Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰zh_TW
dc.contributor.advisorPi-Tai Chouen
dc.contributor.author紀兆民zh_TW
dc.contributor.authorJau-Min Jien
dc.date.accessioned2025-08-18T01:01:36Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation1. Zhang, X.; Wu, S.; Zhang, H.; Jen, A. K.; Zhan, Y.; Chu, J. Advances in inverted perovskite solar cells. Nature Photonics 2024, 1-11.
2. Zhang, H.; Park, N.-G. Progress and issues in pin type perovskite solar cells. DeCarbon 2024, 3, 100025.
3. Xiong, S.; Tian, F.; Wang, F.; Cao, A.; Chen, Z.; Jiang, S.; Li, D.; Xu, B.; Wu, H.; Zhang, Y. Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface. Nature Communications 2024, 15 (1), 5607.
4. Tao, J.; Zhao, C.; Wang, Z.; Chen, Y.; Zang, L.; Yang, G.; Bai, Y.; Chu, J. Suppressing non-radiative recombination for efficient and stable perovskite solar cells. Energy & Environmental Science 2025, 18 (2), 509-544.
5. Bera, S.; Saha, A.; Mondal, S.; Biswas, A.; Mallick, S.; Chatterjee, R.; Roy, S. Review of defect engineering in perovskites for photovoltaic application. Materials Advances 2022, 3 (13), 5234-5247.
6. Zhang, Z.; Feng, Y.; Ding, J.; Ma, Q.; Zhang, H.; Zhang, J.; Li, M.; Geng, T.; Gao, W.; Wang, Y. Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells. Nature Communications 2025, 16 (1), 753.
7. Li, B.; Zhang, W. Improving the stability of inverted perovskite solar cells towards commercialization. Communications materials 2022, 3 (1), 65.
8. Azmi, R.; Utomo, D. S.; Vishal, B.; Zhumagali, S.; Dally, P.; Risqi, A. M.; Prasetio, A.; Ugur, E.; Cao, F.; Imran, I. F. Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 2024, 628 (8006), 93-98.
9. Sahani, R.; Kumar, N.; Perini, C. A.; Rahmani, A.; Muñoz, D.; LaFollette, D.; Lawton, J.; Datta, K.; Li, R.; Correa‐Baena, J. P. 2D/3D Heterostructure Halide Perovskite Thin Films through an Innovative Spray‐Deposition of Bulky Organic Cation‐Containing Ammonium Salts. Advanced Materials Interfaces 2025, 12 (9), 2400823.
10. Chen, X.; Xia, Y.; Zheng, Z.; Xiao, X.; Ling, C.; Xia, M.; Hu, Y.; Mei, A.; Cheacharoen, R.; Rong, Y. In situ formation of δ-FAPbI3 at the Perovskite/Carbon interface for enhanced photovoltage of printable mesoscopic perovskite solar cells. Chemistry of Materials 2022, 34 (2), 728-735.
11. Zhang, Y.; Zhou, Z.; Ji, F.; Li, Z.; Cui, G.; Gao, P.; Oveisi, E.; Nazeeruddin, M. K.; Pang, S. Trash into treasure: δ‐FAPbI3 polymorph stabilized MAPbI3 perovskite with power conversion efficiency beyond 21%. Advanced Materials 2018, 30 (22), 1707143.
12. contributors, W. Grazing incidence diffraction. Wikipedia, 2024. https://en.wikipedia.org/wiki/Grazing_incidence_diffraction (accessed 2025 July 5).
13. Tao, Y. Screen-printed front junction n-type silicon solar cells; IntechOpen, 2016.
14. Luo, D.; Su, R.; Zhang, W.; Gong, Q.; Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials 2020, 5 (1), 44-60.
15. Kosasih, F. U.; Erdenebileg, E.; Mathews, N.; Mhaisalkar, S. G.; Bruno, A. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule 2022, 6 (12), 2692-2734.
16. Li, C.; Chen, X.; Jin, T.; Wu, T.; Chen, J.; Zhuang, W. Impact of functional groups in spacer cations on the properties of PEA-based 2D monolayer halide perovskites. Nano Materials Science 2025, 7 (1), 74-82.
17. Zhang, Y.; Wei, X.; Yu, B.; Zeng, R.; Kan, L.; Tang, T.; Yu, H. Residual PbI2 Conversion and Crystallization Control for Ambient‐Air Fabrication of Industrially Viable Perovskite Solar Cells. Advanced Functional Materials 2025, 2507346.
18. Sojati, R. Solvent Annealing as a post-treatment: towards single crystalline epitaxial MAPbI₃. University of Twente, 2023.
19. Stancu, V.; Tomulescu, A. G.; Leonat, L. N.; Balescu, L. M.; Galca, A. C.; Toma, V.; Besleaga, C.; Derbali, S.; Pintilie, I. Partial replacement of dimethylformamide with less toxic solvents in the fabrication process of mixed-halide perovskite films. Coatings 2023, 13 (2), 378.
20. Xin, M.; Ghani, I.; Zhang, Y.; Gao, H.; Khan, D.; Yang, X.; Tang, Z. Solvent-Engineered PEACl Passivation: A Pathway to 24.27% Efficiency and Industrially Scalable Perovskite Solar Cells. Nanomaterials 2025, 15 (9), 699.
21. Yang, F.; Dong, L.; Jang, D.; Tam, K. C.; Zhang, K.; Li, N.; Guo, F.; Li, C.; Arrive, C.; Bertrand, M. Fully solution processed pure α‐phase formamidinium lead iodide perovskite solar cells for scalable production in ambient condition. Advanced Energy Materials 2020, 10 (42), 2001869.
22. Lu, J.; Wu, Y.; Wu, S.; Zhao, J.; Wang, J.; Lin, R.; Zou, H.; Lu, S.; Liu, K.; Yue, S. Amino acid salt induced PbI 2 crystal orientation optimization for high-efficiency perovskite solar cells with long-term stability. Journal of Materials Chemistry A 2024, 12 (31), 20056-20063.
23. Wang, M.; Cao, F.; Meng, L.; Wang, M.; Li, L. Phase‐Transition‐Cycle‐Induced Recrystallization of FAPbI3 Film in An Open Environment Toward Excellent Photodetectors with High Reproducibility. Advanced Science 2022, 9 (34), 2204386.
24. Wang, R.; Jia, Z.; Spencer, B. F.; Zhao, D.; Thomas, A. G.; Alkhudhari, O. M.; Lewis, D. J.; Cernik, R. J.; Alanazi, A.; Saunders, B. R. Neutral Ligand Triggered Low-Dimensional Reconstruction for Improving the Efficiency and Stability of Perovskite Solar Cells. ACS Applied Energy Materials 2024, 7 (21), 9723-9734.
25. Yang, Y.; Yang, L.; Feng, S. Interfacial engineering and film-forming mechanism of perovskite films revealed by synchrotron-based GIXRD at SSRF for high-performance solar cells. Materials Today Advances 2020, 6, 100068.
26. Mączka, M.; Zaręba, J. K.; Nowok, A.; Sokołowski, N.; Sieradzki, A.; Gągor, A.; Ptak, M. Two-Dimensional Lead Iodide Perovskites with Extremely Reduced Dielectric Confinement: Embedded Self-Erasing Second-Harmonic Generation Switching, Thermochromism, and Photoluminescence. Chemistry of Materials 2024, 36 (21), 10758-10772.
27. Zhang, Y.; Li, C.; Zhao, H.; Yu, Z.; Tang, X.; Zhang, J.; Chen, Z.; Zeng, J.; Zhang, P.; Han, L. Synchronized crystallization in tin-lead perovskite solar cells. nature communications 2024, 15 (1), 6887.
28. Kim, H.-S.; Park, N.-G. Importance of tailoring lattice strain in halide perovskite crystals. npg asia materials 2020, 12 (1), 78.
29. Alhazmi, N.; Pineda, E.; Rawle, J.; Howse, J. R.; Dunbar, A. D. Perovskite crystallization dynamics during spin-casting: an in situ wide-angle X-ray scattering study. ACS applied energy materials 2020, 3 (7), 6155-6164.
30. Zhao, X.; Qiu, Y.; Wang, M.; Wu, D.; Yue, X.; Yan, H.; Fan, B.; Du, S.; Yang, Y.; Yang, Y. Regulation of buried interface through the rapid removal of PbI2· DMSO complex for enhancing light stability of perovskite solar cells. ACS Energy Letters 2024, 9 (6), 2659-2669.
31. Popov, G.; Mattinen, M.; Hatanpää, T.; Vehkamäki, M.; Kemell, M.; Mizohata, K.; Räisänen, J.; Ritala, M.; Leskelä, M. Atomic layer deposition of PbI2 thin films. Chemistry of Materials 2019, 31 (3), 1101-1109.
32. Hauschild, D.; Seitz, L.; Gharibzadeh, S.; Steininger, R.; Jiang, N.; Yang, W.; Paetzold, U. W.; Heske, C.; Weinhardt, L. Impact of n-butylammonium bromide on the chemical and electronic structure of double-cation perovskite thin films. ACS Applied Materials & Interfaces 2021, 13 (44), 53202-53210.
33. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209.
34. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536 (7616), 312-316.
35. Liu, B.; Zhou, Q.; Li, Y.; Chen, Y.; He, D.; Ma, D.; Han, X.; Li, R.; Yang, K.; Yang, Y. Polydentate ligand reinforced chelating to stabilize buried interface toward high‐performance perovskite solar cells. Angewandte Chemie International Edition 2024, 63 (8), e202317185.
36. Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; De Bastiani, M.; Bowring, A. R.; Martino, N.; Wojciechowski, K. Mapping electric field‐induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Advanced Energy Materials 2015, 5 (20), 1500962.
37. Guo, J.; Wang, B.; Lu, D.; Wang, T.; Liu, T.; Wang, R.; Dong, X.; Zhou, T.; Zheng, N.; Fu, Q. Ultralong carrier lifetime exceeding 20 µs in lead halide perovskite film enable efficient solar cells. Advanced Materials 2023, 35 (28), 2212126.
38. Hung, C. M.; Wu, C. C.; Yang, Y. H.; Chen, B. H.; Lu, C. H.; Chu, C. C.; Cheng, C. H.; Yang, C. Y.; Lin, Y. D.; Cheng, C. H. Repairing Interfacial Defects in Self‐Assembled Monolayers for High‐Efficiency Perovskite Solar Cells and Organic Photovoltaics through the SAM@ Pseudo‐Planar Monolayer Strategy. Advanced Science 2024, 11 (36), 2404725.
39. Zheng, D.; Raffin, F.; Volovitch, P.; Pauporté, T. Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nature Communications 2022, 13 (1), 6655.
40. Zhang, F.; Kim, D. H.; Lu, H.; Park, J.-S.; Larson, B. W.; Hu, J.; Gao, L.; Xiao, C.; Reid, O. G.; Chen, X. Enhanced charge transport in 2D perovskites via fluorination of organic cation. Journal of the American Chemical Society 2019, 141 (14), 5972-5979.
41. Hu, J.; Oswald, I. W.; Stuard, S. J.; Nahid, M. M.; Zhou, N.; Williams, O. F.; Guo, Z.; Yan, L.; Hu, H.; Chen, Z. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nature communications 2019, 10 (1), 1276.
42. Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials 2022, 34 (8), 2105635.
43. Aalbers, G. J.; van der Pol, T. P.; Datta, K.; Remmerswaal, W. H.; Wienk, M. M.; Janssen, R. A. Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells. Nature Communications 2024, 15 (1), 1276.
44. Li, Y.; Xie, H.; Lim, E. L.; Hagfeldt, A.; Bi, D. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Advanced Energy Materials 2022, 12 (5), 2102730.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98598-
dc.description.abstract本研究針對反式鈣鈦礦太陽能電池進行介面工程設計,藉由在鈣鈦礦表面熱蒸鍍碘化鉛後,施以苯乙胺類鹵化銨鹽處理,於其與電子傳輸層之間形成一層具結構穩定性的鈍化層,並探討其對元件表面形貌、晶體結構、光電特性與轉換效率的影響。研究核心目標為改善介面品質、降低非輻射複合,進而提升元件效能與操作穩定性。
實驗結果顯示,碘化鉛蒸鍍會造成表面空洞與粗糙,但經過苯乙胺類鹽類後處理可重新組織表面結構,並生成具方向性的六方相δ-FAPbI₃,其晶格排列與下層鈣鈦礦相容,有助於提升介面連續性與缺陷鈍化。光電分析指出,修飾處理雖未改變主體吸收邊與能隙,但可顯著提升螢光強度與載子壽命,並調整能階排列,有利於載流子選擇性與傳輸效率。
元件測試顯示,經介面修飾後元件之開路電壓與功率轉換效率顯著提升,由原本21%提升至接近24%,其中以氯化苯乙胺修飾效果最佳。量子效率與電致發光結果進一步證實輻射效率提升與電壓損失下降。穩定性測試亦顯示,修飾後元件在常溫與高溫條件下均可維持良好性能。
綜合而言,本研究提出一種實用且具延展性的介面修飾策略,透過相變誘導與分子配位作用改善埋藏介面之結構與能階分佈,進而提升鈣鈦礦太陽能電池之效率與穩定性,展現應用潛力。
zh_TW
dc.description.abstractThis study investigates interfacial engineering in inverted perovskite solar cells through the formation of a δ-FAPbI₃-based passivation layer on the perovskite surface, formed by sequential PbI₂ evaporation and phenethylammonium halide (PEAX, X = Cl, Br, I) treatment, enabling mild surface reconstruction without damaging the bulk film. Structural analyses reveal that δ-FAPbI₃ adopts an oblique orientation inherited from the underlying perovskite, improving lattice continuity at the buried interface. Optical and electronic characterizations confirm suppressed non-radiative recombination, enhanced photoluminescence, prolonged carrier lifetimes, and favorable energy alignment, while the bulk bandgap remains unchanged. Device measurements show that PEAX treatment increases open-circuit voltage (VOC) and raises power conversion efficiency (PCE) from 21% to nearly 24%, with PEACl yielding the best results. Photoluminescence and electroluminescence analyses further confirm enhanced radiative efficiency and reduced voltage loss. Stability tests indicate over 95% efficiency retention under ambient conditions and around 85% under thermal stress. This work presents a practical interfacial strategy that enables structural and energetic optimization at the buried interface, offering a promising route to high-efficiency and stable inverted perovskite solar cells.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T01:01:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T01:01:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Content v
List of Figures viii
List of Tables xii
Chapter 1 1
Introduction 1
1.1 Background of Perovskite Solar Cells (PSCs) 1
1.2 Interfacial Challenges and Passivation Strategies 3
1.3 Motivation 5
Chapter 2 6
Experimental & Analytical Method 6
2.1 Experimental Section 6
2.1.1 Materials 6
2.1.2 Preparation of Perovskite Precursor Solution 7
2.1.3 Fabrication of 3D Perovskite solar cells Substrate Cleaning and Surface Treatment 7
2.1.4 Device Fabrication with PbI₂ and Ammonium Salt Interface Modification 9
2.2 Analytical Method 11
2.2.1 Morphology Characterization 11
2.2.2 Structural Characterization 12
2.2.3 Optoelectronic Characterization 14
2.2.4 Photovoltaic Characterization 15
Chapter 3 20
Results & Discussions 20
3.1 Morphology and Structure of Interface-Modified Films 20
3.1.1 Surface Features and Roughness of Modified Perovskite Films 20
3.1.2 Crystal Structure and Phase Features of Modified Perovskite Films 24
3.2 Optical and Electronic Characterization of Interface-Modified Perovskite Films 36
3.2.1 Bandgap and Energy Level Analysis by UV–Vis and UPS 36
3.2.2 Recombination and Carrier Lifetime Analysis by PL/TRPL 38
3.2.3 Energy Level Analysis from UV–Vis and UPS 41
3.3 Device Performance and Photovoltaic Characterization 44
3.3.1 J–V Characteristics 44
3.3.2 IPCE Characterization 52
3.3.3 EL Characterization 54
3.3.4 Stability test 55
3.4 Proposed Mechanism of Interface Passivation by PEAX 57
Chapter 4 59
Conclusion 59
Reference 62
-
dc.language.isoen-
dc.subject太陽能電池zh_TW
dc.subject鈣鈦礦zh_TW
dc.subject光電轉換效率zh_TW
dc.subject鈍化層zh_TW
dc.subject介面工程zh_TW
dc.subjectInterfacial engineeringen
dc.subjectPassivation layeren
dc.subjectPower conversion efficiency (PCE)en
dc.subjectSolar cellen
dc.subjectPerovskiteen
dc.title反式鈣鈦礦太陽能電池介面鈍化之結構分析zh_TW
dc.titleInvestigating Interface Passivation Strategies in Inverted Perovskite Solar Cells through Structural Characterizationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳協志;洪文誼zh_TW
dc.contributor.oralexamcommitteeHsieh-Chih Chen;Wen-Yi Hungen
dc.subject.keyword鈣鈦礦,太陽能電池,介面工程,鈍化層,光電轉換效率,zh_TW
dc.subject.keywordPerovskite,Solar cell,Interfacial engineering,Passivation layer,Power conversion efficiency (PCE),en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202502997-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved