Konstantopoulos, K., & Searson, P. C. (2011). The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7), 512-522. [197] Tse, J. M., Cheng, G., Tyrrell, J. A., Wilcox-Adelman, S. A., Boucher, Y., Jain, R. K., & Munn, L. L. (2012). Mechanical compression drives cancer cells toward invasive phenotype. Proceedings of the National Academy of Sciences, 109(3), 911-916. [198] Li, Y., & Barbič, J. (2015). Stable anisotropic materials. IEEE transactions on visualization and computer graphics, 21(10), 1129-1137. [199] Polacheck, W. J., Li, R., Uzel, S. G., & Kamm, R. D. (2013). Microfluidic platforms for mechanobiology. Lab on a Chip, 13(12), 2252-2267. [200] Stekelenburg, M., Rutten, M. C., Snoeckx, L. H., & Baaijens, F. P. (2009). Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Engineering Part A, 15(5), 1081-1089. [201] Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 292(3), H1209-H1224. [202] Tzima, E., Irani-Tehrani, M., Kiosses, W. B., Dejana, E., Schultz, D. A., Engelhardt, B., Cao, G., DeLisser, H., & Schwartz, M. A. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. nature, 437(7057), 426-431. [203] Weinbaum, S., Tarbell, J. M., & Damiano, E. R. (2007). The structure and function of the endothelial glycocalyx layer. Annual Review of Biomedical Engineering, 9(1), 121-167. [204] Wagner, C., Steffen, P., & Svetina, S. (2013). Aggregation of red blood cells: from rouleaux to clot formation. Comptes Rendus. Physique, 14(6), 459-469. [205] Brust, M., Aouane, O., Thiébaud, M., Flormann, D., Verdier, C., Kaestner, L., Laschke, M., Selmi, H., Benyoussef, A., & Podgorski, T. (2014). The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific reports, 4(1), 4348. [206] Succurro, E., Vizza, P., Cicone, F., Rubino, M., Fiorentino, T. V., Perticone, M., Mannino, G. C., Sciacqua, A., Guzzi, P. H., & Veltri, P. (2024). Elevated whole blood viscosity is associated with an impaired insulin-stimulated myocardial glucose metabolism. Cardiovascular Diabetology, 23(1), 431. [207] Woodward, M., Rumley, A., Tunstall‐Pedoe, H., & Lowe, G. D. (2003). Does sticky blood predict a sticky end? Associations of blood viscosity, haematocrit and fibrinogen with mortality in the West of Scotland. British journal of haematology, 122(4), 645-650. [208] Al-kuraishy, H. M., Al-Gareeb, A. I., Al-Hamash, S. M., Cavalu, S., El-Bouseary, M. M., Sonbol, F. I., & Batiha, G. E.-S. (2022). Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection. Frontiers in Medicine, 9, 876017. [209] Kelley, D. H., & Thomas, J. H. (2023). Cerebrospinal fluid flow. Annual Review of Fluid Mechanics, 55(1), 237-264. [210] Mehta, N. H., Suss, R. A., Dyke, J. P., Theise, N. D., Chiang, G. C., Strauss, S., Saint-Louis, L., Li, Y., Pahlajani, S., & Babaria, V. (2022). Quantifying cerebrospinal fluid dynamics: a review of human neuroimaging contributions to CSF physiology and neurodegenerative disease. Neurobiology of disease, 170, 105776. [211] Roškar, S., Mihalič, R., Mihelič, A., & Trebše, R. (2025). Synovial fluid viscosity with synovial fluid cell count, valuable diagnostic marker of prosthetic joint infections. Scientific reports, 15(1), 16223. [212] Pleyer, U., & Foster, C. S. (2007). Uveitis and immunological disorders. Springer. [213] Kim, S. (2002). A study of non-Newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer. Drexel University. [214] Akpek, A., Youn, C., Maeda, A., Fujisawa, N., & Kagawa, T. (2014). Effect of thermal convection on viscosity measurement in vibrational viscometer. Journal of Flow Control, Measurement & Visualization, 2, 1. [215] Kestin, J., Sokolov, M., & Wakeham, W. (1973). Theory of capillary viscometers. Applied scientific research, 27(1), 241-264. [216] Shin, S., & Keum, D.-Y. (2003). Viscosity measurement of non-Newtonian fluid foods with a mass-detecting capillary viscometer. Journal of food engineering, 58(1), 5-10. [217] Srivastava, N., & Burns, M. A. (2006). Analysis of non-Newtonian liquids using a microfluidic capillary viscometer. Analytical chemistry, 78(5), 1690-1696. [218] Gupta, S., Wang, W. S., & Vanapalli, S. A. (2016). Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics, 10(4), 043402. [219] Carnicer, V., Alcázar, C., Orts, M., Sánchez, E., & Moreno, R. (2021). Microfluidic rheology: A new approach to measure viscosity of ceramic suspensions at extremely high shear rates. Open Ceramics, 5, 100052. [220] Lenzen, P. S., Dingfelder, F., Muller, M., & Arosio, P. (2024). Portable microfluidic viscometer for formulation development and in situ quality control of protein and antibody solutions. Analytical chemistry, 96(32), 13185-13190. [221] Chang, Y.-N., & Yao, D.-J. (2024). Development of a microfluidic viscometer for non-Newtonian blood analog fluid analysis. Bioengineering, 11(12), 1298. [222] 柯秉良,馬劍清,”布拉格光纖光柵應用於壓力感測器設計與製作以及動態應變量測,” 碩士論文, 機械工程學研究所,臺灣大學, 2015. [223] Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, 6, 17-20. [224] Takahashi, S., & Shibata, S. (1979). Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids, 30, 359-370. [225] Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, 15, 1277-1294. [226] Mosadegh, B., Kuo, C.-H., Tung, Y.-C., Torisawa, Y.-s., Bersano-Begey, T., Tavana, H., & Takayama, S. (2010). Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nature physics, 6(6), 433-437. [227] Munson, B. R., Young, D. F., & Okiishi, T. H. (1995). Fundamentals of fluid mechanics. Oceanographic Literature Review, 10(42), 831. [228] Hartnett, J. P., & Kostic, M. (1989). Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts. In Advances in heat transfer,19, 247-356. [229] Kim, C., & Yoo, B. (2006). Rheological properties of rice starch–xanthan gum mixtures. Journal of food engineering, 75(1), 120-128. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98627 | - |
| dc.description.abstract | 生物樣本之物理特性例如:組織之彈性、血液的黏滯度與骨骼之硬度等,對細胞、組織之功能以及生物反應有著關鍵的影響,其中,彈性係數為最重要的特性之一,在細胞變形、遷移、分化以及反應的過程中,細胞外基質以及細胞本身的機械強度以及相互造成的形變皆會彼此交互影響、控制細胞的行為,並可能更進一步影響疾病的生成或是改變生理的功能。本論文將開發微流體元件以應用於生物樣品的機械性質量測,第一與第二部份分別針對在模擬體內微觀環境下培養的橫觀等向性以及橫觀異向性細胞生物樣品之機械性質進行量測。本研究中利用微流體裝置以及內嵌式壓力感測器建構可用於量測非等向性之細胞層於平面方向上的楊氏模數,並結合生物原子力顯微鏡對細胞層面外方向的楊氏模數進行量測。於實驗量測中,本論文先針對肺泡上皮細胞在有無癌化基因過度表達條件下細胞層之面內楊氏模數進行探討,接著探討血管內皮細胞經流體剪切應力排列後之內皮細胞層於面內平行以及垂直細胞排列方向上之楊氏模數。實驗結果顯示,本研究中開發之微流體感測晶片可量測生物樣本之物理特性並應用於對其病理機制進行更深入的研究中。此外,血管中血液黏性也和心血管疾病有著非常密切的關係,因此本論文第三部份中利用微流體裝置搭配布拉格光纖光柵(FBG)感測器設計一可用於量測非牛頓流體之黏滯係數之感測器,此感測器透過量測流體在不同流速下流動時產生之壓力差,並利用布拉格光纖光柵之中心波長的變化量得到壓力差的大小,進而計算出流體之黏滯係數。本論文中成功利用自行開發之微流體元件對非等向性細胞樣本以及細胞外基質之楊氏模數進行量測,並利用生物用原子力顯微鏡進行量測作為比較。此外,本研究中亦開發可應用於量測牛頓以及非牛頓流體之黏滯係數的微流體感測器,未來可望應用於生物基礎研究以及臨床篩檢與監測之工具。 | zh_TW |
| dc.description.abstract | The physical properties of biological samples—such as tissue elasticity, blood viscosity, and bone hardness—play a critical role in determining cellular function, tissue behavior, and physiological responses. Among these properties, the elastic modulus is particularly important, as it influences cellular deformation, migration, differentiation, and overall biomechanical interactions between cells and the extracellular matrix (ECM), potentially affecting disease progression and physiological functions. This study aims to develop microfluidic devices for measuring the mechanical properties of biological samples. The first and second parts of the thesis focus on measuring the mechanical characteristics of transversely isotropic and anisotropic cell samples cultured in biomimetic microenvironments. A microfluidic platform integrated with embedded pressure sensors was designed to measure the in-plane Young’s modulus of anisotropic cell layers, while atomic force microscopy (AFM) was employed to assess the out-of-plane stiffness. The experiments first investigated the in-plane elastic properties of alveolar epithelial cell layers with and without oncogene overexpression. Subsequently, the study examined the anisotropic elastic properties of vascular endothelial cell layers aligned under controlled shear stress, comparing Young’s modulus along and perpendicular to the alignment direction. Results demonstrated that the developed microfluidic sensing chip effectively characterizes the mechanical properties of biological samples and supports advanced research on pathological mechanisms. Given the strong correlation between blood viscosity and cardiovascular diseases, the third part of this thesis presents a novel microfluidic viscometer integrated with a fiber Bragg grating (FBG) sensor for measuring the viscosity of non-Newtonian fluids. By analyzing pressure differentials generated at varying flow rates and correlating them with the Bragg wavelength shifts, fluid viscosity can be accurately derived. In conclusion, this work successfully demonstrates the use of self-developed microfluidic platforms to measure the anisotropic elasticity of cell layers and ECM, validated by AFM measurements. Additionally, the proposed FBG-based microfluidic sensor for non-Newtonian fluid viscosity measurement shows promise for future applications in both fundamental biomedical research and clinical diagnostics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:08:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:08:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目次 V 表次 IX 圖次 XI 第一章 緒論 1 1.1. 研究動機 1 1.2. 論文內容簡介 2 第二章 文獻回顧 5 2.1. 生物樣本機械特性量測 5 2.2. 微流體裝置基本理論與製作方法 10 2.2.1 微流體裝置基本理論與應用 10 2.2.2 微流體裝置製作方法 13 第三章 橫觀同向性之肺泡上皮細胞楊氏模數量測 17 3.1. 微流體系統感測器設計 18 3.2. 微流體系統感測器製程 20 3.3. 細胞培養 28 3.4. 細胞存活率測試 34 3.5. 利用Bio-AFM量測細胞層之面外方向機械性質 44 3.5.1. 原子力顯微鏡量測原理 45 3.5.2. Bio-AFM液相中生物樣本準備 49 3.5.3. Bio-AFM量測A549-C與A549-M細胞層 50 3.5.4. Bio-AFM量測PDMS薄膜 74 3.5.5. 量測結果與數據討論 75 3.6. 微流體壓力感測器之工作原理 76 3.7. 感測薄膜變形之力學模型 80 3.7.1. 一階剪切變形板理論 81 3.7.2. 利用有限元素法求解FSDT 87 3.8. 有限元素法結果分析 90 3.9. 利用微流體感測器量測細胞層之面內方向機械性質 118 3.9.1. 利用細胞免疫螢光染色與共軛焦顯微鏡分析細胞骨架 131 3.9.2. 利用影像處理進行細胞骨架分析 141 3.10. 結論 142 第四章 正交異向性之血管內皮細胞彈性係數量測 145 4.1. 微流體系統感測器設計與製程 146 4.2. 細胞培養 150 4.3. 利用Bio-AFM量測內皮細胞層之面外方向機械性質 193 4.4. 微流體壓力感測器之工作原理 201 4.5. 感測薄膜變形之力學模型 202 4.5.1. 利用穩定之非同向性材料參數簡化FSTD模型 203 4.5.2. 利用FSDT力學模型計算壓力感測器靈敏度比值 205 4.6. 利用微流體系統量測細胞層面內不同方向之機械性質 220 4.7. 利用細胞免疫螢光染色與共軛焦顯微鏡分析細胞骨架 235 4.8. 結論 240 第五章 應用FBG微流體系統於生物樣本黏度量測 243 5.1. 光纖光柵感測原理 245 5.1.1 光纖基本原理 245 5.1.2 光纖光柵基本原理 250 5.1.3 光彈效應與熱光效應 251 5.1.4 共振波長飄移理論 255 5.1.5 光纖光柵模態耦合理論 261 5.1.6 光纖光柵量測系統 278 5.1.7 配合光纖光柵量測系統之相關儀器 279 5.1.8 I-MON量測步驟及介面介紹 281 5.2. FBG微流體黏度計設計與製作 283 5.3. FBG微流體黏度計感測原理 289 5.4. 利用FBG微流體感測器量測液體黏滯係數 300 5.5. 結論 306 第六章 結論與未來展望 307 參考文獻 311 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微流體系統 | zh_TW |
| dc.subject | 原子力顯微鏡 | zh_TW |
| dc.subject | 一階剪切變形板理論 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 壓力感測器 | zh_TW |
| dc.subject | 布拉格光纖光柵 | zh_TW |
| dc.subject | 模態耦合理論 | zh_TW |
| dc.subject | 細胞免疫染色 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | Coupled-mode theory | en |
| dc.subject | Microfluidic system | en |
| dc.subject | Fiber Bragg grating | en |
| dc.subject | Atomic force microscopy | en |
| dc.subject | First-order shear deformation theory | en |
| dc.subject | Finite element method | en |
| dc.subject | Pressure sensor | en |
| dc.subject | Image analysis | en |
| dc.subject | Immunofluorescence staining | en |
| dc.title | 開發可應用於生物樣品機械性質量測之微流體元件 | zh_TW |
| dc.title | Development of Microfluidic Devices Capable of Characterizing Mechanical Properties of Biological Samples | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 董奕鍾;黃光裕;王安邦;許聿翔;劉瑋文 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chung Tung;Kuang-Yuh Huang;An-Bang Wang;Yu-Hsiang Hsu;Wei-Wen Liu | en |
| dc.subject.keyword | 微流體系統,原子力顯微鏡,一階剪切變形板理論,有限元素法,壓力感測器,布拉格光纖光柵,模態耦合理論,細胞免疫染色,影像處理, | zh_TW |
| dc.subject.keyword | Microfluidic system,Atomic force microscopy,First-order shear deformation theory,Finite element method,Pressure sensor,Fiber Bragg grating,Coupled-mode theory,Immunofluorescence staining,Image analysis, | en |
| dc.relation.page | 336 | - |
| dc.identifier.doi | 10.6342/NTU202503124 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 42.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
