Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98616
標題: 基於結構統計分析的腦動脈虛擬患者群體生成
Generating a Virtual Population of Cerebral Arteries Based on Structural Analysis
作者: 范集龍
Chi-Lung Fan
指導教授: 潘斯文
Stephen Payne
關鍵字: 腦血流,虛擬病人群體,特徵分類,定量分析,血管結構與位置特徵,
Cerebral blood flow,Virtual Patient Population,Feature Classification,Quantitative Analysis,Vascular Structural and Positional Features,
出版年 : 2025
學位: 碩士
摘要: 三維腦動脈模型的可獲得性有限,對於依賴大量資料進行訓練的機器學習系統而言,造成了在生理模擬、手術規劃與治療優化等應用上的挑戰,特別是在涵蓋不同年齡層的結構多樣性方面更為不足。
為解決此問題,本研究提出一套虛擬腦動脈族群生成框架,結合血管自動分段、結構標註與統計建模方法。首先,透過血管結構與位置特徵進行自動分類與標註,接著運用主成分分析(PCA)進行降維,並引入隨機擾動與Dirichlet分布權重平均方式,生成具有年齡與性別分層特徵的虛擬個體模型。
最後,本研究採用基於導通係數的血流模擬模型,並透過差分演化(Differential Evolution)演算法調整出口壓力,使模擬流量符合生理統計範圍。我們從血管幾何與血流分布兩個層面,定量比較虛擬模型與原始資料,驗證其結構一致性與生理合理性。此方法提供了一種可擴展的虛擬病人生成機制,有助於支持個人化模擬與臨床決策研究。
The limited availability of 3D cerebral arterial models poses a major challenge to training data-hungry machine learning systems used for physiological simulations, surgical planning, and treatment optimization. These limitations hinder structural diversity and demographic coverage, especially across age groups.
To address this, we present a framework for generating a virtual population of cerebral arteries by combining automatic vascular segmentation, structural labelling, and statistical modelling. Vascular segments are classified using structural and positional features, followed by dimensionality reduction via Principal Component Analysis (PCA). We then apply gaussian perturbations and age-weighted aggregation using Dirichlet distributions to synthesize new patient-specific models stratified by age and gender.
Finally, we simulate cerebral blood flow using a conductance-based flow model and optimize outlet pressures via Differential Evolution to match target physiological flow ranges. The generated models were quantitatively evaluated against flow measurements reported in the literature, confirming physiological plausibility. This approach provides a scalable pathway for generating diverse, demographically representative virtual populations for personalized simulation studies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98616
DOI: 10.6342/NTU202503421
全文授權: 未授權
電子全文公開日期: N/A
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.77 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved