Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author何宣芮zh_TW
dc.contributor.authorHsuan-Jui Hoen
dc.date.accessioned2025-08-18T01:03:06Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1] MAVLab, DelFly Micro. Accessed: Apr. 18, 2023. [Online]. Available: https://www.delfly.nl/micro/
[2] R. J. Wood, "Liftoff of a 60mg flapping-wing MAV," in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, Nov. 2007, pp. 1889-1894.
[3] N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, "Untethered flight of an insect-sized flapping-wing microscale aerial vehicle." Nature, vol. 570, no. 7762, pp. 491–495, June 2019.
[4] T. Ozaki, N. Ohta, T. Jimbo, and K. Hamaguchi, "A wireless radiofrequencypowered insect-scale flapping-wing aerial vehicle." Nature Electronics, vol. 4, no.11, pp. 845–852, Nov. 2021.
[5] V. Iyer, R. Nandakumar, A. Wang, S. B. Fuller, and S. Gollakota, "Living IoT: A flying wireless platform on live insects," in The 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, Oct. 2019, pp. 1–15.
[6] B. M. Hasaneen and A. A. Elbaset Mohammed, "Design and simulation of DC/DC boost converter," 2008 12th International Middle-East Power System Conference, Aswan, Egypt, Mar. 2008, pp. 335-340.
[7] T. Oh, O. Hassan, S. Shamsir and S. K. Islam, "DC-DC boost converter design with maximum power point racker (MPPT) used in RF energy harvester," 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, June 2019, pp. 1-5.
[8] G. Saini, S. Sarkar, M. Arrawatia and M. S. Baghini, "Efficient power management circuit for RF energy harvesting with 74.27% efficiency at 623nW available power," 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver, BC, Canada, June 2016, pp. 1-4.
[9] F. Galea, O. Casha, I. Grech, E. Gatt and J. Micallef, "An ultra low power CMOS MPPT power conditioning circuit for energy harvesters," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, Oct. 2020, pp. 1-5.
[10] Q. Liu, X. Wu, M. Zhao, L. Wang and X. Shen, "30–300mV input, ultra-low power, self-startup DC-DC boost converter for energy harvesting system," 2012 IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, Taiwan, Dec. 2012, pp. 432-435.
[11] Robert W. Erickson, and Dragan Maksimović, Fundamentals of Power Electronics, 3rd ed., Springer Nature Switzerland AG, 2020.
[12] S. Kapat and P. T. Krein, "A tutorial and review discussion of modulation, control and tuning of high-performance DC-DC converters based on small-signal and large-signal approaches," in IEEE Open Journal of Power Electronics, vol. 1, pp. 339-371, Aug. 2020.
[13] Feng Yu, “Modeling of V2 control with composite capacitors and average current mode control”, master's thesis Virginia Polytechnic Institute and State University, May 2011.
[14] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang and I. Batarseh, "Analysis and design of voltage regulator with adaptive FET modulation scheme and improved efficiency," in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896906, March 2008.
[15] H. Rasool, A. Zhaksylyk, S. Chakraborty, M. E. Baghdadi and O. Hegazy, "Optimal design strategy and electro-thermal modelling of a high-power off-board charger for electric vehicle applications," 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, Sep. 2020, pp. 1-8.
[16] “An efficiency primer for switch-mode, DC-DC converter power supplies.”, Dec. 2008. [Online]. Available: https://www.analog.com/en/resources/technical-articles/an-efficiency-primer-forswitchmode-dcdc-converter-power-supplies.html
[17] N. -M. Sze, W. -H. Ki and C. -Y. Tsui, "Threshold voltage start-up boost converter for sub-mA applications," 4th IEEE International Symposium on Electronic Design, Test and Applications (delta 2008), Hong Kong, China, Jan. 2008, pp. 338-341.
[18] T. Y. Man, P. K. T. Mok and M. J. Chan, "A 0.9-V input discontinuous-conductionmode boost converter with CMOS-control rectifier," in IEEE Journal of SolidState Circuits, vol. 43, no. 9, pp. 2036-2046, Sep. 2008.
[19] Razavi, B., Design of Analog CMOS Integrated Circuits, 2nd ed., McGraw-Hill, Inc., 2000.
[20] https://digilent.com/reference/test-and-measurement/analog-discovery3/start?srsltid=AfmBOorLXbgbx-b76CN96AvbzStxcgszswIxstoQMppw0JhfAhxp5KR
[21] Y. Qian, H. Zhang, Y. Chen, Y. Qin, D. Lu and Z. Hong, "A SIDIDO DC–DC converter with dual-mode and programmable-capacitor-array MPPT control for thermoelectric energy harvesting," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 8, pp. 952-956, Aug. 2017.
[22] I. -C. Chen, C. -W. Liang and T. -H. Tsai, "A single-inductor dual-input dual-output DC–DC converter for photovoltaic and piezoelectric energy harvesting systems," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 10, pp. 1763-1767, Oct. 2019.
[23] T. Das and P. Mandal, "On-chip inductor-less DC-DC boost converter with nonoverlapped rotational-interleaving scheme," 2010 23rd International Conference on VLSI Design, Bangalore, India, Jan. 2010, pp. 324-329.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98605-
dc.description.abstract本篇論文主要是為用無線功率傳輸的於生物之飛行器的感測平台作供電設計。使用無線功率座位輸入源會遇到低功率及低輸入電壓的問題,此篇論文的DC-DC升壓轉換器主要是將低輸入0.5V電壓源升壓至1.8V。DC-DC 升壓轉換器升壓轉換器使用電晶體電路以達到二極體的功用,可以減少導通時的跨壓及不需要電流偵測電路,可以減少電路設計的複雜度。此篇論文使用TSMC標準0.18m CMOS製程設計,晶片面積為1.2 x 1.2 mm2,在0.5V輸入電壓時,模擬的輸出電壓可達1.88V 且效率為78.1%。晶片量測輸出電壓為1.4V,效率為2.14%-5.15%。推測輸出電壓較低及效率較低的原因為PMOS汲極處電壓震盪導致PMOS無法正常開關,電感電流流經body diode,造成能量上的損耗。zh_TW
dc.description.abstractThis paper designs a power supply for the sensing platform of living IoT using wireless power transmission. The DC-DC boost converter in this paper mainly boosts the low input voltage source of 0.5V to 1.8V for a sensing platform. The DC-DC boost converter uses a transistor circuit to achieve the function of a diode, which can reduce the cross-voltage when conducting. It does not require a current detection circuit, which can reduce the complexity of circuit design. This paper uses a standard TSMC 0.18μm CMOS process design, and the chip size is 1.2 x 1.2 mm2. At a 0.5V input voltage, the simulated output voltage can reach 1.883V and the efficiency is 78.1%. The measured output voltage is 1.4V, and the efficiency of the chip is 2.14%-5.15%. It is speculated that the reason for the lower output voltage and low efficiency is that the voltage oscillation at the PMOS drain causes the PMOS to fail to switch normally, and the inductor current flows through the body diode, causing power loss.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:03:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:03:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 ix
表次 xvi
Chapter 1 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 3
1.3 論文貢獻 12
1.4 章節介紹 13
Chapter 2 常見DC-DC轉換器電路介紹 15
2.1 簡介 15
2.2 DC-DC轉換器基本概念與重要參數 15
2.2.1 電感伏秒平衡定理 15
2.2.2 電容電荷平衡 16
2.2.3 電感電流連續模式及電感電流不連續模式 17
2.2.4 工作週期 17
2.3 DC-DC降壓轉換器 18
2.3.1 簡介 18
2.3.2 DC-DC降壓轉換器電感電流連續模式 18
2.3.3 DC-DC降壓轉換器電感電流不連續模式 20
2.4 DC-DC升壓轉換器 22
2.4.1 簡介 22
2.4.2 DC-DC升壓轉換器電感電流連續模式 22
2.4.3 DC-DC升壓轉換器電感電流不連續模式 24
2.5 DC-DC降壓升壓轉換器 26
2.5.1 簡介 26
2.5.2 DC-DC降壓升壓轉換器電感電流連續模式 26
2.5.3 DC-DC降壓升壓轉換器電感電流不連續模式 28
2.6 脈寬調變Pulse width modulation (PWM) 30
2.6.1 PWM及PFM比較 30
2.6.2 PWM回授訊號種類 31
2.7 電路元件能量損耗 33
2.8 其他電路 36
2.8.1 啟動電路 36
2.8.2 主動二極體電路 38
Chapter 3 電路設計 43
3.1 簡介及設計目標 43
3.2 啟動電路 46
3.2.1 NOT-D子電路 46
3.2.2 啟動電路運作原理 47
3.3 主動二極體(電晶體控制整流器) 48
3.4 工作週期訊號產生器 50
3.4.1 回授訊號與理想訊號比較電路 51
3.4.2 脈寬調變電路 54
3.5 啟動電路與穩態時序說明 58
3.6 整體電路模擬結果 58
3.6.1 Pre-sim模擬結果 58
3.6.2 Post-sim模擬結果 62
Chapter 4 電路量測 68
4.1 量測準備 68
4.1.1 印刷電路板 68
4.1.2 偏壓及控制訊號 71
4.1.3 量測環境 76
4.1.4 效率量測方式 77
4.2 量測結果 78
4.2.1 啟動電路運作 78
4.2.2 啟動電路切換至工作週期產生器電路運作過程 81
4.2.3 工作週期產生器電路運作時穩態情形 82
4.2.4 效率量測 86
4.3 問題與討論 88
Chapter 5 結論與未來展望 96
5.1 結論 96
5.2 未來與展望 97
參考文獻 99
-
dc.language.isozh_TW-
dc.subjectDC-DC升壓轉換器zh_TW
dc.subject主動二極體zh_TW
dc.subjectCMOSzh_TW
dc.subject電晶體控制整流器zh_TW
dc.subjectCMOS-control rectifier (CCR)en
dc.subjectDC-DC boost converteren
dc.subjectactive diodeen
dc.subjectCMOSen
dc.title以標準0.18μm CMOS製程製作低功率及低輸入電壓脈寬調變升壓轉換器zh_TW
dc.titleLow Power and Low Input Voltage Pulse-Width-Modulated Boost Converter in Standard 0.18μm CMOS Processen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳景然;張譽騰zh_TW
dc.contributor.oralexamcommitteeChing-Jan Chen;Yu-Teng Changen
dc.subject.keywordDC-DC升壓轉換器,主動二極體,CMOS,電晶體控制整流器,zh_TW
dc.subject.keywordDC-DC boost converter,active diode,CMOS,CMOS-control rectifier (CCR),en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202503652-
dc.rights.note未授權-
dc.date.accepted2025-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
13.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved