Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝長澤zh_TW
dc.contributor.advisorChang-Tse Hsiehen
dc.contributor.author陳柏豪zh_TW
dc.contributor.authorBo-Hao Chenen
dc.date.accessioned2025-08-18T00:52:50Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Kazuaki Takasan, Masaki Oshikawa, and Haruki Watanabe. Adiabatic transport in one-dimensional systems with a single defect, 2021.
[2] Kazuaki Takasan, Masaki Oshikawa, and Haruki Watanabe. Drude weights in one-dimensional systems with a single defect. Physical Review B, 107(7), February 2023.
[3] Yuto Ashida, Zongping Gong, and Masahito Ueda. Non-hermitian physics. Advances in Physics, 69(3):249–435, 2020.
[4] Paul Ginsparg. Applied conformal field theory. arXiv preprint hep-th/9108028, 1988.
[5] Philippe Francesco, Pierre Mathieu, and David Sénéchal. Conformal field theory. Springer Science & Business Media, 2012.
[6] Ralph Blumenhagen and Erik Plauschinn. Introduction to conformal field theory: with applications to String theory, volume 779. Springer Science & Business Media, 2009.
[7] Curtis G. Callan, Igor R. Klebanov, Andreas W.W. Ludwig, and Juan M. Maldacena. Exact solution of a boundary conformal field theory. Nuclear Physics B, 422(3):417–448, July 1994.
[8] Joseph Polchinski and Lárus Thorlacius. Free fermion representation of a boundary conformal field theory. Physical Review D, 50(2):R622–R626, July 1994.
[9] M. Hasselfield, Taejin Lee, G.W. Semenoff, and P.C.E. Stamp. Critical boundary sine-gordon revisited. Annals of Physics, 321(12):2849–2875, December 2006.
[10] Carl M. Bender and Stefan Boettcher. Real spectra in non-hermitian hamiltonians having pt symmetry. Physical Review Letters, 80(24):5243–5246, 1998.
[11] Carl M. Bender. Making sense of non-hermitian hamiltonians. Reports on Progress in Physics, 70(6):947–1018, 2007.
[12] Stefan Banach. Theory of linear operations, volume 38. Elsevier, 1987.
[13] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst. Exceptional topology of non-hermitian systems. Reviews of Modern Physics, 93(1):015005, 2021.
[14] Ali Mostafazadeh. Pseudo-hermitian description of pt-symmetric systems defined on a complex contour. Journal of Physics A: Mathematical and General, 38(14):3213, 2005.
[15] Ali Mostafazadeh. Pseudo-hermiticity versus pt symmetry: The necessary condition for the reality of the spectrum of a non-hermitian hamiltonian. Journal of Mathematical Physics, 43(1):205–214, 2002.
[16] Ali Mostafazadeh. Pseudo-hermiticity versus pt-symmetry. ii. a complete characterization of non-hermitian hamiltonians with a real spectrum. Journal of Mathematical Physics, 43(5):2814–2816, May 2002.
[17] Liang Feng, Ramy El-Ganainy, and Li Ge. Non-hermitian photonics based on parity–time symmetry. Nature Photonics, 11:752–762, 2017.
[18] Mohammad-Ali Miri and Andrea Alù. Exceptional points in optics and photonics. Science, 363(6422):eaar7709, 2019.
[19] Şahin K. Özdemir, Stefan Rotter, Franco Nori, and Lan Yang. Parity–time symmetry and exceptional points in photonics. Nature Materials, 18(8):783–798, 2019.
[20] Yi-Cheng Wang, Jhih-Shih You, and Hsiang-Hua Jen. A non-hermitian optical atomic mirror. Nature Communications, 13(1):4598, 2022.
[21] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip. Observation of parity–time symmetry in optics. Nature Physics, 6:192–195, 2010.
[22] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548:192–196, 2017.
[23] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda. Topological phases of non-hermitian systems. Physical Review X, 8:031079, 2018.
[24] S. Yao and Z. Wang. Edge states and topological invariants of non-hermitian systems. Physical Review Letters, 121:086803, 2018.
[25] Z. Li, L.-W. Wang, X. Wang, Z.-K. Lin, G. Ma, and J.-H. Jiang. Observation of dynamic non-hermitian skin effects. Nature Communications, 15:6544, 2024.
[26] Romain Couvreur, Jesper Lykke Jacobsen, and Hubert Saleur. Entanglement in nonunitary quantum critical spin chains. Physical review letters, 119(4):040601, 2017.
[27] Po-Yao Chang, Jhih-Shih You, Xueda Wen, and Shinsei Ryu. Entanglement spectrum and entropy in topological non-hermitian systems and nonunitary conformal field theory. Physical Review Research, 2(3), July 2020.
[28] Michael H Freedman, Jan Gukelberger, Matthew B Hastings, Simon Trebst, Matthias Troyer, and Zhenghan Wang. Galois conjugates of topological phases. Physical Review B—Condensed Matter and Materials Physics, 85(4):045414, 2012.
[29] Laurens Lootens, Robijn Vanhove, Jutho Haegeman, and Frank Verstraete. Galois conjugated tensor fusion categories and nonunitary conformal field theory. Physical review letters, 124(12):120601, 2020.
[30] Sora Cho and Matthew P. A. Fisher. Criticality in the two-dimensional random-bond ising model. Phys. Rev. B, 55:1025–1031, Jan 1997.
[31] Masaki Oshikawa and Ian Affleck. Boundary conformal field theory approach to the critical two-dimensional ising model with a defect line. Nuclear Physics B, 495(3):533–582, 1997.
[32] Gregory Moore and Nicholas Read. Nonabelions in the fractional quantum hall effect. Nuclear Physics B, 360(2-3):362–396, 1991.
[33] Thors Hans Hansson, Maria Hermanns, Steven H Simon, and Susanne F Viefers. Quantum hall physics: Hierarchies and conformal field theory techniques. Reviews of Modern Physics, 89(2):025005, 2017.
[34] Ian Affleck and Andreas WW Ludwig. The kondo effect, conformal field theory and fusion rules. Nuclear Physics B, 352(3):849–862, 1991.
[35] Ian Affleck, Andreas WW Ludwig, H-B Pang, and DL Cox. Relevance of anisotropy in the multichannel kondo effect: Comparison of conformal field theory and numerical renormalization-group results. Physical Review B, 45(14):7918, 1992.
[36] Ian Affleck and Andreas WW Ludwig. Exact conformal-field-theory results on the multichannel kondo effect: Single-fermion green's function, self-energy, and resistivity. Physical Review B, 48(10):7297, 1993.
[37] Andreas W.W. Ludwig and Ian Affleck. Exact conformal-field-theory results on the multi-channel kondo effect: Asymptotic three-dimensional space- and timedependent multi-point and many-particle green’s functions. Nuclear Physics B, 428(3):545–611, 1994.
[38] Ian Affleck. Conformal field theory approach to the kondo effect. arXiv preprint cond-mat/9512099, 1995.
[39] C. L. Kane and Matthew P. A. Fisher. Transport in a one-channel luttinger liquid. Phys. Rev. Lett., 68:1220–1223, Feb 1992.
[40] C. L. Kane and Matthew P. A. Fisher. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B, 46:15233–15262, Dec 1992.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98560-
dc.description.abstract共形場論對描述臨界現象中的普適性行為提供了一套精確的分析框架,而邊界共形場論則在理解臨界系統中的量子雜質問題方面扮演重要的角色。另一方面,非厄米物理源於放寬厄米性條件,能有效刻畫具有增益、耗散與衰減等現象的開放量子系統的動力學。受這些發展的啟發,我們探討非么正邊界共形場論與非厄米量子雜質臨界系統之間的關聯。我們將邊界共形場論的框架擴展至包含非厄米雜質的情況,並利用折疊技巧將晶格模型中的雜質強度對應到一個有效的位勢參數,從而建立晶格散射矩陣與邊界共形場論黏合矩陣之間的對應關係。在此對應中,非厄米模型中機率守恆的違反體現在邊界共形場論中非么正的邊界條件。我們進一步顯示,晶格模型在費米點所產生的雜質能量位移,與邊界共形場論中基態能量的有限尺寸修正相符;該修正隨系統尺寸呈反比縮放,並由費米動量下的傳輸振幅所決定。這項結果推廣了對厄米雜質系統的既有研究成果,例如 [1,2] 中所提出的。總結而言,我們的研究表明,邊界共形場論的技術可以有效應用於非厄米量子雜質問題的分析,為非厄米性與邊界或缺陷臨界性之間的關係提供了新的見解。zh_TW
dc.description.abstractConformal field theory (CFT) offers an exact analytical framework for describing the universal features of critical phenomena, while boundary conformal field theory (BCFT) plays a central role in understanding quantum impurity problems at criticality. Meanwhile, non-Hermitian physics, which arises from relaxing the Hermiticity condition, effectively captures the dynamics of open quantum systems with gain, loss, and decay. Motivated by these developments, we explore the connection between non-unitary BCFT and non-Hermitian quantum impurity critical systems. Extending the BCFT framework to include non-Hermitian impurities, we map the lattice impurity strength to an effective barrier parameter using the folding trick, establishing a direct correspondence between the lattice scattering matrix and the BCFT gluing matrix. In this correspondence, the violation of probability conservation in the non-Hermitian model manifests as non-unitary boundary conditions in BCFT. We further show that the impurity-induced energy shift at the Fermi point(s) in the lattice model matches the finite-size correction to the ground-state energy in BCFT, which scales inversely with the system size and is determined by the transmission amplitude at the Fermi momentum. This extends the known results for Hermitian impurity systems, e.g., presented in [1,2]. Our results demonstrate that BCFT techniques can be fruitfully applied to the study of non-Hermitian quantum impurity problems, providing new insights into the interplay between non-Hermiticity and boundary or defect criticality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:52:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T00:52:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Thesis Structure . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Non-Hermitian Physics 5
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Non-Hermitian Quantum Mechanics . . . . . . . . . . . . . . . . . 6
2.1.2 PT-symmetry and Real Spectra . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Exceptional Points . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Experimental Realizations and Applications . . . . . . . . . . . . . . 12
2.3 Relation to non-unitary Conformal Field Theory . . . . . . . . . . . 13
2.4 Challenges and Open Questions . . . . . . . . . . . . . . . . . . . . 14
Chapter 3 Conformal Field Theory Techniques 15
3.1 Brief introduction of CFT . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Definition of Conformal Transformations . . . . . . . . . . . . . . 16
3.1.2 Witt Algebra and Virasoro Algebra . . . . . . . . . . . . . . . . . . 17
3.1.3 Operator Product Expansion (OPE) . . . . . . . . . . . . . . . . . . 20
3.1.4 Scaling Behavior and Critical Exponents . . . . . . . . . . . . . . . 21
3.2 Boundary Conformal Field Theory . . . . . . . . . . . . . . . . . . . 22
3.3 Boundary sine-Gordon model . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Fermionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 4 Non-Hermitian Critical Systems with Impurities and BCFT 33
4.1 Single Defect Models . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Scattering Matrix (S-matrix) Formalism . . . . . . . . . . . . . . . . 35
4.2.1 Connection to Transport Properties . . . . . . . . . . . . . . . . . . 36
4.2.2 S-matrix with Hermiticity . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Generalize to non-Hermitian case . . . . . . . . . . . . . . . . . . . 38
4.2.4 Critical Point Behavior . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Correspondence with BCFT . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Folding Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Dependence of Boundary Coupling on Lattice Parameter . . . . . . 48
4.3.4 Dirichlet Boundary Condition . . . . . . . . . . . . . . . . . . . . . 49
4.3.5 Neumann Boundary Condition . . . . . . . . . . . . . . . . . . . . 51
4.4 Unitarity, Hermiticity, and Their Violations . . . . . . . . . . . . . . 52
4.4.1 Hermiticity in the Lattice Model . . . . . . . . . . . . . . . . . . . 53
4.4.2 Unitarity Condition of the Gluing Matrix . . . . . . . . . . . . . . . 54
4.4.3 Equivalence of Unitarity and Hermiticity . . . . . . . . . . . . . . . 55
4.5 Ground State Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 Eigenvalues of S-matrix . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Quantization Condition . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.3 Energy Spectrum Expansion . . . . . . . . . . . . . . . . . . . . . 62
4.5.4 Matching Finite-Size Corrections to BCFT Predictions . . . . . . . 66
4.6 Excited State Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.1 Excitations by Raising N Levels . . . . . . . . . . . . . . . . . . . 69
4.6.2 Excitations by Adding or Removing Q Particles . . . . . . . . . . . 72
4.6.3 Correspondence Between Excitation Energies and BCFT Spectrum . 75
4.7 Physical Implications and Interpretation . . . . . . . . . . . . . . . . 79
Chapter 5 Discussion and Conclusion 81
5.1 Summary of Major Results . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Potential Future Directions . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References 85
Appendix A — Virasoro algebra 91
A.1 The Witt Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Central Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Correlation Functions and Operator Product Expansion (OPE) . . . . 93
Appendix B — Unitarity Check of Gluing Matrix 99
Appendix C — Expansion and Correction of qn 101
-
dc.language.isoen-
dc.subject邊界共形場論zh_TW
dc.subject共形場論zh_TW
dc.subject散射矩陣zh_TW
dc.subject缺陷zh_TW
dc.subject非厄米zh_TW
dc.subjectnon-Hermitianen
dc.subjectImpurityen
dc.subjectS-matrixen
dc.subjectBoundary Conformal Field Theoryen
dc.subjectConformal Field Theoryen
dc.title單缺陷非厄米系統與邊界共形場論zh_TW
dc.titleSingle Impurity non-Hermitian System and Boundary Conformal Field Theoryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊瑋;沈家賢;任祥華zh_TW
dc.contributor.oralexamcommitteeJiunn-Wei Chen;Chia-Hsien Shen;Hsiang-Hua Jenen
dc.subject.keyword共形場論,邊界共形場論,非厄米,缺陷,散射矩陣,zh_TW
dc.subject.keywordConformal Field Theory,Boundary Conformal Field Theory,non-Hermitian,Impurity,S-matrix,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202501665-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved