Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡zh_TW
dc.contributor.advisorChing-I Huangen
dc.contributor.author鍾筑雲zh_TW
dc.contributor.authorZhu-Yun Zhongen
dc.date.accessioned2025-08-18T01:02:14Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] Hua, Y.; Liu, J.; Zhang, J.; Liu, Z.; Hu, G.; Yang, Y.; Sui, Y.; Sun, J.; Gu, X.; Zhang, S. A compound with boron and phosphorus towards epoxy resin with excellent flame retardancy, smoke suppression, transparency, and dielectric properties. Chemical Engineering Journal 2024, 483, 149212.
[2] Tang, H.; Li, Y.; Zhu, Z.; Zhan, Y.; Li, Y.; Li, K.; Wang, P.; Zhong, F.; Feng, W.; Yang, X. Rational design of high‐performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. Journal of Applied Polymer Science 2024, 141, e55502.
[3] Xiang, Q.; Xiao, F. Applications of epoxy materials in pavement engineering. Construction and Building Materials 2020, 235, 117529.
[4] Kim, K.; Jung, Y. C.; Kim, S. Y.; Yang, B.; Kim, J. Adhesion enhancement and damage protection for carbon fiber-reinforced polymer (CFRP) composites via silica particle coating. Composites Part A: Applied Science and Manufacturing 2018, 109, 105-114.
[5] Zhang, D.; Yang, S.; Zhang, S.; Liu, W.; Pan, H.; Bai, X.; Ma, M.; Shang, Y.; Li, P. Epoxy resin/reduced graphene oxide composites with gradient concentration for aviation deicing. ACS Applied Engineering Materials 2023, 1, 1535-1542.
[6] Ma, Z.; Hao, Z.; Dai, J.; Zhang, H. Graphene-epoxy composite with dual-function of excellent microwave absorption and efficient heat dissipation. Chemical Engineering Journal 2024, 502, 157807.
[7] Sun, Z.; Li, J.; Yu, M.; Kathaperumal, M.; Wong, C.-P. A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chemical Engineering Journal 2022, 446, 137319.
[8] Ahmadi, Z. Nanostructured epoxy adhesives: A review. Progress in Organic Coatings 2019, 135, 449-453.
[9] Tang, Y.; Zhang, X.; Liu, X.; Wei, W.; Li, X. Facile synthesis of hyperbranched epoxy resin for combined flame retarding and toughening modification of epoxy thermosets. Chemical Engineering Journal 2024, 482, 148992.
[10] Epoxy Resin Market by Type (Aliphatic Epoxy Resin, Bisphenol Epoxy Resin, Glycidylamine Epoxy Resin), Physical Form (Liquid, Solid), Source, Application, End-Use - Global Forecast 2025-2030. https://www.gii.tw/report/ires1600799-epoxy-resin-market-by-type-aliphatic-epoxy-resin.html.
[11] Carbon Border Adjustment Mechanism. https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en#latest-developments.
[12] Fam, A.; Fam, S. Review of the US 2050 long term strategy to reach net zero carbon emissions. Energy Reports 2024, 12, 845-860.
[13] Plastics in a circular economy. https://research-and-innovation.ec.europa.eu/research-area/environment/circular-economy/plastics-circular-economy_en.
[14] Matthews, C.; Moran, F.; Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production 2021, 283, 125263.
[15] The U.S. Plastics Pact. https://usplasticspact.org/.
[16] Agenda, I. The new plastics economy rethinking the future of plastics. In World Economic Forum, 2016.
[17] Diana, Z.; Reilly, K.; Karasik, R.; Vegh, T.; Wang, Y.; Wong, Z.; Dunn, L.; Blasiak, R.; Dunphy-Daly, M. M.; Rittschof, D. Voluntary commitments made by the world’s largest companies focus on recycling and packaging over other actions to address the plastics crisis. One Earth 2022, 5, 1286-1306.
[18] Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Science Advances 2017, 3, e1700782.
[19] Law, K. L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials 2022, 7, 104-116.
[20] Yang, Y.; Boom, R.; Irion, B.; Van Heerden, D.-J.; Kuiper, P.; De Wit, H. Recycling of composite materials. Chemical Engineering and Processing: Process Intensification 2012, 51, 53-68.
[21] Bernardeau, F.; Perrin, D.; Caro-Bretelle, A.-S.; Benezet, J.-C.; Ienny, P. Development of a recycling solution for waste thermoset material: waste source study, comminution scheme and filler characterization. Journal of Material Cycles and Waste Management 2018, 20, 1320-1336.
[22] Yang, J.; Liu, J.; Liu, W.; Wang, J.; Tang, T. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen–oxygen atmosphere. Journal of Analytical and Applied Pyrolysis 2015, 112, 253-261.
[23] Pickering, S. J. Recycling technologies for thermoset composite materials—current status. Composites Part A: Applied Science and Manufacturing 2006, 37, 1206-1215.
[24] Shi, X.; Luo, C.; Lu, H.; Yu, K. Primary recycling of anhydride‐cured engineering epoxy using alcohol solvent. Polymer Engineering & Science 2019, 59, E111-E119.
[25] Ma, Y.; Kim, D.; Nutt, S. R. Chemical treatment for dissolution of amine-cured epoxies at atmospheric pressure. Polymer Degradation and Stability 2017, 146, 240-249.
[26] Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. Science 2011, 334, 965-968.
[27] Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Advances 2014, 4, 10108-10117.
[28] Yu, K.; Shi, Q.; Dunn, M. L.; Wang, T.; Qi, H. J. Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials 2016, 26, 6098-6106.
[29] Nevejans, S.; Ballard, N.; Miranda, J. I.; Reck, B.; Asua, J. M. The underlying mechanisms for self-healing of poly(disulfide)s. Physical Chemistry Chemical Physics 2016, 18, 27577-27583.
[30] Ruiz De Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Materials Horizons 2016, 3, 241-247.
[31] Liu, J.; He, Z.; Wu, G.; Zhang, X.; Zhao, C.; Lei, C. Synthesis of a novel nonflammable eugenol-based phosphazene epoxy resin with unique burned intumescent char. Chemical Engineering Journal 2020, 390, 124620.
[32] Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. European Polymer Journal 2013, 49, 1185-1195.
[33] Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential mechanisms of bisphenol A (BPA) contributing to human disease. International Journal of Molecular Sciences 2020, 21, 5761.
[34] Lambré, C.; Barat Baviera, J.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.; Crebelli, R.; Gott, D.; Grob, K.; Lampi, E.; Mengelers, M. EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal 2023, 21, e06857.
[35] Fache, M.; Darroman, E.; Besse, V.; Auvergne, R.; Caillol, S.; Boutevin, B. Vanillin, a promising biobased building-block for monomer synthesis. Green Chemistry 2014, 16, 1987-1998.
[36] Subramaniyan, S.; Bergoglio, M.; Sangermano, M.; Hakkarainen, M. Vanillin‐Derived Thermally Reprocessable and Chemically Recyclable Schiff‐Base Epoxy Thermosets. Global Challenges 2023, 7, 2200234.
[37] Desnoes, E.; Toubal, L.; Bouazza, A. H.; Montplaisir, D. Biosourced vanillin Schiff base platform monomers as substitutes for DGEBA in thermoset epoxy. Polymer Engineering & Science 2020, 60, 2593-2605.
[38] Jaillet, F.; Darroman, E.; Ratsimihety, A.; Auvergne, R.; Boutevin, B.; Caillol, S. New biobased epoxy materials from cardanol. European Journal of Lipid Science and Technology 2014, 116, 63-73.
[39] Ge, M.; Miao, J.-T.; Liang, G.; Gu, A. Biobased epoxy resin with ultrahigh glass transition temperature over 400° C by post-crosslinking strategy. Chemical Engineering Journal 2024, 482, 148993.
[40] 林品均. 運用機器學習探討固化劑分子結構對於環氧樹脂系統機械性質之影響. 國立臺灣大學, 2024.
[41] 蕭宇鴻. 藉由機器學習方法探討固化劑結構對環氧樹脂系統玻璃轉移溫度的關鍵因素. 國立臺灣大學, 2025.
[42] Yu, Q.; Peng, X.; Wang, Y.; Geng, H.; Xu, A.; Zhang, X.; Xu, W.; Ye, D. Vanillin-based degradable epoxy vitrimers: Reprocessability and mechanical properties study. European Polymer Journal 2019, 117, 55-63.
[43] Li, Y.; Liu, T.; Zhang, S.; Shao, L.; Fei, M.; Yu, H.; Zhang, J. Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability. Green Chemistry 2020, 22, 870-881.
[44] Tao, Y.; Fang, L.; Dai, M.; Wang, C.; Sun, J.; Fang, Q. Sustainable alternative to bisphenol A epoxy resin: high-performance recyclable epoxy vitrimers derived from protocatechuic acid. Polymer Chemistry 2020, 11, 4500-4506.
[45] Zihan, W.; Peibin, K.; Tianyu, W.; Dongli, C.; Xiaoping, Y.; Gang, S. Atomistic understanding of cross-linking network in different epoxy resin: Effect of loop structure. Polymer 2022, 243, 124629.
[46] Vashisth, A.; Ashraf, C.; Zhang, W.; Bakis, C. E.; Van Duin, A. C. Accelerated ReaxFF simulations for describing the reactive cross-linking of polymers. The Journal of Physical Chemistry A 2018, 122, 6633-6642.
[47] Kamble, M.; Vashisth, A.; Yang, H.; Pranompont, S.; Picu, C. R.; Wang, D.; Koratkar, N. Reversing fatigue in carbon-fiber reinforced vitrimer composites. Carbon 2022, 187, 108-114.
[48] Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H. ADMET polymerization of bio-based biphenyl compounds. Polymer Chemistry 2015, 6, 7693-7700.
[49] Ferrara, F.; Ribca, I.; Prabhu, N.; Mante, J.; Gumbo, M.; Ekebergh, A.; Johansson, M.; Kann, N. Ruthenium-catalyzed dimerization of vanillin for the formation of a biobased epoxy thermoset resin. RSC Sustainability 2025, 3, 2366-2376.
[50] Savonnet, E.; Grau, E.; Grelier, S.; Defoort, B.; Cramail, H. Divanillin-based epoxy precursors as DGEBA substitutes for biobased epoxy thermosets. ACS Sustainable Chemistry & Engineering 2018, 6, 11008-11017.
[51] Liu, Y.; Sun, Q.; Yu, P.; Wu, Y.; Xu, L.; Yang, H.; Xie, M.; Cheng, T.; Goddard III, W. A. Effects of high and low salt concentrations in electrolytes at lithium–metal anode surfaces using DFT-ReaxFF hybrid molecular dynamics method. The Journal of Physical Chemistry Letters 2021, 12, 2922-2929.
[52] Vashisth, A.; Ashraf, C.; Bakis, C. E.; van Duin, A. C. Effect of chemical structure on thermo-mechanical properties of epoxy polymers: Comparison of accelerated ReaxFF simulations and experiments. Polymer 2018, 158, 354-363.
[53] Miron, R. A.; Fichthorn, K. A. Accelerated molecular dynamics with the bond-boost method. The Journal of Chemical Physics 2003, 119, 6210-6216.
[54] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry 1994, 98, 11623-11627.
[55] Becke, A. D. A new inhomogeneity parameter in density-functional theory. The Journal of Chemical Physics 1998, 109, 2092-2098.
[56] Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. The Journal of chemical physics 2017, 147.
[57] Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012, 33, 580-592.
[58] Scrocco, E.; Tomasi, J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. In Advances in Quantum Chemistry, Vol. 11; Elsevier, 1978; pp 115-193.
[59] Liu, Y.; Zhang, J.; Li, J.; Zhao, Y.; Zhang, M. Impact of SiO 2 doping on the structure and oil–water separation properties of a PVDF membrane: insights from molecular dynamics simulation. RSC advances 2024, 14, 23910-23920.
[60] Karuth, A.; Alesadi, A.; Vashisth, A.; Xia, W.; Rasulev, B. Reactive molecular dynamics study of hygrothermal degradation of crosslinked epoxy polymers. ACS Applied Polymer Materials 2022, 4, 4411-4423.
[61] Liu, S.; Hu, H.; Pedersen, L. G. Steric, quantum, and electrostatic effects on SN2 reaction barriers in gas phase. The Journal of Physical Chemistry A 2010, 114, 5913-5918.
[62] Volkov, V. V. Free volume structure and transport properties of glassy polymers—materials for separating membranes. Polymer journal 1991, 23, 457-466.
[63] Wang, J.; Gong, J.; Gong, Z.; Yan, X.; Wang, B.; Wu, Q.; Li, S. Effect of curing agent polarity on water absorption and free volume in epoxy resin studied by PALS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010, 268, 2355-2361.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98601-
dc.description.abstract在全球日益重視環境永續與循環經濟的背景下,可回收高性能材料的開發成為高分子科學中亟需突破的課題,環氧樹脂因其優異的熱穩定性與機械強度廣泛應用於電子、航太及複合材料領域,然其難以降解的交聯網狀結構亦造成嚴重環境負擔。為此本研究從分子結構設計出發,透過材料改質並結合分子動力學模擬,系統性探討材料結構對降解行為及熱、機械性質的綜合影響,期望提出兼具高性能與具可回收性的環氧材料設計新思維。本研究以具剛性芳香環結構的香草醛為改質基礎,設計出Vanillin-Epoxy 4 (V-EP4)與Vanillin-Epoxy 2 (V-EP2)兩種分別具有高、低立體位障結構之環氧單體,並搭配None、Carbonyl (C)、Sulfone (S)三種固化劑以調控反應位點電子密度,藉由調控環氧樹脂自身立體位障與反應位點電子密度,系統性分析材料結構對降解速率、熱與機械性質的影響。首先透過Electrostatic potential (ESP)計算,我們知道了以碸基改質之固化劑S可有效降低羧基反應位點的電子密度,其次是以羰基改質之C,最後則是未額外引入幫助降解官能基之None。在降解速率部分,透過分子動力學模擬以溶劑乙二醇降解環氧樹脂之過程並計算其中溶劑消耗速率,在V-EP4系統中,降解速率最快之系統為V-EP4-C,其次是V-EP4-S,V-EP4-None則明顯慢於前兩者,因此我們發現引入具有拉電子效應的羰基與碸基確實能顯著提升降解速率,然而碸基亦因其較大的立體位障阻礙了溶劑滲透,使其降解速率並不如預期般大幅提升,此推論在V-EP2系統得到證實,在位障較低的情況下V-EP2-S降解速率最快,V-EP2-C次之,V-EP2-None最慢。在熱與機械性質方面,V-EP4系列之性能已超越DGEBA系統的平均值,其中最出色的為V-EP4-S,楊氏模量達3.7 GPa,玻璃轉化溫度更是達623.5 K,已接近目前已發表環氧樹脂文獻的最高紀錄,而在V-EP2系列中,儘管整體性能稍弱,V-EP2-S系統仍維持楊氏模量3.1 GPa與玻璃轉化溫度489.8 K,表現依然優於DGEBA系統平均值,突顯其在確保快速降解前提下仍具備實用性,顯示本研究提出的可降解生物基改質策略能有效賦予材料卓越性能。本研究開創性的探討反應位點電子密度與立體位障對環氧樹脂系統降解速率及熱、機械性質與材料結構的關係,為可回收高性能環氧樹脂之分子設計提供明確方向,在材料性能與永續發展兩大核心議題間取得平衡,期望能在達成生物與環境友善的同時,賦予環氧樹脂實質應用潛力。zh_TW
dc.description.abstractAmid growing global emphasis on environmental sustainability and the circular economy, developing recyclable high-performance materials has become a pressing challenge in polymer science. Epoxy resins are widely applied in electronics, aerospace, and composites due to their excellent thermal and mechanical properties, yet their non-degradable crosslinked networks cause serious environmental issues. To address this issue, this study starts from molecular structure design, incorporating material modification and molecular dynamics (MD) simulations to systematically investigate the combined effects of material structure on degradation behavior, thermal stability, and mechanical properties. Based on vanillin, two epoxy monomers (V-EP4 and V-EP2) with varying steric hindrance were designed, along with three curing agents (None, C, S) to modulate the electron density at the reactive sites. Electrostatic potential (ESP) calculations revealed that S and C substituents significantly reduce electron density. Through MD simulations using ethylene glycol as the degrading solvent, we found that introducing electron-withdrawing groups such as carbonyl and sulfone markedly increased degradation rates. However, the bulky sulfone group also hindered solvent penetration due to steric hindrance, limiting its rate-enhancing effect. In terms of performance, V-EP4-S showed a Young’s modulus of 3.7 GPa and Tg of 623.5 K, close to the highest reported values, while V-EP2-S still surpassed DGEBA averages, demonstrating both fast degradability and practical applicability. This study provides a clear molecular design direction by revealing how electron density and steric hindrance affect degradation rate, thermal and mechanical properties, offering a balance between performance and sustainability and highlighting the practical potential of recyclable, bio-based epoxy resins.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:02:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:02:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目次 iii
圖次 iv
表次 vii
第1章 前言 1
第2章 研究方法 10
2.1系統建立 10
2.2性質計算 14
第3章 結果與討論 19
3.1高位障環氧樹脂反應位點電子密度與位障對降解行為及材料性質之影響 19
3.2低位障環氧樹脂反應位點電子密度與位障對降解行為及材料性質之影響 27
第4章 結論 35
第5章 參考文獻 37
第6章 附錄 41
S1. 各力場所計算之隨O-S鍵長改變其位能變化圖 41
S2. BOND BOOST介紹與交聯、降解反應所設定之BOND BOOST參數 42
S3. 各模型退火過程 45
S4. 各模型MSD隨時間變化圖 47
S5. 各模型應力-應變圖 49
S6. 各模型密度隨溫度變化圖 51
-
dc.language.isozh_TW-
dc.subject低碳材料zh_TW
dc.subject生物基環氧樹脂zh_TW
dc.subject分子動力學zh_TW
dc.subject降解速率zh_TW
dc.subject綠色經濟zh_TW
dc.subjectDegradation rateen
dc.subjectGreen economyen
dc.subjectLow-carbon materialsen
dc.subjectMolecular dynamicsen
dc.subjectBio-based epoxy resinen
dc.title利用分子動力學開發兼具耐高溫及優良機械性質之可回收生物基環氧樹脂zh_TW
dc.titleDevelopment of Bio-based Recyclable Epoxy Resins with High-Temperature Resistance and Excellent Mechanical Properties via Molecular Dynamicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭如忠;陳錦文zh_TW
dc.contributor.oralexamcommitteeRu-Jong Jeng;Chin-Wen Chenen
dc.subject.keyword生物基環氧樹脂,低碳材料,綠色經濟,降解速率,分子動力學,zh_TW
dc.subject.keywordBio-based epoxy resin,Low-carbon materials,Green economy,Degradation rate,Molecular dynamics,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202503670-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved