請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98556完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 王孟琪 | zh_TW |
| dc.contributor.author | Meng-Chi Wang | en |
| dc.date.accessioned | 2025-08-18T00:51:55Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] Ou, L., An, Z., Gao, Z., Zhou, S., & Men, Z, "Effects of Process Parameters on the Thickness Uniformity in Two-Point Incremental Forming (TPIF) with a Positive Die for an Irregular Stepped Part," Materials (Basel), vol. 13, no. 11, 2020.
[2] Trzepieciński, T., Oleksik, V., Pepelnjak, T., Najm, S. M., Paniti, I., & Maji, K, "Emerging Trends in Single Point Incremental Sheet Forming of Lightweight Metals," Metals, vol. 11, no. 8, 2021. [3] Liu, Y., Li, F., Li, C., & Xu, J, "Effect of reverse pre-bulging on magnetic medium deep drawing formability of aluminum spherical bottom cylindrical parts," The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9-12, pp. 4649-4657, 2019. [4] Banabic, D., Barlat, F., Cazacu, O., & Kuwabara, T, "Advances in anisotropy of plastic behaviour and formability of sheet metals," International Journal of Material Forming, vol. 13, no. 5, pp. 749-787, 2020. [5] 林孝桓, “利用有限元素軟體進行漸進成形的回彈現象分析,” 臺灣大學機械工程學研究所學位論文, 2024. [6] Powell, N. N., & Andrew, C, "Incremental forming of flanged sheet metal components without dedicated dies," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 206, no. 1, p. 41–47, 1992. [7] Bambach, M., Hirt, G., & Junk, S, "Modelling and experimental evaluation of the incremental CNC sheet metal forming process," in 7th International Conference on Computational Plasticity (COMPLAS), Barcelona, Spain, 2003. [8] Ceretti, E., Giardini, C., & Attanasio, A, "Experimental and simulative results in sheet incremental forming on CNC machines," Journal of Materials Processing Technology, vol. 152, no. 2, pp. 176-184, 2004. [9] Hatori, S., Sekiguchi, A., & Özer, A, "Conceptual design of multipurpose forming machine and experiments on force-controlled shear spinning of truncated cone," Procedia Manufacturing, vol. 15, pp. 1255-1262, 2018. [10] Silva, M. B., & Martins, P. A. F, "Two-Point Incremental Forming with Partial Die: Theory and Experimentation," Journal of Materials Engineering and Performance, vol. 22, no. 4, pp. 1018-1027, 2012. [11] Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J, "Asymmetric Single Point Incremental Forming of Sheet Metal," CIRP Annals, vol. 54, no. 2, pp. 88-114, 2005. [12] Malhotra, R., Reddy, N. V., & Cao, J, "Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming," journal of manufacturing science and engineering, vol. 132, no. 6, 2010. [13] Jung, K. S., Yu, J. H., Chung, W. J., & Lee, C. W, "Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error," Materials (Basel), vol. 13, no. 21, 2020. [14] Buang, M. S., Abdullah, S. A., & Saedon, J, "An Overview of the Impacts of Material Parameters on Springback," Applied Mechanics and Materials, vol. 564, pp. 323-328, 2014. [15] Tripathi, A., Ganesh Narayanan, R., & Dixit, U. S, "Implementation of Yield Criteria in ABAQUS for Simulations of Deep Drawing: A Review and Preliminary Results," Manufacturing Engineering: Select Proceedings of CPIE 2019, pp. 575-588, 2020. [16] Hill, R, "Constitutive modelling of orthotropic plasticity in sheet metals," Journal of the Mechanics and Physics of Solids, vol. 38, pp. 405-417, 1990. [17] Barlat, F., & Lian, K, "Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions," International Journal of Plasticity, vol. 5, pp. 51-66, 1989. [18] Barlat, F., Lege, D. J., & Brem, J. C, "A six-component yield function for anisotropic materials," International Journal of Plasticity, vol. 7, pp. 693- 712, 1991. [19] Lou, Y., Zhang, C., Zhang, S., & Yoon, J. W., "A general yield function with differential and anisotropic hardening for strength modelling under various stress states with non-associated flow rule," International Journal of Plasticity, vol. 158, p. 103414, 2022. [20] Malhotra, R., Xue, L., Belytschko, T., & Cao, J, "Mechanics of fracture in single point incremental forming," Journal of Materials Processing Technology, vol. 212, no. 7, pp. 1573-1590, 2012. [21] Singh, R. P., & Goyal, G, "FEA Analysis to Study the Influence of Various Forming Parameters on Springback Occurs In Single Point Incremental Forming," International Journal of Engineering Research and Applications. [22] Dionisius, F., Sugiri, S., Endramawan, T., & Haris, E, "Geometrical Study of Channel Profile under Incremental Forming Process: Numerical Simulation," Journal of Mechanical Engineering, vol. 16, no. 2, pp. 1-10, 2019. [23] Jung, K. S., Yu, J. H., Chung, W. J., & Lee, C. W, "Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error," Materials (Basel), vol. 13, no. 21, 2020. [24] 陳家揚, “反向多道次單點增量成形之研究,” 臺灣大學機械工程學研究所學位論文, 2019. [25] 顏子翔, “多階段單點增量成形之板厚分配策略,” 臺灣大學機械工程學研究所學位論文, 2019. [26] Xiang, Y., & Vlassak, J. J, "Bauschinger effect in thin metal films," Scripta Materialia, vol. 53, no. 2, pp. 177-182, 2005. [27] 蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究,” 臺灣大學機械工程學研究所學位論文, 2012. [28] Gupta, A., Hou, Y., Hariharan, K., Han, H. N., & Lee, M. G, "Evaluation of anisotropic fracture in AA1050-O sheet using uncoupled ductile fracture models with Hill48 plasticity," IOP Conference Series: Materials Science and Engineering, vol. 1284, no. 1, p. 012049, 2023. [29] Hill, R, "A Theory of the Yielding and Plastic Flow of Anisotropic Metals," Proc. R. Soc. Lond. A, vol. 193, p. 281–297, 1948. [30] Barlat, F., Lege, D. J., & Brem, J. C, "A six-component yield function for anisotropic materials," International Journal of Plasticity, no. 7, pp. 693- 712, 1991. [31] Barlat, F., Lege, D. J., & Brem, J. C, "A six-component yield function for anisotropic materials," International journal of plasticity, vol. 7, no. 7, pp. 693-712, 1991. [32] Bouchaâla, K., Ghanameh, M. F., Faqir, M., Mada, M., & Essadiqi, E, "Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in cylindrical deep drawing process," Heliyon, vol. 7, no. 4, 2021. [33] "ABAQUS User Subroutines Reference Manual," [Online]. Available: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/sub/default.htm?startat=ch01s02asb04.html. [Accessed 20 4 2025]. [34] "Advanced Manufacturing Processes Laboratory," [Online]. Available: https://ampl.mech.northwestern.edu/research/current-research/ampltoolpaths.html. [Accessed 21 8 2024]. [35] "WashU McKelvey School of Engineering," [Online]. Available: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/gss/default.htm?startat=ch04s01.html. [Accessed 11 12 2024]. [36] Lu, H., Liu, H., & Wang, C, "Review on strategies for geometric accuracy improvement in incremental sheet forming," The International Journal of Advanced Manufacturing Technology, vol. 102, p. 3381–3417, 2019. [37] Hirt G, Ames J, Bambach M, Kopp R, "Forming strategies and process modelling for CNC incremental sheet forming," CIRP Annals, vol. 53, no. 1, pp. 203-206, 2004. [38] Attanasio A, Ceretti E, Giardini C, Mazzoni L, "Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization," Journal of materials processing technology, vol. 197, no. 1-3, pp. 59-67, 2008. [39] Lu, H., Kearney, M., Li, Y., Liu, S., Daniel, W. J., & Meehan, P. A, "Model predictive control of incremental sheet forming for geometric accuracy improvement," The International Journal of Advanced Manufacturing Technology, vol. 82, no. 9, pp. 1781-1794, 2016. [40] Lu, H., Kearney, M., Liu, S., Daniel, W. J., & Meehan, P. A., "Two-directional toolpath correction in single-point incremental forming using model predictive control," The International Journal of Advanced Manufacturing Technology, vol. 91, no. 1, pp. 91-106, 2017. [41] Bambach, M., Taleb Araghi, B., & Hirt, G, "Strategies to improve the geometric accuracy in asymmetric single point incremental forming," Production Engineering, vol. 3, no. 2, pp. 145-156, 2009. [42] Duflou, J., Callebaut, B., Verbert, J. & De Baerdemaeker, H, "Laser assisted incremental forming: formability and accuracy improvement," CIRP Annals-Manufacturing Technology, vol. 56, pp. 273-276, 2007. [43] Göttmann, A., Diettrich, J., Bergweiler, G., Bambach, M., Hirt, G., Loosen, P. & Poprawe, R, "Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts," Production Engineering, vol. 5, pp. 263-271, 2011. [44] Fan, G., Sun, F., Meng, X., Gao, L. & Tong, G, "Electric hot incremental forming of Ti-6Al-4V titanium sheet," The International Journal of Advanced Manufacturing Technology, vol. 49, pp. 941-947, 2010. [45] Ortiz, M., Penalva, M., Puerto, M. J., Homola, P. & Kafka, V, "Hot Single Point Incremental Forming of Ti-6Al-4V Alloy," Key Engineering Materials, vol. 611, pp. 1079-1087, 2014. [46] Al-Obaidi, A., Kräusel, V. & Landgrebe, D, "Hot single-point incremental forming assisted by induction heating," The International Journal of Advanced Manufacturing Technology, vol. 82, no. 5, pp. 1163-1171, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98556 | - |
| dc.description.abstract | 漸進成形加工是一種利用成形工具沿預設路徑移動,逐步使板材變形以製作所需工件的方法。此技術無需製作高成本模具,因此特別適用於小批量生產,有效實現產品客製化。儘管漸進成形具有高度加工自由度,然而精度控制與回彈預測仍是待解決的問題。
本研究採用有限元素分析軟體Abaqus,針對AA1050-O鋁合金板材在雙點漸進成形過程中的回彈行為進行分析。首先,透過反覆拉壓試驗了解板材的包辛格效應,並透過VUMAT子程式在Abaqus中實現了兩種降伏準則—Hill48與Barlat91,將其結果與Abaqus內建Hill48降伏模型的模擬結果及文獻中的實驗數據進行驗證和比較。另外,根據雙點漸進成形夾具中支撐模具的支撐完整性,做圓形部分模具跟方形部分模具的模擬與回彈分析。 從分析的結果可以知道,使用Barlat91降伏準則模擬時的輪廓較接近實驗的輪廓,可推論Barlat91降伏準則更適用於AA1050-O鋁合金板材的回彈分析。在使用方形部分模具模擬時,能有效降低回彈量。而Hill48降伏模型在VUMAT子程式與內建功能兩種實現方式下,回彈預測結果幾乎相同,證實採用VUMAT子程式的可行性與正確性。未來可以建立不同降伏準則(如Yld2000-2d、BBC2005)的材料模型,或是結合降伏準則與混合硬化模型以提升模擬準確性,以應用漸進成形在各種加工。 | zh_TW |
| dc.description.abstract | Incremental forming is a manufacturing process in which a forming tool gradually deforms a sheet metal along a predefined toolpath to produce the desired part geometry. This technique eliminates the need for costly dies, making it particularly suitable for small-scale production and enabling effective product customization. Despite its high forming flexibility, issues such as dimensional accuracy and springback prediction remain key challenges to be addressed.
In this study, the springback of AA1050-O aluminum alloy sheet during Two Point Incremental Forming(TPIF) was analyzed using the finite element software Abaqus. The Bauschinger effect of the material was investigated through cyclic tension-compression tests. Two anisotropic yield criterion(Hill48 and Barlat91) were implemented via VUMAT subroutines in Abaqus. The simulated springback results were quantitatively evaluated and compared with both the built-in Hill48 model in Abaqus and experimental data from the literature. Additionally, this study explored the effect of support integrity by simulating two TPIF setups: one with a original partial die, and one with a fully supported partial die. The results showed that simulations using both yield criterion produced similar outcomes, with the Barlat91 model providing a better match to experimental contours. The simulated sidewall angles were also close to the ideal 65°, regardless of the yield model used. Moreover, the use of the fully supported partial die was found to effectively reduce springback. Finally, the springback predictions obtained from the VUMAT-implemented Hill48 model were nearly identical to those from the built-in Abaqus model, indicating minimal difference. Future work may involve developing material models incorporating other advanced yield criteria, such as Yld2000-2d or BBC2005, and coupling them with mixed hardening laws to enhance simulation accuracy for a wider range of incremental forming applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:51:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:51:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 II
中文摘要 III 英文摘要 IV 目 次 VI 圖 次 VIII 表 次 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 研究方法 4 1.4 文獻回顧 6 1.5 論文總覽 8 第二章 雙點漸進成形加工 10 2.1漸進成形機制 10 2.2漸進成形回彈機制 11 2.3鋁合金性質探討 12 2.3.1鋁合金分類方法 12 2.3.2 AA1050鋁合金簡介 13 2.4材料模型建立 14 2.4.1加工硬化準則探討 15 2.4.2降伏準則探討與模型建立 18 2.4.2.1 Hill 48降伏準則探討 19 2.4.2.2 Barlat 91降伏準則探討 20 2.4.2.3 Hill 48與Barlat 91降伏模型參數建立 21 2.4.2.4 VUMAT子程式建立 23 第三章 模擬模型建立 25 3.1成形路徑生成 25 3.2 FEA模型建立 26 3.2.1 Abaqus有限元素分析軟體 27 3.2.2模型建立 28 3.2.2.1 邊界條件設定 29 3.2.2.2 網格劃分與節點設置 30 3.2.3後處理 31 第四章 雙點漸進成形回彈分析 32 4.1回彈及加工誤差的量化分析 33 4.1.1 模擬結果與實驗數據比較 33 4.1.1.1 局部回彈(Local Springback) 35 4.1.2 不同部分模具之模擬結果比較 41 4.1.2.1 局部回彈 43 4.1.3內建與VUMAT Hill48降伏準則之模擬結果比較 46 4.1.3.1 局部回彈 47 4.1.4漸進成形的回彈補償探討 49 4.1.4.1路徑補償 51 第五章 結論與未來展望 53 5.1結論 53 5.2未來展望 54 參考文獻 55 附錄 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙點漸進成形 | zh_TW |
| dc.subject | AA1050-O | zh_TW |
| dc.subject | 降伏準則 | zh_TW |
| dc.subject | 有限元素法分析 | zh_TW |
| dc.subject | 回彈量化 | zh_TW |
| dc.subject | Yield Criterion | en |
| dc.subject | Two Point Incremental Forming(TPIF) | en |
| dc.subject | Springback | en |
| dc.subject | Finite Element Analysis | en |
| dc.subject | AA1050-O | en |
| dc.title | 運用有限元素軟體模擬分析雙點漸進成形加工AA1050-O鋁板之回彈現象 | zh_TW |
| dc.title | Simulation and Analysis of Springback in Two-Point Incremental Forming of AA1050-O Aluminum Using Finite Element Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳復國;楊宏智 | zh_TW |
| dc.contributor.oralexamcommittee | Fuh-Kuo Chen;Hong-Tsu Young | en |
| dc.subject.keyword | 雙點漸進成形,AA1050-O,降伏準則,有限元素法分析,回彈量化, | zh_TW |
| dc.subject.keyword | Two Point Incremental Forming(TPIF),AA1050-O,Yield Criterion,Finite Element Analysis,Springback, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202503860 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
