Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪士灝zh_TW
dc.contributor.advisorShih-Hao Hungen
dc.contributor.author侯善融zh_TW
dc.contributor.authorShan-Jung Houen
dc.date.accessioned2025-08-18T01:03:19Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1] Aer - high performance quantum circuit simulation for qiskit, 2024.
[2] H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L. L. Fang, Y. Gao, J. Guan, J. Gunnels, A. Haidar, A. Hehn, M. Hohnerbach, M. Jones, T. Lubowe, D. Lyakh, S. Morino, P. Springer, S. Stanwyck, I. Terentyev, S. Varadhan, J. Wong, and T. Yamaguchi. cuquantum sdk: A high-performance library for accelerating quantum science, 2023.
[3] W. v. Dam, K. Eldefrawy, N. Genise, and N. Parham. Quantum Optimization Heuristics with an Application to Knapsack Problems . In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 160–170, Los Alamitos, CA, USA, Oct. 2021. IEEE Computer Society.
[4] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. 11 2014.
[5] S. Hadfield, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12(2), 2019.
[6] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97:849–872, 2019.
[7] T. Jones, A. Brown, I. Bush, and S. C. Benjamin. Quest and high performance simulation of quantum computers. Scientific Reports, 9(1), July 2019.
[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
[9] A. Lucas. Ising formulations of many np problems. Frontiers in Physics, Volume 2-2014, 2014.
[10] S. Mirjalili and A. Lewis. The whale optimization algorithm. Advances in Engineering Software, 95:51–67, 2016.
[11] A. Montanez-Barrera, D. Willsch, A. Maldonado-Romo, and K. Michielsen. Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms. Quantum Science and Technology, 9, 04 2024.
[12] N. Van Thieu and S. Mirjalili. Mealpy: An open-source library for latest metaheuristic algorithms in python. Journal of Systems Architecture, 2023.
[13] Z. Wang, N. Rubin, J. Dominy, and E. Rieffel. xy-mixers: analytical and numerical results for qaoa, 04 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98606-
dc.description.abstract本論文旨在解決量子近似優化演算法(QAOA)在傳統電腦上模擬的效能瓶頸,我們針對背包問題開發了一套高效能平行模擬器。核心創新包含兩點:一、名為「依需求張量積」的電路模擬技術,可將無糾纏電路的複雜度從指數級降至線性級 (O(n)) ; 而對於更複雜的 Copula 混合器,也能帶來 n 倍的理論加速。二、我們提出一種「漸進式搜索」(Progressive Search)策略,透過二階段的由粗至精搜索,將參數優化效率提升超過 7 倍,同時對最終的解品質影響極小。
結合上述創新與多 GPU 平行化,本研究成功將模擬規模從過去的 10 個量子位元擴展至 100 個,並將數小時的計算縮短至數秒內,總體效能提升超過 400 倍。此外,本研究根據問題規模,為 Copula 與沙漏(Hourglass)兩種混合器的選擇提供了實用的效能與精度權衡建議。
zh_TW
dc.description.abstractThis thesis addresses the performance bottlenecks in classical simulations of the Quantum Approximate Optimization Algorithm (QAOA) at depth p=1 by developing a high-performance, parallel simulator for the Knapsack Problem. Its core innovations are twofold: 1) A ”Tensor Product on Demand” circuit simulation technique that reduces complexity from exponential to linear (O(n)) for entangle-free circuits and provides an n-fold speedup for complex mixers. 2) A ”Progressive Search” strategy that improves parameter optimization efficiency by over 7x through a two-phase search while having a negligible impact on the final solution quality.
Integrating these innovations with multi-GPU parallelization, our work successfully scales simulations from the previous 10-qubit limit to 100 qubits. This slashes computation times from hours to seconds, achieving an overall performance gain of over 400x. The research also provides practical guidance on the trade-offs between the Copula and Hourglass mixers, depending on problem scale, for balancing performance and accuracy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:03:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:03:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee ii
Acknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Background and Related Work 4
2.1 0/1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Fundamentals of Quantum Computing . . . . . . . . . . . . . . . . . 5
2.3 The Quantum Approximate Optimization Algorithm . . . . . . . . . 6
2.4 Applying QAOA to the Knapsack Problem . . . . . . . . . . . . . . 8
2.5 Constraint Handling Strategies in QAOA . . . . . . . . . . . . . . . 10
2.6 Approximate ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Greedy-Informed QAOA for Constrained Knapsack Problems . . . . 12
2.7.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Biased Initialization with a Greedy Strategy . . . . . . . . . . . . . 12
2.7.3 The Hourglass Mixer for Biased State Exploration . . . . . . . . . . 13
2.7.4 The Copula Mixer for Correlated Exploration . . . . . . . . . . . . 15
2.8 Quantum Circuit Simulation . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3 Methodology 18
3.1 High-Performance Simulation with ”Tensor Product on Demand” . . 18
3.1.1 Tensor Product on Demand for Entangle-free circuit . . . . . . . . . 19
3.1.2 Merging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Efficient Parameter Warm-start Optimization . . . . . . . . . . . . . 24
3.2.1 Parallel Execution Model . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Progressive Search: A coarse-to-fine strategy . . . . . . . . . . . . 26
3.3 Support QAOA for knapsack problem to hundred qubits . . . . . . . 29
Chapter 4 Evaluation 31
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Circuit-Level Optimization Performance . . . . . . . . . . . . . . . 32
4.2.1 Entanglement-Free Simulation with the Hourglass Mixer . . . . . . 32
4.2.2 Merging Strategy for the Ring Copula Mixer . . . . . . . . . . . . . 33
4.3 Algorithm-Level Optimization Performance: Progressive Search . . . 33
4.4 Overall Performance Gains . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Comparison with Classical Algorithms . . . . . . . . . . . . . . . . 35
Chapter 5 Conclusion 37
References 38
-
dc.language.isoen-
dc.subject背包問題zh_TW
dc.subject量子近似優化演算法zh_TW
dc.subject參數優化zh_TW
dc.subject高效能計算zh_TW
dc.subject量子電路模擬zh_TW
dc.subjectQuantum Circuit Simulationen
dc.subjectHigh-Performance Computingen
dc.subjectParameter Optimizationen
dc.subjectKnapsack Problemen
dc.subjectQuantum Approximate Optimization Algorithm (QAOA)en
dc.title可擴展且可平行的 QAOA 模擬器,用於解決背包問題zh_TW
dc.titleA Scalable and Parallel QAOA Simulator for Solving the Knapsack Problemen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江介宏;涂嘉恒zh_TW
dc.contributor.oralexamcommitteeJie-Hong Jiang;Chia-Heng Tuen
dc.subject.keyword量子近似優化演算法,背包問題,量子電路模擬,高效能計算,參數優化,zh_TW
dc.subject.keywordQuantum Approximate Optimization Algorithm (QAOA),Knapsack Problem,Quantum Circuit Simulation,High-Performance Computing,Parameter Optimization,en
dc.relation.page39-
dc.identifier.doi10.6342/NTU202503308-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved