Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 積體電路設計與自動化學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98619
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀文zh_TW
dc.contributor.advisorYao-Wen Changen
dc.contributor.author林岱融zh_TW
dc.contributor.authorTai-Jung Linen
dc.date.accessioned2025-08-18T01:06:22Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1] A. v. Beuningen, L. Ramini, D. Bertozzi, and U. Schlichtmann, "PROTON+: A Placement and Routing Tool for 3D Optical Networks-on-Chip with a Single Optical Layer," ACM Journal on Emerging Technologies in Computing Systems, vol. 12, no. 4, pp. 1–28, 2015.
[2] A. v. Beuningen and U. Schlichtmann, "PLATON: A Force-Directed Placement Algorithm for 3D Optical Networks-on-Chip," in Proceedings of ACM International Symposium on Physical Design, pp. 27–34, Santa Rosa, CA, USA, April 2016.
[3] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, "Silicon Microring Resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73, 2012.
[4] A. Boos, L. Ramini, U. Schlichtmann, and D. Bertozzi, "PROTON: An Automatic Place-and-Route Tool for Optical Networks-on-Chip," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 138–145, San Jose, CA, USA, November 2013.
[5] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O’Connor, "System Level Assessment of an Optical NoC in an MP-SoC Platform," in Proceedings of ACM/IEEE Design, Automation and Test in Europe, pp. 1–6, Nice, France, April 2007.
[6] Y.-L. Chen, W.-C. Tseng, W.-Y. Kao, and Y.-W. Chang, "A General Wavelength-Routed Optical Networks-on-Chip Model with Applications to Provably Good Customized and Fault-Tolerant Topology Designs," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1–7, San Francisco, CA, USA, October/November 2023.
[7] Y.-T. Chen, Z. Zheng, S.-Y. Fang, T.-M. Tseng, and U. Schlichtmann, "CPONoC: Critical-Path-Aware Physical Implementation for Optical Networks-on-Chip," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1251–1256, Tokyo, Japan, January 2025.
[8] Y.-K. Chuang, K.-J. Chen, K.-L. Lin, S.-Y. Fang, B. Li, and U. Schlichtmann, "PlanarONoC: Concurrent Placement and Routing Considering Crossing Minimization for Optical Networks-on-Chip," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, New York, NY, USA, June 2018.
[9] Y.-K. Chuang, Y. Zhong, Y.-H. Cheng, B.-Y. Yu, S.-Y. Fang, B. Li, and U. Schlichtmann, "RobustONoC: Fault-Tolerant Optical Networks-on-Chip with Path Backup and Signal Reflection," in Proceedings of International Symposium on Quality Electronic Design, pp. 67–72, Santa Clara, CA, USA, April 2021.
[10] C. Condrat, P. Kalla, and S. Blair, "Crossing-Aware Channel Routing for Integrated Optics," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 6, pp. 814–825, 2014.
[11] D. Ding, B. Yu, and D. Z. Pan, "GLOW: A Global Router for Low-Power Thermal-Reliable Interconnect Synthesis Using Photonic Wavelength Multiplexing," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 621–626, Sydney, NSW, Australia, January/February 2012.
[12] D. Ding, Y. Zhang, H. Huang, R. T. Chen, and D. Z. Pan, "O-Router: An Optical Routing Framework for Low Power On-Chip Silicon Nano-Photonic Integration," in Proceedings of ACM/IEEE Design Automation Conference, pp. 264–269, San Francisco, CA, USA, July 2009.
[13] H. Gu, K. H. Mo, J. Xu, and W. Zhang, "A Low-Power Low-Cost Optical Router for Optical Networks-on-Chip in Multiprocessor Systems-on-Chip," in Proceedings of IEEE Computer Society Annual Symposium on VLSI, pp. 19–24, Tampa, FL, USA, May 2009.
[14] F. Jiao, S. Dong, B. Yu, B. Li, and U. Schlichtmann, "Thermal-Aware Placement and Routing for 3D Optical Networks-on-Chips," in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1–4, Florence, Italy, May 2018.
[15] W.-Y. Kao, T.-J. Lin, and Y.-W. Chang, "Physically Aware Wavelength-Routed Optical NoC Design for Customized Topologies with Parallel Switching Elements and Sequence-Based Models," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 560–566, Tokyo, Japan, January 2025.
[16] M. Li, T.-M. Tseng, D. Bertozzi, M. Tala, and U. Schlichtmann, "CustomTopo: A Topology Generation Method for Application-Specific Wavelength-Routed Optical NoCs," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1–8, San Diego, CA, USA, November 2018.
[17] M. Li, T.-M. Tseng, M. Tala, and U. Schlichtmann, "Maximizing the Communication Parallelism for Wavelength-Routed Optical Networks-on-Chips," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 109–114, Beijing, China, January 2020.
[18] D. Liu, Z. Zhao, Z. Wang, Z. Ying, R. T. Chen, and D. Z. Pan, "OPERON: Optical-Electrical Power-Efficient Route Synthesis for On-Chip Signals," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, New York, NY, USA, June 2018.
[19] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser, "ISPD 2019 Initial Detailed Routing Contest and Benchmark with Advanced Routing Rules," in Proceedings of ACM International Symposium on Physical Design, pp. 147–151, San Francisco, CA, USA, April 2019.
[20] Y.-S. Lu, K.-C. Chen, Y.-L. Hsu, and Y.-W. Chang, "Thermal-Aware Optical-Electrical Routing Codesign for On-Chip Signal Communications," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1279–1284, New York, NY, USA, July 2022.
[21] Y.-S. Lu, Y.-L. Chen, S.-J. Yu, and Y.-W. Chang, "Topological Structure and Physical Layout Co-Design for Wavelength-Routed Optical Networks-on-Chip," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2237–2249, 2022.
[22] Y.-S. Lu, S.-J. Yu, and Y.-W. Chang, "A Provably Good Wavelength-Division-Multiplexing-Aware Clustering Algorithm for On-Chip Optical Routing," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, San Francisco, CA, USA, July 2020.
[23] Y.-S. Lu, S.-J. Yu, and Y.-W. Chang, "Topological Structure and Physical Layout Codesign for Wavelength-Routed Optical Networks-on-Chip," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, San Francisco, CA, USA, July 2020.
[24] Y.-S. Lu, S.-J. Yu, and Y.-W. Chang, "On-Chip Optical Routing with Provably Good Algorithms for Path Clustering and Assignment," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4653–4666, 2022.
[25] L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, "Contrasting Wavelength-Routed Optical NoC Topologies for Power-Efficient 3D-Stacked Multicore Processors Using Physical-Layer Analysis," in Proceedings of ACM/IEEE Design, Automation and Test in Europe, pp. 1589–1594, Grenoble, France, March 2013.
[26] M. Tala, M. Castellari, M. Balboni, and D. Bertozzi, "Populating and Exploring the Design Space of Wavelength-Routed Optical Network-on-Chip Topologies by Leveraging the Add-Drop Filtering Primitive," in Proceedings of IEEE/ACM International Symposium on Networks-on-Chip, pp. 1–8, Nara, Japan, August/September 2016.
[27] X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, "On a Scalable, Non-Blocking Optical Router for Photonic Networks-on-Chip Designs," in Proceedings of Symposium on Photonics and Optoelectronics, pp. 1–4, Wuhan, China, May 2011.
[28] A. Truppel, T.-M. Tseng, D. Bertozzi, J. C. Alves, and U. Schlichtmann, "PSION: Combining Logical Topology and Physical Layout Optimization for Wavelength-Routed ONoCs," in Proceedings of ACM International Symposium on Physical Design, pp. 49–56, San Francisco, CA, USA, April 2019.
[29] A. Truppel, T.-M. Tseng, D. Bertozzi, J. C. Alves, and U. Schlichtmann, "PSION+: Combining Logical Topology and Physical Layout Optimization for Wavelength-Routed ONoCs," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 5197–5210, 2020.
[30] T.-M. Tseng, A. Truppel, M. Li, M. Nikdast, and U. Schlichtmann, "Wavelength-Routed Optical NoCs: Design and EDA — State of the Art and Future Directions," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1–6, Westminster, CO, USA, November 2019.
[31] S. Werner, J. Navaridas, and M. Lujan, "A Survey on Optical Network-on-Chip Architectures," ACM Computing Surveys, vol. 50, no. 6, pp. 1–37, 2017.
[32] S. K. Yeh, C. T. Shih, F. Yuan, C. M. Hung, C. H. Chu, H. Y. Lu, J. H. Yang, W. S. Lo, C. H. Chen, S. Y. Tsai, W. C. Tai, S. C. Liu, S. D. Wang, K. Q. Wen, W. C. Wang, C. C. Tung, B. T. Lin, F. Hu, P. C. Yeh, C. H. Huang, T. H. Wu, C. C. Chu, W. C. Kuo, C. Y. Tsai, S. W. Chang, E. C. Chen, C. W. Chiang, Y. M. Wang, F. C. Huang, S. M. Wu, J. Y. Lin, C. T. Tang, W. K. Liu, T. L. Hsieh, W. J. Mao, W. T. Lo, C. Y. Peng, S. H. Su, F. Tsui, N. Shi, V. Shih, and S. F. Huang, "Silicon Photonics Platform for Next Generation Data Communication Technologies," in Proceedings of IEEE International Electron Devices Meeting, pp. 1–4, San Francisco, CA, USA, December 2024.
[33] Z. Zheng, L. Cheng, K. Arisawa, Q. Li, A. Truppel, S. Yamashita, T.-M. Tseng, and U. Schlichtmann, "Multi-Resonance Mesh-Based Wavelength-Routed Optical Networks-on-Chip," in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, San Francisco, CA, USA, June 2024.
[34] Z. Zheng, M. Li, T.-M. Tseng, and U. Schlichtmann, "Light: A Scalable and Efficient Wavelength-Routed Optical Networks-on-Chip Topology," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 568–573, Tokyo, Japan, January 2021.
[35] Z. Zheng, M. Li, T.-M. Tseng, and U. Schlichtmann, "ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip," in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1–9, Munich, Germany, November 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98619-
dc.description.abstract隨著低功耗異質整合需求的日益增長,光電互連技術備受關注,而波長路由光網路晶片(wavelength-routed optical network-on-chips, WRONoCs)憑藉其低延遲、低功耗和高頻寬的光訊號傳輸特性,已成為一種極具潛力的解決方案。先前的光電共同設計方法並未考慮基於微環共振器(microring resonator, MRR)的波長路由光網路晶片,而先前基於微環共振器的波長路由光網路晶片拓撲和實體共同設計方法由於整數線性規劃公式的運行時間過長或光學資源佔用過多,導致其在電子設計方面缺乏擴展性。
為了彌補這些缺陷,我們提出了第一個基於微環共振器的晶片訊號傳輸的光電共同設計流程,旨在有效地降低功耗。基於我們提出可擴展的波長路由光網路晶片拓撲構建模組(topology building blocks, TBBs),我們提出了一種新穎的基於二分圖的微環共振器線路分群演算法,以減少光學資源佔用;一種考慮交叉的基於動態規劃的拓撲構建演算法,以有效地最小化交叉交換元件(crossing switching element)的數量;以及一種高效的基於拓撲構建模組的波長分配演算法,無需整數線性規劃。
實驗結果表明,我們的方法在功耗方面顯著優於當前最佳的技術。
zh_TW
dc.description.abstractOptical-electrical (O-E) interconnects have drawn significant attention as the need for low-power heterogeneous integration grows, and wavelength-routed optical network-on-chips (WRONoCs) have emerged as a promising solution due to their low-delay, low-power, and high-bandwidth optical signal transmissions. Previous O-E codesign methods do not consider microring resonator (MRR)-based WRONoCs, and previous MRR-based WRONoC topological and physical codesign methods lack the scalability for electrical designs due to the prohibitive runtimes of integer linear programming (ILP) formulations or excessive optical resource usages. To remedy these drawbacks, we propose the first O-E codesign flow for MRR-based on-chip signal transmissions to minimize power consumption with high efficiency. Based on our proposed scalable WRONoC topology building blocks (TBBs), we propose a novel bipartite graph-based net clustering algorithm for MRRs to reduce optical resource usage, a crossing-aware dynamic programming-based TBB construction algorithm to effectively minimize the number of crossing switching elements, and an efficient TBB-based wavelength assignment algorithm without an ILP. Experimental results show that our work significantly outperforms state-of-the-art work in power consumption.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:06:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:06:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements...iii
Abstract (Chinese)...iv
Abstract...vi
Table of Contents...viii
List of Tables...xi
List of Figures...xii
Chapter 1. Introduction...1
1.1 Introduction to Optical Network-on-Chips...1
1.2 Previous Works...5
1.2.1 Crossing-Aware WRONoC Design Methods...5
1.2.2 O-E Codesign Methods...5
1.2.3 MRR-Based WRONoC Topological and Physical Codesign Methods...6
1.3 Motivations...7
1.4 Our Contributions...7
1.5 Thesis Organization...8
Chapter 2. Preliminaries...9
2.1 Insertion Loss...9
2.2 Power Model...11
2.3 Problem Formulation...12
Chapter 3. Our Proposed Topology Building Blocks...13
3.1 Topology Building Blocks...13
3.2 Applications of Topology Building Blocks...18
Chapter 4. Proposed Algorithms...21
4.1 Preprocessing...22
4.2 Net Clustering...23
4.3 Optical Device Placement...25
4.3.1 Topology Construction...25
4.3.2 Sequence Construction...29
4.4 Net Routing...30
4.4.1 Crossing-Aware Routing...30
4.4.2 Crossing Refinement...31
4.5 Wavelength Assignment...31
Chapter 5. Experimental Results...34
5.1 Experimental Setup...34
5.2 Results...35
5.2.1 Comparisons of the Power Consumption and Runtime...35
5.2.2 Comparison of the Number of CSEs...36
5.2.3 Empirical Analyses of the MRR Usage, Wavelength Usage, and Runtime...37
5.2.4 Ablation Study of the Crossing Awareness...40
5.2.5 Runtime Breakdown...42
5.2.6 Discussion...44
Chapter 6. Conclusion and Future Work...46
6.1 Conclusion...46
6.2 Future Work...46
6.2.1 Optical Resource-Driven Design...47
6.2.2 Congestion-Aware Topology Design...47
6.2.3 Thermal-Aware Physical Design...47
Bibliography...48
Publication List...55
-
dc.language.isoen-
dc.subject光電互連zh_TW
dc.subject微環共振器zh_TW
dc.subject波長路由zh_TW
dc.subject光網路晶片zh_TW
dc.subject網路拓撲zh_TW
dc.subject實體設計zh_TW
dc.subjectWavelength routingen
dc.subjectOptical network-on-chip (ONoC)en
dc.subjectNetwork topologyen
dc.subjectOptical-electrical interconnecten
dc.subjectMicroring resonator (MRR)en
dc.subjectPhysical designen
dc.title基於微環共振器的晶片訊號傳輸上考慮交叉的光電共同設計zh_TW
dc.titleCrossing-Aware Optical-Electrical Codesign for Microring Resonator-Based On-Chip Signal Transmissionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江蕙如;黃婷婷;方劭云zh_TW
dc.contributor.oralexamcommitteeHui-Ru Jiang;Ting-Ting Hwang;Shao-Yun Fangen
dc.subject.keyword光電互連,微環共振器,波長路由,光網路晶片,網路拓撲,實體設計,zh_TW
dc.subject.keywordOptical-electrical interconnect,Microring resonator (MRR),Wavelength routing,Optical network-on-chip (ONoC),Network topology,Physical design,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202503210-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept積體電路設計與自動化學位學程-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:積體電路設計與自動化學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved