請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林志民 | zh_TW |
| dc.contributor.advisor | Jim Jr-Min Lin | en |
| dc.contributor.author | 羅冠杰 | zh_TW |
| dc.contributor.author | Guan-Jie Luo | en |
| dc.date.accessioned | 2025-08-18T01:02:53Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | (1) Hamaguchi, T.; Ono, K.; Yamada, M. Curcumin and Alzheimer's disease. CNS Neurosci. Ther. 2010, 16 (5), 285-297.
(2) Kockler, J.; Robertson, S.; Oelgemöller, M.; Davies, M.; Bowden, B.; Brittain, H. G.; Glass, B. D. Butyl methoxy dibenzoylmethane. Profiles of Drug Substances, Excipients and Related Methodology 2013, 38, 87-111. (3) Podyachev, S.; Sudakova, S.; Galiev, A.; Mustafina, A.; Syakaev, V.; Shagidullin, R.; Bauer, I.; Konovalov, A. Synthesis of tris (β-diketones) and study of their complexation with some transition metals. Russ. Chem. Bull. 2006, 55, 2000-2007. (4) Meany, J. E. Reversible tautomerization of acetylacetone enol. I. Metal ion catalysis. The Journal of Physical Chemistry 1969, 73 (10), 3421-3423. (5) Radzyminska-Lenarcik, E.; Witt, K. The application of acetylacetone for the separation of heavy metals in roadside soil belts by extraction methods. Desalination and Water Treatment 2020, 186, 191-198. (6) Sodhi, R. K.; Paul, S. An overview of metal acetylacetonates: Developing areas/routes to new materials and applications in organic syntheses. Catalysis surveys from Asia 2018, 22, 31-62. (7) Glukhacheva, V. S.; Il’yasov, S. G.; Kazantsev, I. V.; Shestakova, E. O.; Il’yasov, D. S.; Eltsov, I. V.; Nefedov, A. A.; Gatilov, Y. V. New reaction products of acetylacetone with semicarbazide derivatives. ACS omega 2021, 6 (12), 8637-8645. (8) Eidinoff, M. L. Dissociation constants of acetylacetone, ethyl acetoacetate and benzoylacetone. J. Am. Chem. Soc. 1945, 67 (12), 2072-2073. (9) Bruice, P. Y. Role of the acidity of the ketone in determining the mechanism of enolization via proton abstraction from ketone, carbinolamine, or imine. Catalysis of the enolization of 2, 4-pentanedione and 3-methyl-2, 4-pentanedione by oxyanions and by primary, secondary, and tertiary amines. J. Am. Chem. Soc. 1990, 112 (20), 7361-7368. (10) Zhang, C.; Zhang, G.; Zheng, H.; Zhang, S. The Interplay of Hydration and Hydrolysis upon the Keto–Enol Tautomerism of β-Diketones. J. Chem. Educ. 2024, 101 (12), 5460-5467. (11) Messaadia, L.; El Dib, G.; Ferhati, A.; Chakir, A. UV–visible spectra and gas-phase rate coefficients for the reaction of 2, 3-pentanedione and 2, 4-pentanedione with OH radicals. Chem. Phys. Lett. 2015, 626, 73-79. (12) Watarai, H.; Suzuki, N. Keto-enol tautomerization rates of acetylacetone in mixed aqueous media. J. Inorg. Nucl. Chem. 1974, 36 (8), 1815-1820. (13) Spyridis, G. T.; Meany, J. Tautomerization of acetylacetone enol: A physical organic experiment in kinetics and thermodynamics. J. Chem. Educ. 1988, 65 (5), 461. DOI: 10.1021/ed065p461. (14) Watarai, H.; Suzuki, N. Partition kinetic studies of acetylacetone: Base-catalysis in aqueous phase and solvent dependence. J. Inorg. Nucl. Chem. 1976, 38 (2), 301-304. (15) Watarai, H.; Suzuki, N. The base-catalyzed tautomerization of acetylacetone in organic solvents. The correlation of the catalytic coefficient with the partition coefficient. Bull. Chem. Soc. Jpn. 1979, 52 (10), 2778-2782. (16) Dawber, J. G.; Crane, M. M. Keto-enol tautomerization: A thermodynamic and kinetic study. J. Chem. Educ. 1967, 44 (3), 150. (17) Howard, D. L.; Kjaergaard, H. G.; Huang, J.; Meuwly, M. Infrared and near-infrared spectroscopy of acetylacetone and hexafluoroacetylacetone. J. Phys. Chem. A 2015, 119 (29), 7980-7990. (18) Reeves, L. Nuclear magnetic resonance measurements in solutions of acetylacetone: the effect of solvent interactions on the tautomeric equilibrium. Can. J. Chem. 1957, 35 (11), 1351-1365. (19) Sandusky, P. O. Expansion of the Classic Acetylacetone Physical Chemistry Laboratory NMR Experiment: Correlation of the Enol–Keto Equilibrium Position with the Solvent Dipole Moment. J. Chem. Educ. 2014, 91 (5), 739-742. (20) Manbeck, K. A.; Boaz, N. C.; Bair, N. C.; Sanders, A. M.; Marsh, A. L. Substituent effects on keto–enol equilibria using NMR spectroscopy. J. Chem. Educ. 2011, 88 (10), 1444-1445. (21) Schweitzer, G. K.; Benson, E. W. Enol content of some. beta.-diketones. J. Chem. Eng. Data 1968, 13 (3), 452-453. (22) Nichols, M. A.; Waner, M. J. Kinetic and mechanistic studies of the deuterium exchange in classical keto−enol tautomeric equilibrium reactions. J. Chem. Educ. 2010, 87 (9), 952-955. (23) Mills, S. G.; Beak, P. Solvent effects on keto-enol equilibria: tests of quantitative models. The Journal of Organic Chemistry 1985, 50 (8), 1216-1224. (24) Maryott, A. A.; Smith, E. R. Table of dielectric constants of pure liquids; US Government Printing Office, 1951. (25) Gregory, A.; Clarke, R. Traceable measurements of the static permittivity of dielectric reference liquids over the temperature range 5–50 C. Meas. Sci. Technol. 2005, 16 (7), 1506. (26) Watarai, H.; Suzuki, N. Keto-enol tautomerization rates of acetylacetone in water-acetonitrile and water-dimethyl sulfoxide mixtures: Rate-partition relationship. J. Inorg. Nucl. Chem. 1976, 38 (9), 1683-1686. (27) van Beek, J. D. matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab®. J. Magn. Reson. 2007, 187 (1), 19-26. (28) Petrakis, L. Spectral line shapes: Gaussian and Lorentzian functions in magnetic resonance. J. Chem. Educ. 1967, 44 (8), 432. (29) Voter, A. F. Introduction to the kinetic Monte Carlo method. In Radiation effects in solids, Springer, 2007; pp 1-23. (30) Alagona, G.; Ghio, C.; Nagy, P. I. The catalytic effect of water on the keto–enol tautomerism. Pyruvate and acetylacetone: a computational challenge. Physical Chemistry Chemical Physics 2010, 12 (35), 10173-10188. (31) Yamabe, S.; Tsuchida, N.; Miyajima, K. Reaction paths of keto− enol tautomerization of β-diketones. J. Phys. Chem. A 2004, 108 (14), 2750-2757. (32) Delchev, V. B. Hydrogen bonded complexes of acetylacetone and methanol: HF and DFT level study. Monatshefte für Chemie/Chemical Monthly 2004, 135, 249-260. (33) Schlund, S.; Basílio Janke, E. M.; Weisz, K.; Engels, B. Predicting the tautomeric equilibrium of acetylacetone in solution. I. The right answer for the wrong reason? J. Comput. Chem. 2010, 31 (4), 665-670. (34) Agmon, N. The grotthuss mechanism. Chem. Phys. Lett. 1995, 244 (5-6), 456-462. (35) Rondinini, S.; Longhi, P.; Mussini, P.; Mussini, T. Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure and Applied Chemistry 1987, 59 (12), 1693-1702. (36) Abrash, H. I. The relative acidities of water and methanol. J. Chem. Educ. 2001, 78 (11), 1496. (37) Bell, R. P. Acids and Bases: Their Quantitative Behaviour; Methuen, 1969. (38) Williams, D. L. H.; Xia, L. Electrophilic substitution in malonamide. Evidence for reaction via the enol tautomer. Journal of the Chemical Society, Perkin Transactions 2 1993, (8), 1429-1432. (39) Toullec, J.; Dubois, J. Methylidyne-methylidyne-d and water-water-d2 isotope effects on the forward and reverse rates of keto-enol tautomerization of acetone in acidic media. J. Am. Chem. Soc. 1974, 96 (11), 3524-3532. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98604 | - |
| dc.description.abstract | β-二羰基化合物,也稱為1, 3-二羰基化合物,在合成、配位化學及生物化學上有許多應用。乙醯丙酮 (AA) 為最簡單形式的β-二羰基化合物,在不同溶劑中以各自的平衡常數與反應速率進行烯醇與酮式間的異構化反應。此實驗透過紫外線吸收光譜法與核磁共振探討AA在水、甲醇、乙醇、乙腈及它們的氘化溶劑中烯醇與酮式間異構化反應的動力學。實驗結果呈現AA的異構化反應在不涉及同位素交換時為一級反應動力學,且各溶劑中異構化速率為水 > 醇類 > 乙腈。此外在CH3CN與醇類中,鹼催化效應分別為269及1715 s−1 M−1;酸催化效應僅在CH3CN中較為顯著,且值比鹼催化效應弱,為4.19 s−1 M−1;在CH3CN與醇類中,水催化效應分別為1.69×10−4及1.51×10−3 s−1 M−1。為了了解受同位素交換影響的偏離一級反應動力學的行為,我們分別在沒受鹼與受鹼催化的條件下提出動力學模型去模擬異構化反應中AA各形式的變化。模擬結果呈現AA異構化反應伴隨著同位素交換,且可透過溶劑形成的架橋與作為反應中間物的烯醇陰離子加速反應。此外,烯醇陰離子可以在沒有異構化反應下作同位素交換。最後AA於水及甲醇中異構化反應的動力學同位素效應 (kinetic isotope effect, KIE, kH/kD) 分別為6.15 ± 0.39與6.35 ± 0.17。 | zh_TW |
| dc.description.abstract | β-diketones, also known as 1,3-diketones, are compounds have a variety of applications on synthesis, coordination chemistry, and biochemistry. Acetylacetone (AA) is the simplest form of β-diketones, tautomerizing between enol form and keto form with an equilibrium constant depending on solvents. In this work, the enol-keto tautomerization of acetylacetone (AA) in water, methanol, ethanol, acetonitrile, and their deuterated solvents was investigated using ultraviolet (UV) spectroscopy and nuclear magnetic resonance (NMR). The results reveal that AA tautomerization follows first order kinetics when isotope exchange is not involved. The tautomerization rates of AA in solvents are water > alcohols > acetonitrile. In addition, base catalytic effects in CH3CN and alcohols are determined to be 269 and 1715 s−1 M−1, respectively. Acid catalytic effects are insignificant in all studied solvents except in CH3CN, where a weak catalytic effect of 4.19 s−1 M−1 is observed. Water catalytic effects are 1.69×10−4 and 1.51×10−3 s−1 M−1 in CH3CN and alcohols, respectively. To account for the non-exponential behavior due to the isotope exchange, two kinetic models were proposed to simulate the concentration profiles under both base-free and base-catalyzed conditions. The results suggest that AA tautomerization and isotope exchange proceed concurrently, facilitated by the solvent bridge and the enolate intermediate. Moreover, the enolate form enables isotope exchange in the absence of tautomerization. Finally, kinetic isotope effects (KIEs, kH/kD) of AA tautomerization in water and methanol are determined to be 6.15 ± 0.39 and 6.35 ± 0.17, respectively. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:02:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T01:02:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Acetylacetone (AA) tautomerization 1 Chapter 2 Experimental section 4 2.1 Materials 4 2.2 pH measurement 4 2.2.1 pH meter 4 2.3 Kinetics measurement 5 2.3.1 UV absorption spectroscopy 5 2.3.2 80 MHz NMR 5 2.3.3 600 MHz NMR 8 2.3.4 Monte-Carlo method and tautomerization mechanisms 9 Chapter 3 Results and Discussion 11 3.1 AA UV absorption 11 3.1.1 Solvatochromic effect 11 3.1.2 Molar absorption coefficient 12 3.2 First-order kinetics 13 3.3 Acid-base catalytic effect 15 3.3.1 Catalytic effects of NaOH and HCL in solvents 16 3.3.2 Proton abstraction mechanism 18 3.3.3 Catalytic effect of TEA in acetonitrile 18 3.4 Residual base in solvents and cuvettes 20 3.5 Water catalytic effect 23 3.5.1 Rates in binary solvents (water and organic solvent) 23 3.5.2 Quantification 25 3.5.3 Proton-hopping mechanism 27 3.6 Kinetic isotope effect (KIE) 28 3.6.1 Mechanism 1 simulation and Monte Carlo method 30 3.6.2 Mechanism 2 simulating — base catalytic effect 43 Chapter 4 Conclusions 47 Chapter 5 Supporting information 48 REFERENCE 73 | - |
| dc.language.iso | en | - |
| dc.subject | 乙醯丙酮 | zh_TW |
| dc.subject | 異構化反應 | zh_TW |
| dc.subject | 反應動力學 | zh_TW |
| dc.subject | 紫外線吸收光譜法 | zh_TW |
| dc.subject | 核磁共振儀 | zh_TW |
| dc.subject | 動力學同位素效應 | zh_TW |
| dc.subject | reaction kinetics | en |
| dc.subject | acetylacetone | en |
| dc.subject | kinetic isotope effect | en |
| dc.subject | NMR | en |
| dc.subject | UV absorption spectroscopy | en |
| dc.subject | tautomerization | en |
| dc.title | 乙醯丙酮於溶劑中烯醇與酮的異構化反應動力學與機制 | zh_TW |
| dc.title | Kinetics and Mechanism of Enol-Keto Tautomerization of Acetylacetone in Solvents | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 姜昌明;余慈顏 | zh_TW |
| dc.contributor.oralexamcommittee | Chang-Ming Jiang;Tsyr-Yan Yu | en |
| dc.subject.keyword | 乙醯丙酮,異構化反應,反應動力學,紫外線吸收光譜法,核磁共振儀,動力學同位素效應, | zh_TW |
| dc.subject.keyword | acetylacetone,tautomerization,reaction kinetics,UV absorption spectroscopy,NMR,kinetic isotope effect, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202503041 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 9.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
