請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪士灝 | zh_TW |
| dc.contributor.advisor | Shih-Hao Hung | en |
| dc.contributor.author | 侯善融 | zh_TW |
| dc.contributor.author | Shan-Jung Hou | en |
| dc.date.accessioned | 2025-08-18T01:03:19Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1] Aer - high performance quantum circuit simulation for qiskit, 2024.
[2] H. Bayraktar, A. Charara, D. Clark, S. Cohen, T. Costa, Y.-L. L. Fang, Y. Gao, J. Guan, J. Gunnels, A. Haidar, A. Hehn, M. Hohnerbach, M. Jones, T. Lubowe, D. Lyakh, S. Morino, P. Springer, S. Stanwyck, I. Terentyev, S. Varadhan, J. Wong, and T. Yamaguchi. cuquantum sdk: A high-performance library for accelerating quantum science, 2023. [3] W. v. Dam, K. Eldefrawy, N. Genise, and N. Parham. Quantum Optimization Heuristics with an Application to Knapsack Problems . In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 160–170, Los Alamitos, CA, USA, Oct. 2021. IEEE Computer Society. [4] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm. 11 2014. [5] S. Hadfield, Z. Wang, B. O'Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12(2), 2019. [6] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97:849–872, 2019. [7] T. Jones, A. Brown, I. Bush, and S. C. Benjamin. Quest and high performance simulation of quantum computers. Scientific Reports, 9(1), July 2019. [8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983. [9] A. Lucas. Ising formulations of many np problems. Frontiers in Physics, Volume 2-2014, 2014. [10] S. Mirjalili and A. Lewis. The whale optimization algorithm. Advances in Engineering Software, 95:51–67, 2016. [11] A. Montanez-Barrera, D. Willsch, A. Maldonado-Romo, and K. Michielsen. Unbalanced penalization: A new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms. Quantum Science and Technology, 9, 04 2024. [12] N. Van Thieu and S. Mirjalili. Mealpy: An open-source library for latest metaheuristic algorithms in python. Journal of Systems Architecture, 2023. [13] Z. Wang, N. Rubin, J. Dominy, and E. Rieffel. xy-mixers: analytical and numerical results for qaoa, 04 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98606 | - |
| dc.description.abstract | 本論文旨在解決量子近似優化演算法(QAOA)在傳統電腦上模擬的效能瓶頸,我們針對背包問題開發了一套高效能平行模擬器。核心創新包含兩點:一、名為「依需求張量積」的電路模擬技術,可將無糾纏電路的複雜度從指數級降至線性級 (O(n)) ; 而對於更複雜的 Copula 混合器,也能帶來 n 倍的理論加速。二、我們提出一種「漸進式搜索」(Progressive Search)策略,透過二階段的由粗至精搜索,將參數優化效率提升超過 7 倍,同時對最終的解品質影響極小。
結合上述創新與多 GPU 平行化,本研究成功將模擬規模從過去的 10 個量子位元擴展至 100 個,並將數小時的計算縮短至數秒內,總體效能提升超過 400 倍。此外,本研究根據問題規模,為 Copula 與沙漏(Hourglass)兩種混合器的選擇提供了實用的效能與精度權衡建議。 | zh_TW |
| dc.description.abstract | This thesis addresses the performance bottlenecks in classical simulations of the Quantum Approximate Optimization Algorithm (QAOA) at depth p=1 by developing a high-performance, parallel simulator for the Knapsack Problem. Its core innovations are twofold: 1) A ”Tensor Product on Demand” circuit simulation technique that reduces complexity from exponential to linear (O(n)) for entangle-free circuits and provides an n-fold speedup for complex mixers. 2) A ”Progressive Search” strategy that improves parameter optimization efficiency by over 7x through a two-phase search while having a negligible impact on the final solution quality.
Integrating these innovations with multi-GPU parallelization, our work successfully scales simulations from the previous 10-qubit limit to 100 qubits. This slashes computation times from hours to seconds, achieving an overall performance gain of over 400x. The research also provides practical guidance on the trade-offs between the Copula and Hourglass mixers, depending on problem scale, for balancing performance and accuracy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:03:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:03:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee ii
Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Background and Related Work 4 2.1 0/1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Fundamentals of Quantum Computing . . . . . . . . . . . . . . . . . 5 2.3 The Quantum Approximate Optimization Algorithm . . . . . . . . . 6 2.4 Applying QAOA to the Knapsack Problem . . . . . . . . . . . . . . 8 2.5 Constraint Handling Strategies in QAOA . . . . . . . . . . . . . . . 10 2.6 Approximate ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.7 Greedy-Informed QAOA for Constrained Knapsack Problems . . . . 12 2.7.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7.2 Biased Initialization with a Greedy Strategy . . . . . . . . . . . . . 12 2.7.3 The Hourglass Mixer for Biased State Exploration . . . . . . . . . . 13 2.7.4 The Copula Mixer for Correlated Exploration . . . . . . . . . . . . 15 2.8 Quantum Circuit Simulation . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 3 Methodology 18 3.1 High-Performance Simulation with ”Tensor Product on Demand” . . 18 3.1.1 Tensor Product on Demand for Entangle-free circuit . . . . . . . . . 19 3.1.2 Merging Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Efficient Parameter Warm-start Optimization . . . . . . . . . . . . . 24 3.2.1 Parallel Execution Model . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Progressive Search: A coarse-to-fine strategy . . . . . . . . . . . . 26 3.3 Support QAOA for knapsack problem to hundred qubits . . . . . . . 29 Chapter 4 Evaluation 31 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Circuit-Level Optimization Performance . . . . . . . . . . . . . . . 32 4.2.1 Entanglement-Free Simulation with the Hourglass Mixer . . . . . . 32 4.2.2 Merging Strategy for the Ring Copula Mixer . . . . . . . . . . . . . 33 4.3 Algorithm-Level Optimization Performance: Progressive Search . . . 33 4.4 Overall Performance Gains . . . . . . . . . . . . . . . . . . . . . . . 34 4.5 Comparison with Classical Algorithms . . . . . . . . . . . . . . . . 35 Chapter 5 Conclusion 37 References 38 | - |
| dc.language.iso | en | - |
| dc.subject | 背包問題 | zh_TW |
| dc.subject | 量子近似優化演算法 | zh_TW |
| dc.subject | 參數優化 | zh_TW |
| dc.subject | 高效能計算 | zh_TW |
| dc.subject | 量子電路模擬 | zh_TW |
| dc.subject | Quantum Circuit Simulation | en |
| dc.subject | High-Performance Computing | en |
| dc.subject | Parameter Optimization | en |
| dc.subject | Knapsack Problem | en |
| dc.subject | Quantum Approximate Optimization Algorithm (QAOA) | en |
| dc.title | 可擴展且可平行的 QAOA 模擬器,用於解決背包問題 | zh_TW |
| dc.title | A Scalable and Parallel QAOA Simulator for Solving the Knapsack Problem | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江介宏;涂嘉恒 | zh_TW |
| dc.contributor.oralexamcommittee | Jie-Hong Jiang;Chia-Heng Tu | en |
| dc.subject.keyword | 量子近似優化演算法,背包問題,量子電路模擬,高效能計算,參數優化, | zh_TW |
| dc.subject.keyword | Quantum Approximate Optimization Algorithm (QAOA),Knapsack Problem,Quantum Circuit Simulation,High-Performance Computing,Parameter Optimization, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202503308 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
