請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇 | zh_TW |
| dc.contributor.advisor | Eric Y. Chuang | en |
| dc.contributor.author | 李育明 | zh_TW |
| dc.contributor.author | Yu-Ming Lee | en |
| dc.date.accessioned | 2025-08-18T00:56:41Z | - |
| dc.date.available | 2025-08-26 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] Z. Li, F. Lu, F. Zhou, D. Song, L. Chang, W. Liu, G. Yan, and G. Zhang. From actinic keratosis to cutaneous squamous cell carcinoma: the key pathogenesis and treatments. Frontiers in Immunology, 16:1518633, 2025.
[2] B.L.Diffey. Climate change, ozonedepletion and the impact onultraviolet exposure of human skin. Physics in Medicine and Biology, 49(1):R1–R11, 2004. [3] A.FuchsandE.Marmur. Thekineticsofskincancer: progressionofactinickeratosis to squamous cell carcinoma. Dermatologic Surgery, 33(9):1099–1101, 2007. [4] K. Peris, T. Micantonio, D. Piccolo, and M. C. Fargnoli. Dermoscopic features of actinic keratosis. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 5(11):970–976, 2007. [5] C. D. George, T. Lee, L. M. Hollestein, M. M. Asgari, and T. Nijsten. Global epi demiology of actinic keratosis in the general population: a systematic review and meta-analysis. British Journal of Dermatology, 190(4):465–476, 2024. [6] C. A. Frost, A. C. Green, and G. M. Williams. The prevalence and determinants of solar keratoses at a subtropical latitude (Queensland, Australia). British Journal of Dermatology, 139(6):1033–1039, 1998. [7] A. Green, G. Beardmore, V. Hart, D. Leslie, R. Marks, and D. Staines. Skin cancer in a Queensland population. Journal of the American Academy of Dermatology, 19(6):1045–1052, 1988. [8] C.P.H.ReinehrandR.M.Bakos. Actinickeratoses: reviewofclinical, dermoscopic, and therapeutic aspects. Anais Brasileiros de Dermatologia, 94(6):637–657, 2019. [9] S. C. Flohil, R. J. T. van der Leest, E. A. Dowlatshahi, A. Hofman, E. de Vries, and T. Nijsten. Prevalence of actinic keratosis and its risk factors in the general popula tion: the Rotterdam study. Journal of Investigative Dermatology, 133(8):1971–1978, 2013. [10] T. B. Fitzpatrick. The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology, 124(6):869–871, 1988. [11] S. Nouveau-Richard, H. Zhai, and H. I. Maibach. Skin typing: Fitzpatrick grading and others. Clinics in Dermatology, 22(1):87–95, 2004. [12] D. B. Eisen, M. M. Asgari, D. D. Bennett, et al. Guidelines of care for the man agement of actinic keratosis. Journal of the American Academy of Dermatology, 85(4):e209–e233, 2021. [13] M.V.Heppt, T. Steeb, T. Ruzicka, and C. Berking. S3 guideline for actinic keratosis and cutaneous squamous cell carcinoma. Journal der Deutschen Dermatologischen Gesellschaft, 18(3):275–294, 2020. [14] C. Dianzani, C. Conforti, R. Giuffrida, et al. Current therapies for actinic keratosis. International Journal of Dermatology, 59(6):677–684, 2020. [15] C. Ulrich, J. S. Jürgensen, A. Degen, et al. Prevention of non-melanoma skin can cer in organ transplant patients by regular use of a sunscreen. British Journal of Dermatology, 161:78–84, 2009. [16] R. N. Werner, A. Sammain, R. Erdmann, V. Hartmann, E. Stockfleth, and A. Nast. The natural history of actinic keratosis: a systematic review. British Journal of Dermatology, 169(3):502–518, 2013. [17] D. R. N. Pimentel, M. M. A. Alchorne, N. S. Michalany, M. A. M. M. Abreu, and R. C. Borra. Reduced p53 staining in actinic keratosis is associated with squamous cell carcinoma: A preliminary study. Indian Journal of Dermatology, 58(4):325, 2013. [18] M. Piipponen, P. Riihilä, L. Nissinen, and V.-M. Kähäri. The role of p53 in progres sion of cutaneous squamous cell carcinoma. Cancers, 13(18):4507, 2021. [19] S. Javor, G. Gasparini, C. M. Biatta, E. Cozzani, F. Cabiddu, J. L. Ravetti, V. G. Vellone, and A. Parodi. P53 staining index and zonal staining patterns in actinic keratoses. Archives of Dermatological Research, 313(4):275–279, 2021. [20] G.M.Martin. In-officepainless aminolevulinic acid photodynamic therapy: A proof of concept study and clinical experience in more than 100 patients. The Journal of Clinical and Aesthetic Dermatology, 9(2):19–26, 2016. [21] M. J. Bottomley, P. R. Massey, R. Thuraisingham, A. Doyle, S. Rao, K. P. Bibee, J. N. Bouwes Bavinck, A. Jambusaria-Pahlajani, and C. A. Harwood. Interventions after first post-transplant cutaneous squamous cell carcinoma: A proposed decision framework. Transplant International, 35:10880, 2022. [22] S.Granata, G.Tessari, G.Stallone, andG.Zaza. Skincancerinsolidorgantransplant recipients: still an open problem. Frontiers in Medicine, 10:1189680, 2023. [23] M. M. Asgari, D. B. Eisen, D. D. Bennett, S. M. Connolly, R. P. Dellavalle, E. E. Freeman, G. Goldenberg, H. W. Lim, D. J. Margolis, E. S. Schweiger, D. Ratner, J. A. Siegel, and M. A. Weinstock. Focused update: Guidelines of care for the man agement of actinic keratosis. Journal of the American Academy of Dermatology, 87(2):373–374.e5, 2022. [24] T. Steeb, A. Wessely, D. von Bubnoff, T. Dirschka, K. Drexler, C. Falkenberg, R. Gutzmer, M. V. Heppt, R. Kaufmann, E. A. T. Koch, U. Reinhold, M. M. Sachse, R.-M. Szeimies, J. Thamm, C. Ulrich, M. Weichenthal, and C. Berking. S3 guide line “actinic keratosis and cutaneous squamous cell carcinoma”– update 2023, part 1: treatment of actinic keratosis, actinic cheilitis, cutaneous squamous cell carcinoma in situ (Bowen’s disease), occupational disease and structures of care. Journal der Deutschen Dermatologischen Gesellschaft, 21(12):1397–1418, 2023. [25] H.-J. Kim, J. M.Ahn, W.S.Jang, M.-K.Choi, C.J.Park, H.S.Kim, M.K.Cho,O.S. Kwon,S.W.Youn,andS.-K.Hann. Geneticstudiesofactinickeratosisdevelopment: Where are we now? International Journal of Molecular Sciences, 25(1):318, 2024. [26] S. Queille, L. Luron, A. Spatz, M. F. Avril, V. Ribrag, P. Duvillard, S. Benhamou, and A. Sarasin. Analysis of skin cancer risk factors in immunosuppressed renal transplant patients shows high levels of UV-specific tandem CC to TT mutations of the p53 gene. Carcinogenesis, 28(3):724–731, 2007. [27] G.Sanclemente, E. Mahé, O.Correia, andL.Dubertret. Actinic keratoses: review of clinical, dermoscopic, and therapeutic aspects. Anais Brasileiros de Dermatologia, 94(6):637–657, 2019. [28] J. A. Siegel, K. Korgavkar, and M. A. Weinstock. Current perspective on actinic keratosis: a review. British Journal of Dermatology, 177(2):350–358, 2017. [29] Skin Cancer Foundation. Actinic keratosis warning signs and images. https: //www.skincancer.org/skin-cancer-information/actinic-keratosis/, 2025. Accessed July 2025. [30] A.C.Green, C.M.Olsen, and D.C.Whiteman. The epidemiology of melanoma and keratinocyte cancers. Cancer Epidemiology, Biomarkers & Prevention, 32(4):425 439, 2023. [31] C. Ulrich, J. Bichel, S. Euvrard, R. Gutzmer, G. F. L. Hofbauer, T. K. Eigentler, C. A. Harwood, E. Stockfleth, H. Kerl, and U. Leiter. Topical immunomodulation under systemic immunosuppression: results of a multicentre, randomized, placebo controlled safety and efficacy study of imiquimod 5% cream for the treatment of actinic keratoses in kidney, heart, and liver transplant patients. British Journal of Dermatology, 176(5):1359–1365, 2017. [32] L. C. Jacobs, F. Liu, L. M. Pardo, A. Hofman, A. G. Uitterlinden, M. Kayser, C. M. van Duijn, S. Kremer, and T. Nijsten. IRF4, MC1R and TYR genes are risk fac tors for actinic keratosis independent of skin color. Human Molecular Genetics, 24(11):3296–3303, 2015. [33] K. H. Kraemer, M. M. Lee, A. D. Andrews, and W. C. Lambert. The role of sun light and DNA repair in melanoma and nonmelanoma skin cancer: The xeroderma pigmentosum paradigm. Archives of Dermatology, 130(8):1018–1021, 1994. [34] Y. Kim, J. Yin, H. Huang, E. Jorgenson, H. Choquet, and M. M. Asgari. Genome wide association study of actinic keratosis identifies new susceptibility loci impli cated in pigmentation and immune regulation pathways. Communications Biology, 5(1):386, 2022. [35] J. Thomson, F. Bewicke-Copley, C. A. Anene, A. Gulati, A. Nagano, K. Purdie, G. J. Inman, C. M. Proby, I. M. Leigh, C. A. Harwood, and J. Wang. The genomic landscape of actinic keratosis. Journal of Investigative Dermatology, 141(7):1664 1674.e7, 2021. [36] Z. Wang, X. Wang, Y. Shi, S. Wu, Y. Ding, G. Yao, and J. Chen. Advancements in elucidating the pathogenesis of actinic keratosis: present state and future prospects. Frontiers in Medicine, 11:1330491, 2024. [37] M. R. Roberts, M. M. Asgari, and A. E. Toland. Genome-wide association studies and polygenic risk scores for skin cancer: clinically useful yet? British Journal of Dermatology, 181(6):1146–1155, 2019. [38] U. E. Liyanage, M. H. Law, X. Han, J. An, J.-S. Ong, D. Whiteman, R. E. Neale, V. Nosé, A. Ribas, J. E. Gershenwald, J. F. Thompson, N. K. Hayward, G. J. Mann, D. T. Bishop, J. Newton-Bishop, J. H. Barrett, M. M. Iles, and S. MacGregor. Poly genic risk score as a determinant of risk of non-melanoma skin cancer in a Euro pean-descent renal transplant cohort. Transplant International, 32(12):1284–1293, 2019. [39] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, and R. Collins. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3):e1001779, 2015. [40] UK Biobank. Costs & financial support. https://www.ukbiobank.ac.uk/ enable-your-research/costs, 2024. Accessed: June 4, 2025. [41] R. J. Klein, C. Zeiss, E. Y. Chew, et al. Complement factor H polymorphism in age-related macular degeneration. Science, 308(5720):385–389, 2005. [42] The Editors of Encyclopaedia Britannica. Genome-wide association study. https: //www.britannica.com/topic/genome-wide-association-study, 2022. Ac cessed: December 14, 2022. [43] Y. Nakamura. The BioBank Japan project. Clinical Advances in Hematology & Oncology, 5(9):696–697, 2007. [44] P. M. Visscher, N. R. Wray, Q. Zhang, et al. 10 years of GWAS discovery: Biology, function, and translation. American Journal of Human Genetics, 101(1):5–22, 2017. [45] G. McInnes, A. Lavertu, K. Sangkuhl, et al. Pharmacogenomics at scale: An analy sis of the UK Biobank. Clinical Pharmacology & Therapeutics, 109(6):1528–1537, 2021. \\\\\\\\\\\\\\\\ [46] M. D. Gallagher and A. S. Chen-Plotkin. The post-GWAS era: From association to function. American Journal of Human Genetics, 102(5):717–730, 2018. [47] E. Uffelmann, Q. Q. Huang, N. S. Munung, et al. Genome-wide association studies. Nature Reviews Methods Primers, 1:59, 2021. [48] C. Langenberg and L. A. Lotta. Genomic insights into the causes of type 2 diabetes. Lancet, 391(10138):2463–2474, 2018. [49] M. Kim, S. Lee, W. J. Park, et al. Identification of susceptibility loci for cardio vascular disease in adults with hypertension, diabetes, and dyslipidemia. Journal of Translational Medicine, 19(1):85, 2021. [50] L. Yengo, J. Sidorenko, K. E. Kemper, et al. Meta-analysis of genome-wide associ ation studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics, 27(20):3641–3649, 2018. [51] T. A. Pearson and T. A. Manolio. How to interpret a genome-wide association study. JAMA, 299(11):1335–1344, 2008. [52] M. Imamura, A. Takahashi, T. Yamauchi, et al. Perspectives on genetic studies of type 2 diabetes from the genome-wide association studies era to precision medicine. Journal of Diabetes Investigation, 15(1):3–16, 2024. [53] K. Watanabe, E. Taskesen, A. van den Berg, and D. Posthuma. Functional map ping and annotation of genetic associations with FUMA. Nature Communications, 8(1):1–11, 2017. [54] C. A. de Leeuw, J. M. Mooij, T. Heskes, and D. Posthuma. MAGMA: generalized gene-set analysis of GWAS data. PLoS Computational Biology, 11(4):e1004219, 2015. [55] The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 369(6509):1318–1330, 2020. [56] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25–29, 2000. [57] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau, J. O’Connell, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726):203–209, 2018. [58] S. McCarthy, S. Das, C. Fuchsberger, and an international consortium of investiga tors including the Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48(10):1279–1283, 2016. [59] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. El liott, J. Green, M. Landray, et al. UK Biobank: an open access resource for identi fying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12(3):e1001779, 2015. [60] D.E.Ho, K.Imai, G.King, andE.A.Stuart. MatchIt: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software, 42(8):1–28, 2011. [61] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945. [62] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. De Bakker, M. J. Daly, et al. PLINK: a tool set for whole genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3):559–575, 2007. [63] A. T. Marees, H. de Kluiver, S. Stringer, F. Vorspan, E. Curis, C. Marie-Claire, and D. Posthuma. A tutorial on conducting genome-wide association studies: Qual ity control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2):e1608, 2018. [64] Gene Ontology Consortium, S. A. Aleksander, J. Balhoff, S. Carbon, J. M. Cherry, H. J. Drabkin, D. Ebert, M. Feuermann, P. Gaudet, N. L. Harris, et al. The Gene Ontology knowledgebase in 2023. Genetics, 224(1):iyad031, 2023. [65] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1):27–30, 2000. [66] M. Kanehisa, M. Furumichi, Y. Sato, Y. Matsuura, and M. Ishiguro-Watanabe. KEGG: biological systems database as a model of the real world. Nucleic Acids Research, 53(D1):D672–D677, 2025. [67] S. W. Choi, T. S. H. Mak, and P. F. O’Reilly. Tutorial: a guide to performing poly genic risk score analyses. Nature Protocols, 15(9):2759–2772, 2020. [68] S. W. Choi and P. F. O’Reilly. PRSice-2: Polygenic risk score software for biobank scale data. GigaScience, 8(7):giz082, 2019. [69] T. S. H. Mak, J. S. H. Kwan, D. Campbell, and P. C. Sham. Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 41(6):469–480, 2017. [70] T. Ge, C.-Y. Chen, Y. Ni, Y.-C. A. Feng, and J. W. Smoller. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nature Communications, 10(1):1776, 2019. [71] W. H.-S. Tseng, A. Chattopadhyay, N. N. Phan, E. Y. Chuang, and O. K. Lee. Uti lizing multimodal approach to identify candidate pathways and biomarkers and pre dicting frailty syndrome in individuals from UKBiobank. GeroScience, 46(1):1211 1228, 2024. Published online July 31, 2023. [72] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied Logistic Regression. John Wiley & Sons, 3rd edition, 2013. [73] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. [74] T. ChenandC.Guestrin. XGBoost: Ascalable tree boosting system. In Proceedings of the 22nd ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016. [75] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, volume 30, pages 4765 4774. Curran Associates Inc., 2017. NIPS 2017. [76] Jiali Han, Peter Kraft, Hongmei Nan, Qiong Guo, Constance Chen, Abrar Qureshi, Susan E Hankinson, Frank B Hu, David L Duffy, Zhen Z Zhao, et al. A novel genome-wide association approach identifies a new locus for adult height associated with the irf4 gene. Nature Genetics, 40(7):835–837, 2008. [77] David L Duffy, Mark M Iles, Daniel Glass, Gu Zhu, Jennifer H Barrett, Veronica Hoiom, Zhen Zhen Zhao, Richard A Sturm, Nicole Soranzo, Christopher J Ham mond, et al. Irf4 variants have age-specific effects on nevus count and predispose to melanoma. The American Journal of Human Genetics, 87(1):6–16, 2010. [78] Mingpeng Lu, Jiekai Chen, Yanyan Xue, Linlin Zhao, Hao Li, Xiaoli Yang, Yue Ding, et al. Ankrd11 binding to cohesin suggests a connection between kbg syn drome and cornelia de lange syndrome. Proceedings of the National Academy of Sciences, 122(5):e2413434122, 2025. Crystal structure study revealing ANKRD11 bindscohesincomplex, explainingmolecularconnectionbetweenKBGandCornelia de Lange syndromes. [79] Pierre Mélard, Youssef Idrissi, Laëtitia Andrique, Sandrine Poglio, Martina Prochazkova-Carlotti, Sabrina Berhouet, Chloé Boucher, Edith Laharanne, Elodie Chevret, Anne Pham-Ledard, et al. Molecular alterations and tumor suppressive function of the dusp22 (dual specificity phosphatase 22) gene in peripheral t-cell lymphoma subtypes. Oncotarget, 7(42):68734–68748, 2016. Comprehensive study demonstrating tumor suppressive function of DUSP22 in peripheral T-cell lym phomas. [80] Nicole J Van Bergen, Yiran Guo, Julia Rankin, Nicole Paczia, Jan Becker-Kettern, Laura S Kremer, Daria L Polla, Michael A Walker, Sarah L Stenton, Ghayda M Mirzaa, et al. Mutations in the exocyst component exoc2 cause severe defects in human brain development. Journal of Experimental Medicine, 217(10):e20192040, 2020. First report of EXOC2 mutations causing severe neurodevelopmental disor ders with brain abnormalities. [81] Fabrice Ango, Laurent Prézeau, Thomas Muller, Jen-Chong Tu, Bo Xiao, Paul F Worley, Jean-Philippe Pin, Joel Bockaert, and Laurent Fagni. Dendritic and axonal targeting of type 5 metabotropic glutamate receptor is regulated by homer1 proteins and neuronal excitation. Journal of Neuroscience, 21(5):1840–1855, 2001. Seminal work demonstrating Homer protein regulation of mGluR5 constitutive activity and subcellular localization. [82] UpekhaELiyanage, Matthew HLaw, Jue-Sheng Ong, EmmanuelleSouzeau, Xikun Han, Jiyuan An, Catherine M Olsen, Rachel E Neale, Genevieve Wojcik, Robert P Igo, et al. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. Communications Biology, 5(1):354–354, 2022. [83] Ludvig M Sollid, Wouter Pos, and Kai W Wucherpfennig. Hla-dqa1 and hla-dqb1 alleles, conferring susceptibility to celiac disease and type 1 diabetes, are more expressed than non-predisposing alleles and are coordinately regulated. Genes, 10(8):586, 2019. Demonstrates that risk alleles DQA1*05 and DQB1*02 are more highly expressed than non-predisposing alleles and are coordinately regulated. [84] L. G. Fritsche, M. E. Gabrielsen, B. M. Brumpton, M. Lin, G. Thorleifsson, S. A. Gagliano Taliun, B. N. Wolford, W. Zhou, E. M. Schmidt, P. VandeHaar, A. E. F. B. van der Poel, A. M. D. Lee, J. G. Jonasson, G. H. Gudjonsson, A. Jonasdottir, H. S. Jonsdottir, O. A. Stefansson, I. Olafsson, J. Gudmundsson, K. T. Ragnarsson, H. J. Isaksson, J. T. Gislason, E. S. Bjornsson, E. E. Einarsson, S. Y. Kristinsson, M. S. Gudmundsdottir, U. Thorsteinsdottir, J. J. Jonasson, L. A. Kiemeney, B. G. Nordest gaard, S. F. Nielsen, K. Hveem, C. J. Willer, L. T. Amundadottir, and K. Stefansson. Exploring various polygenic risk scores for skin cancer in the phenomesofthe Michi gan genomics initiative and the UK Biobank with a visual catalog: PRSWeb. PLoS Genetics, 15(6):e1008204, 2019. [85] Lars G Fritsche, Stephen B Gruber, Zhenke Wu, Ellen M Schmidt, Matthew Zawis towski, Stephanie E Moser, Victoria M Blanc, Chad M Brummett, Sachin Kheterpal, Gonçalo R Abecasis, and Bhramar Mukherjee. Association of polygenic risk scores for multiple cancers in a phenome-wide study: Results from the michigan genomics initiative. The American Journal of Human Genetics, 102(6):1048–1061, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98577 | - |
| dc.description.abstract | 日光角化症(AK)是一種皮膚表皮的病徵,被認為是皮膚癌的癌前病變,其在全球具有高盛行率。了解其遺傳結構並開發可以有效預測風險的工具對於早期介入至關重要。這項研究採用英國生物資料庫(UK Biobank)的基因組和表型資料來探討日光角化症的遺傳易感性。我們識別出患者(病例組),並使用了傾向分數配對法(Propensity Score Matching)以年齡以及性別兩因素作為基礎,以1:10的比例與對照組進行配對。經過標準的品質控制流程後,我們對病例對照組進行全基因組關聯性研究(GWAS),並調整年齡、性別和前20個主成分。分位數-分位數圖的lambda值為1.036,表示混雜因子控制良好。
我們的GWAS研究識別出48個獨立顯著的單核苷酸多態性(SNPs)(P<5×10⁻⁸),其中13個主要SNPs對應至第6、11、16和20號染色體上的四個新的風險位點。這些顯著SNPs中約70%位於內含子區域,而也有部分在基因間區域。這些SNPs的功能註釋顯示65個顯著基因,主要與紫外線暴露、皮膚的色素沉澱和免疫調節相關。此外,eQTLs和MAGMA基因集富集分析突顯了與皮膚色素調節、黑色素瘤和其他皮膚癌的關聯性。 利用這些GWAS發現,我們使用篩選(Clumping)和閾值設定(Thresholding)方法(PRSice-2)開發了多基因風險分數(PRS),在單獨預測光化性角化症方面達到0.58的曲線下面積(AUC)。當與生活方式和表型因子整合時,包括皮膚和頭髮顏色、飲酒頻率,以及日曬暴露習慣(夏季戶外時間、防曬使用頻率),我們的預測模型顯著改善。在各種機器學習模型(邏輯回歸、隨機森林、XGBoost)中,邏輯回歸模型表現最佳,達到0.626的AUC。此外我們也注意到,建立的PRS也與黑色素瘤以及非黑色素瘤的皮膚癌風險增加顯著相關。 這些發現為日光角化症的遺傳基礎提供了新面向的資訊,並突顯了結合遺傳和生活方式風險評估在改善日光角化症預測,以及可能其他皮膚癌預測方面的潛力。 | zh_TW |
| dc.description.abstract | Actinic keratosis (AK) is a common skin lesion with high prevalence globally. Understanding its genetic architecture and developing effective risk prediction tools are crucial for early intervention. AK is consider as a precancerous sign. This study leveraged genomic and phenotypic data from the UK Biobank to investigate genetic susceptibility to AK. We identified individuals with AK (cases) and matched them 1:10 with controls based on age and sex using propensity score matching. Following stringent quality control, a genome-wide association study (GWAS) was performed on the case-control cohort, adjusting for age, sex, and the first 20 principal components. The QQ plot showed a lambda value of 1.036, indicating well-controlled confounding. Our GWAS identified 48 independent single nucleotide polymorphisms (SNPs) which are significant (P<5×10−8), with 13 lead SNPs mapping to four novel risk loci on chromosomes 6, 11, 16, and 20. Approximately 70% of these significant SNPs were intronic, while the remainder were intergenic. Functional annotation of these SNPs revealed 65 significant genes, predominantly associated with UV exposure, skin pigmentation, and immune regulation. Furthermore, eQTLs and MAGMA gene-set enrichment analyses highlighted connections to skin pigmentation, melanoma, and other skin carcinomas. Utilizing these GWAS findings, we developed a polygenic risk score (PRS) using the Clumping + Thresholding (C+T) method, which achieved an area under the curve (AUC) of 0.58 for predicting AK in isolation. When integrated with lifestyle and phenotypic factors, including skin and hair color, smoking and alcohol frequency, and sun exposure habits (summer outdoor time, sunscreen use frequency), our predictive models significantly improved. Among various machine learning models (Logistic Regression, Random Forest, XGBoost), the Logistic Regression model demonstrated the best performance, achieving an AUC of 0.626. Importantly, the established PRS was also significantly associated with an increased risk of non-melanoma skin cancer and melanoma. These findings supply novel information about the genetic knowledge of AK and highlight the potential of a combined genetic and lifestyle risk assessment for improved AK prediction and potentially other skin cancers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:56:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:56:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xvii List of Tables xix Abbreviation xxi Chapter 1 Introduction 1 1.1 Background and Clinical Significance . . . . . . . . . . . . . . . . . 1 1.1.1 AK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Epidemiology of AK . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Treatment of AK . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Relationship with Skin Cancer . . . . . . . . . . . . . . . . . . . . 4 1.1.5 Risk Factor of AK . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Current Research and Motivation . . . . . . . . . . . . . . . . . . . 8 1.2.1 Current Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 UK Biobank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Data Collection and Characteristics . . . . . . . . . . . . . . . . . . 10 1.3.2 Research Value and Impact . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Genome-Wide Association Studies, GWAS . . . . . . . . . . . . . . 13 1.4.1 Methodology and Principles . . . . . . . . . . . . . . . . . . . . . 14 1.4.2 Applications and Limitations . . . . . . . . . . . . . . . . . . . . . 15 1.5 Functional Annotation and Biological interpretation . . . . . . . . . 16 1.5.1 Functional Mapping and Annotation (FUMA) . . . . . . . . . . . . 17 1.5.2 MAGMA Gene-set and Tissue Expression Analysis . . . . . . . . . 17 1.5.3 Expression Quantitative Trait Loci (eQTL) Analysis . . . . . . . . . 17 1.5.4 Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Polygenic Risk Score, PRS . . . . . . . . . . . . . . . . . . . . . . . 18 1.6.1 Definition of PRS . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.2 Application and Limitation . . . . . . . . . . . . . . . . . . . . . . 20 1.7 Study Objectives and Hypotheses . . . . . . . . . . . . . . . . . . . 20 Chapter 2 Materials and Methods 23 2.1 Study Population and Data Source . . . . . . . . . . . . . . . . . . . 23 2.1.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 Study Population Definition . . . . . . . . . . . . . . . . . . . . . 23 2.1.3 Propensity Score Matching (PSM) . . . . . . . . . . . . . . . . . . 24 2.2 Baseline Characteristics Analysis . . . . . . . . . . . . . . . . . . . 25 2.2.1 Covariate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 Statistical Analysis Methods . . . . . . . . . . . . . . . . . . . . . 26 2.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Genome-wide Quality Control . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 29 2.5 Genome-wide Association Study . . . . . . . . . . . . . . . . . . . . 29 2.5.1 Association Analysis Model . . . . . . . . . . . . . . . . . . . . . 29 2.5.2 Covariate Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Statistical Significance Thresholds . . . . . . . . . . . . . . . . . . 31 2.5.4 Result Visualization and Quality Assessment . . . . . . . . . . . . . 31 2.6 Functional Annotation . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.1 FUMA Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . . 32 2.6.2 Gene Mapping and Prioritization . . . . . . . . . . . . . . . . . . . 33 2.6.3 Gene-based Association Analysis . . . . . . . . . . . . . . . . . . . 33 2.6.4 Functional Enrichment Analysis . . . . . . . . . . . . . . . . . . . 34 2.7 PRS Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7.1 Base Dataset GWAS . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7.2 PRS Computation Methods . . . . . . . . . . . . . . . . . . . . . . 35 2.7.3 PRS Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 36 2.8 Machine Learning Prediction Models . . . . . . . . . . . . . . . . . 37 2.8.1 Feature Engineering and Data Preparation . . . . . . . . . . . . . . 37 2.8.2 Model Implementation and Training . . . . . . . . . . . . . . . . . 38 2.8.3 Model Validation and Hyperparameter Optimization . . . . . . . . . 38 2.8.4 Feature Importance Analysis . . . . . . . . . . . . . . . . . . . . . 39 2.8.5 Model Comparison and Selection . . . . . . . . . . . . . . . . . . . 39 2.9 Disease Association Analysis . . . . . . . . . . . . . . . . . . . . . 40 2.9.1 Disease Co-occurrence Analysis . . . . . . . . . . . . . . . . . . . 40 2.9.2 PRS Association Analysis . . . . . . . . . . . . . . . . . . . . . . 41 2.9.3 Skin Cancer Risk Visualization . . . . . . . . . . . . . . . . . . . . 41 2.10 Software and Computational Environment . . . . . . . . . . . . . . . 42 Chapter 3 Results 43 3.1 Study Population Characteristics . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Baseline Demographics . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.2 PSM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.3 After-matched Analysis . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 GWAS Quality Control Results . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Variant-level Quality Control . . . . . . . . . . . . . . . . . . . . . 48 3.2.2 Sample-level Quality Control . . . . . . . . . . . . . . . . . . . . . 49 3.2.3 Principle Component Analysis (PCA) . . . . . . . . . . . . . . . . 50 3.3 Association Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Statistical Quality Assessment . . . . . . . . . . . . . . . . . . . . 51 3.3.2 Identification of Independent Genomic Risk Loci . . . . . . . . . . 52 3.3.3 Chromosome 6 Risk Locus . . . . . . . . . . . . . . . . . . . . . . 52 3.3.4 Chromosome 16 Risk Locus . . . . . . . . . . . . . . . . . . . . . 52 3.3.5 Chromosome 11 and 20 Risk Loci . . . . . . . . . . . . . . . . . . 53 3.3.6 Effect Size Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Functional Annotation . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Gene Mapping and Prioritization . . . . . . . . . . . . . . . . . . . 54 3.4.2 Gene-level Association Analysis . . . . . . . . . . . . . . . . . . . 54 3.4.3 Gene Set Enrichment Analysis . . . . . . . . . . . . . . . . . . . . 55 3.4.4 Tissue-specific Expression Analysis . . . . . . . . . . . . . . . . . 55 3.4.5 Positional Gene Set and Phenotype Enrichment Analysis . . . . . . 56 3.4.6 eQTL Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 PRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5.1 Optimal Base-Target Dataset Split Selection . . . . . . . . . . . . . 58 3.5.2 PRSice-2 Method Parameter Optimization . . . . . . . . . . . . . . 58 3.5.3 Multi-method PRS Comparison Analysis . . . . . . . . . . . . . . . 59 3.5.4 PRS Risk Stratification Performance Evaluation . . . . . . . . . . . 60 3.5.5 PRS Model Stability Validation . . . . . . . . . . . . . . . . . . . . 61 3.6 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6.1 Feature Engineering and Data Preprocessing . . . . . . . . . . . . . 62 3.6.2 Feature Combination Comparative Analysis . . . . . . . . . . . . . 62 3.6.3 Machine Learning Algorithm Comparison . . . . . . . . . . . . . . 63 3.6.4 Hyperparameter Tuning and Model Refinement . . . . . . . . . . . 64 3.6.5 Classification Threshold Optimization . . . . . . . . . . . . . . . . 64 3.6.6 Feature Importance Analysis . . . . . . . . . . . . . . . . . . . . . 65 3.6.7 Comprehensive Model Performance Evaluation . . . . . . . . . . . 65 3.6.8 Model Contribution Analysis . . . . . . . . . . . . . . . . . . . . . 66 3.7 Disease Association Analysis . . . . . . . . . . . . . . . . . . . . . 66 3.7.1 Disease Co-occurrence Analysis . . . . . . . . . . . . . . . . . . . 66 3.7.2 PRS Association Analysis . . . . . . . . . . . . . . . . . . . . . . 67 3.7.3 Skin Cancer Risk Stratification Analysis . . . . . . . . . . . . . . . 68 Chapter 4 Discussion 71 4.1 Recap of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Comparison with previous studies . . . . . . . . . . . . . . . . . . . 75 4.2.1 Validation of Consistency with GERA Study . . . . . . . . . . . . . 75 4.2.2 Novel Discoveries in the Chromosome 16 Hotspot Region . . . . . 75 4.2.3 Comparative Analysis of Functional Pathways . . . . . . . . . . . . 77 4.2.4 Discussion of Differences . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Clinical and Biological Significance of Novel Findings . . . . . . . . 79 4.3.1 Innovative Contributions of PRS Model . . . . . . . . . . . . . . . 79 4.3.2 Key Findings in Cross-Disease Risk Prediction . . . . . . . . . . . 80 4.3.3 Deep Insights into Disease Association Networks . . . . . . . . . . 80 4.3.4 Important Implications for Clinical Monitoring and Management . . 81 4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.1 Data Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.2 Measurement Limitations . . . . . . . . . . . . . . . . . . . . . . . 83 4.4.3 Methodological Limitations . . . . . . . . . . . . . . . . . . . . . . 84 4.4.4 Statistical Considerations . . . . . . . . . . . . . . . . . . . . . . . 86 Chapter 5 Conclusion 87 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.1 Bidirectional Genetic Association Analysis . . . . . . . . . . . . . 88 5.1.2 External Validation and PheWAS Feature Discovery . . . . . . . . . 88 5.1.3 Cross-Population Genetic Research . . . . . . . . . . . . . . . . . . 89 5.1.4 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References 91 Appendix A — Image 105 Appendix B — Table 121 | - |
| dc.language.iso | en | - |
| dc.subject | 日光角化症 | zh_TW |
| dc.subject | 全基因組關聯研究 | zh_TW |
| dc.subject | 多基因風險分數 | zh_TW |
| dc.subject | 皮膚癌 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Skin cancer | en |
| dc.subject | Actinic Keratosis | en |
| dc.subject | GWAS | en |
| dc.subject | PRS | en |
| dc.subject | Machine Learning | en |
| dc.title | 結合全基因組關聯性研究、多基因風險評分與機器學 習方法揭示日光角化症之遺傳結構 | zh_TW |
| dc.title | A genome-wide association study with polygenic risk scoring and machine learning approaches reveals novel genetic architecture of actinic keratosis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 安莉達 | zh_TW |
| dc.contributor.coadvisor | Amrita Chattopadhyay | en |
| dc.contributor.oralexamcommittee | 陳佩君;李建樂 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Chun Chen;Chien-Yueh Lee | en |
| dc.subject.keyword | 日光角化症,全基因組關聯研究,多基因風險分數,皮膚癌,機器學習, | zh_TW |
| dc.subject.keyword | Actinic Keratosis,GWAS,PRS,Skin cancer,Machine Learning, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202503272 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2025-08-26 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
