請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98553完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志潾 | zh_TW |
| dc.contributor.advisor | Chih-Lin Wei | en |
| dc.contributor.author | 陳昕 | zh_TW |
| dc.contributor.author | Hsin Chen | en |
| dc.date.accessioned | 2025-08-18T00:51:14Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237
Al-Humaidan ZA, Al-Zlemat NS, Khaleefah UQ, Al-Qurnawy LS (2021) A study of fauna assemblages and their relation to the sediment accumulation in the coral reef area, nw of the arabian gulf. Iraqi Geol J 54:114–128 Al-Zlemat NS (2019) Sedimentological and Mineralogical Study of Palinurus Shoal in the Northwest Arabian Gulf. Master Thesis, Univ Baghdad, Iraq Alarcon EI, Poblete H, Roh H, Couture J-F, Comer J, Kochevar IE (2017) Rose Bengal Binding to Collagen and Tissue Photobonding. ACS Omega 2:6646–6657 Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv Mar Freshw Ecosyst 18:541–556 Aller RC, Dodge RE (1974) Animal-sediment relations in a tropical lagoon Discovery Bay, Jamaica. J Mar Res 32:209–232 Alongi DM (1986) Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Mar Freshw Res 37:609–619 Alongi DM (1989) The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystem. Rev Aquat Sci 1:243–280 Alongi DM (2020) Coastal ecosystem processes. CRC press, USA Ansell AD, McLusky DS, Stirling A, Trevallion A (1978) Production and energy flow in the macrobenthos of two sandy beaches in South West India. Proc R Soc Edinburgh, Sect B Biol Sci 76:269–296 Barros F (2016) Soft-sediment communities. Marine community ecology and conservation. pp 606 Beijbom O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, Dunlap MJ, Moriarty V, Fan T-Y, Tan C-J, Chan S, Treibitz T, Gamst A, Mitchell BG, Kriegman D (2015) Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation. PLoS One 10:e0130312 Belkin IM (2009) Rapid warming of large marine ecosystems. Prog Oceanogr 81:207–213 Bernot J, Ahyong S, Boyko CB, Bailly N, Bieler R, Brandão SN, Daly M, De Grave S, Gofas S, Hernandez F, Hughes L, Neubauer TA, Paulay G, Boydens B, Decock W, Dekeyzer S, Goharimanesh M, Vandepitte L, Vanhoorne B, Adlard R, Agatha S, Ahn KJ, Alonso M V, Alvarez B, Amler MRW, Amorim V, Anderberg A, Andrés-Sánchez S, Ang Y, Antić D, Antonietto LS, Arango C, Artois T, Atkinson S, Auffenberg K, Baldwin BG, Bank R, Barber A, Barrett RL, Bartsch I, Bellan-Santini D, Bergh N, Berta A, Bezerra TN, Blanco S, Blasco-Costa I, Blazewicz M, Błędzki LA, Bock P, Bonifacino M, Böttger-Schnack R, Bouchet P, Boury-Esnault N, Bouzan R, Boxshall G, Bray R, Brito Seixas AL, Broda FT, Bruce NL, Bruneau A, Budaeva N, Bueno-Villegas J, Calvo Casas J, Cárdenas P, Carstens E, Cartwright P, Cedhagen T, Chan BK, Chan TY, Choong H, Christenhusz M, Churchill M, Collins AG, Collins GE, Collins K, Consorti L, Copilaș-Ciocianu D, Corbari L, Cordeiro R, Costa VM d. M, Costa Corgosinho PH, Coste M, Costello MJ, Crandall KA, Cremonte F, Cribb T, Cutmore S, Dahdouh-Guebas F, Daneliya M, Dauvin JC, Davie P, De Broyer C, de Lima Ferreira P, de Mazancourt V, de Moura Oliveira L, de Sá HAB, de Voogd NJ, Decker P, Defaye D, Dekker H, Di Capua I, Dippenaar S, Dohrmann M, Dolan J, Domning D, Downey R, Dreyer N, Eisendle U, Eitel M, Eleaume M, Enghoff H, Epler J, Esquete Garrote P, Evenhuis NL, Ewers-Saucedo C, Faber M, Figueroa D, Fišer C, Fordyce E, Foster W, Fransen C, Freire S, Fujimoto S, Furuya H, Galbany-Casals M, Gale A, Galea H, Gao T, Garic R, Garnett S, Gaviria-Melo S, Gerken S, Gibson D, Gibson R, Gil J, Gittenberger A, Glasby C, Glenner H, Glover A, Gómez-Noguera SE, Gondim AI, Gonzalez BC, González-Solís D, Goodwin C, Gostel M, Grabowski M, Gravili C, Grossi M, Guerra-García JM, Guerrero JM, Guidetti R, Guiry MD, Gutierrez D, Hadfield KA, Hajdu E, Halanych K, Hallermann J, Hayward BW, Hegna TA, Heiden G, Hendrycks E, Hennen D, Herbert D, Herrera Bachiller A, Hodda M, Høeg J, Hoeksema B, Holovachov O, Hooge MD, Hooper JN, Horton T, Houart R, Huys R, Hyžný M, Iniesta LFM, Iseto T, Iwataki M, Janssen R, Jaume D, Jazdzewski K, Jersabek CD, Jiménez-Mejías P, Jóźwiak P, Kabat A, Kakui K, Kantor Y, Karanovic I, Karapunar B, Karthick B, Kathirithamby J, Katinas L, Kilian N, Kim YH, King R, Kirk PM, Klautau M, Kociolek JP, Köhler F, Konowalik K, Kotov A, Kovács Z, Kremenetskaia A, Kristensen RM, Kroh A, Kulikovskiy M, Kullander S, Kupriyanova E, Lamaro A, Lambert G, Larridon I, Lazarus D, Le Coze F, Le Roux M, LeCroy S, Leduc D, Lefkowitz EJ, Lemaitre R, Lichter-Marck IH, Lim SC, Lindsay D, Liu Y, Loeuille B, Lörz AN, Ludwig T, Lundholm N, Macpherson E, Mah C, Mamos T, Manconi R, Mapstone G, Marek PE, Markello K, Márquez-Corro JI, Marshall B, Marshall DJ, Martin P, Martinez Arbizu P, McFadden C, McInnes SJ, McKenzie R, Means J, Mees J, Mejía-Madrid HH, Meland K, Merrin KL, Miller J, Mills C, Moestrup Ø, Mokievsky V, Molodtsova T, Monniot F, Mooi R, Morandini AC, Moreira da Rocha R, Morrow C, Mortelmans J, Müller A, Muñoz Gallego AR, Muñoz Schüler P, Musco L, Nascimento JB, Nesom G, Neto Silva M d. S, Neubert E, Neuhaus B, Ng P, Nguyen AD, Nielsen C, Nielsen S, Nishikawa T, Norenburg J, O’Hara T, Opresko D, Osawa M, Osigus HJ, Ota Y, Páll-Gergely B, Panero JL, Patterson D, Pedram M, Pelser P, Peña Santiago R, Pereira J d. S., Pereira SGG, Perez-Losada M, Petrescu I, Pfingstl T, Piasecki W, Pica D, Picton B, Pignatti J, Pilger JF, Pinheiro U, Pisera AB, Poatskievick Pierezan B, Polhemus D, Poore GC, Potapova M, Praxedes RA, Půža V, Read G, Reich M, Reimer JD, Reip H, Resende Bueno V, Reuscher M, Reynolds JW, Richling I, Rimet F, Ríos P, Rius M, Rodríguez E, Rogers DC, Roque N, Rosenberg G, Rützler K, Saavedra M, Sabater LM, Sabbe K, Sabroux R, Saiz-Salinas J, Sala S, Samimi-Namin K, Santagata S, Santos S, Santos SG, Sanz Arnal M, Sar E, Saucède T, Schärer L, Schierwater B, Schilling E, Schmidt-Lebuhn A, Schneider S, Schönberg C, Schrével J, Schuchert P, Schweitzer C, Semple JC, Senna AR, Sennikov A, Serejo C, Shaik S, Shamsi S, Sharma J, Shear WA, Shenkar N, Short M, Sicinski J, Sidorov D, Sierwald P, Silva DKF d., Silva ESS, Silva MLCN, Simmons E, Sinniger F, Sinou C, Sivell D, Smit H, Smit N, Smol N, Sørensen M V, Souza-Filho JF, Spelda J, Sterrer W, Steyn HM, Stoev P, Stöhr S, Suárez-Morales E, Susanna A, Suttle C, Swalla BJ, Taiti S, Tanaka M, Tandberg AH, Tang D, Tasker M, Taylor J, Taylor J, Taylor K, Tchesunov A, Temereva E, ten Hove H, ter Poorten JJ, Thirouin K, Thomas JD, Thuesen E V, Thurston M, Thuy B, Timi JT, Todaro A, Todd J, Turon X, Uetz P, Urbatsch L, Uribe-Palomino J, Urtubey E, Utevsky S, Vacelet J, Vader W, Väinölä R, Valls Domedel G, Van de Vijver B, van der Meij SE, van Haaren T, van Soest RW, Vanreusel A, Velandia J, Venekey V, Verhoeff T, Vinarski M, Vonk R, Vos C, Vouilloud AA, Walker-Smith G, Walter TC, Watling L, Wayland M, Wesener T, Wetzel CE, Whipps C, White K, Wieneke U, Williams DM, Williams G, Wilson KL, Wilson R, Witkowski J, Wyatt N, Xavier J, Xu K, Zanol J, Zeidler W, Zhao Z, Zullini A (2024) World Register of Marine Species (WoRMS). Bett BJ, Rice AL (1992) The influenceof hexactinellid sponge (Pheronema carpenteri) spicules on the patchy distribution of macrobenthos in the porcupine seabight (bathyal ne atlantic). Ophelia 36:217–226 Bolam SG, Fernandes TF (2002) The effects of macroalgal cover on the spatial distribution of macrobenthic invertebrates: the effect of macroalgal morphology. Hydrobiologia 475:437–448 Bourque JR, Demopoulos AWJ (2018) The influence of different deep-sea coral habitats on sediment macrofaunal community structure and function. PeerJ 6:e5276 Brusca RC, Moore W, Shuster SM (2016) Invertebrates. Oxford University Press UK, UK Burns KA, Smith JL (1981) Biological monitoring of ambient water quality: the case for using bivalves as sentinel organisms for monitoring petroleum pollution in coastal waters. Estuar Coast Shelf Sci 13:433–443 Callaway R, Fairley I, Horrillo-Caraballo J (2020) Natural dynamics overshadow anthropogenic impact on marine fauna at an urbanised coastal embayment. Sci Total Environ 716:137009 Cao Y, Hawkins CP (2019) Weighting effective number of species measures by abundance weakens detection of diversity responses. J Appl Ecol 56:1200–1209 Cerrano C, Danovaro R, Gambi C, Pusceddu A, Riva A, Schiaparelli S (2010) Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19:153–167 Chao A, Chiu C-H, Jost L (2010) Phylogenetic diversity measures based on Hill numbers. Philos Trans R Soc B Biol Sci 365:3599–3609 Chardy P, Gérard P, Martin A, Clavier J, Laboute P, Richer de Forges B (1987) Etude quantitative du benthos dans le lagon sud-ouest de Nouvelle-Calédonie. Liste taxonomique, densités et biomasses. Rapp Sci Tech Mar Chen CA (1999) Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zool Stud 38:119–129 Chen Q, Beijbom O, Chan S, Bouwmeester J, Kriegman D (2021) A new deep learning engine for coralnet. Proc IEEE/CVF Int Conf Comput Vis 3693–3702 Chen W-J (2024) Survey of Key Ecosystems and Estimation of Ecosystem Service Values in the Waters of Taiwan. Ocean Conserv Assoc ROC Chiau W-Y (2017) 海洋與海岸管理 (Marine and Coastal Management)(In Chinese). Wu-Nan Book Inc., Taiwan Clarke K, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219 Dai C-F (1982) Coral Communities on the Fringing Reefs of Southern Taiwan. Proc 6th Int Coral Reef Symp 2:647–652 Dai C-F (1990) Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar Ecol Prog Ser Oldend 60:291–297 Dai C-F (1993) Patterns of coral distribution and benthic space partitioning on the fringing reefs of southern Taiwan. Mar Ecol 14:185–204 Dai C-F (2021) Octocoralila Fauna of Taiwan. Ocean Center, National Taiwan University, Taiwan Dai C-F, Chen W-J (2018) Marine biodiversity. In: Sen J. (eds) Regional oceanography of Taiwan. National Taiwan University Press, Taiwan, Dai C-F, Kuo KM, Chen YT, Chuang CH (1999) Changes of coral communities on the east and west coast of the Kenting National Park. J Natl Park 9:112–130 Dai C-F, Soong K, Chen CA, Fan T, Hsieh HJ, Jeng M-S, Chen C, Horng S (2004) Status of coral reefs of Taiwan. GCRM Rep East China Sea Reg 3:153–163 Devlin MJ, Brodie J (2005) Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar Pollut Bull 51:9–22 Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment 1. Limnol Oceanogr 28:241–257 ESRI (2020) ArcGIS Desktop (ArcMap). Faubel A (1984) On the abundance and activity pattern of zoobenthos inhabiting a tropical reef area, Cebu, Philippines. Coral Reefs 3:205–214 Frouin P (2000) Effects of anthropogenic disturbances of tropical soft-bottom benthic communities. Mar Ecol Prog Ser 194:39–53 Frouin P, Hutchings P (2001) Macrobenthic communities in a tropical lagoon (Tahiti, French Polynesia, central Pacific). Coral Reefs 19:277–285 Gerwing TG, Gerwing AMA, Davies MM, Dracott K, Campbell L, Juanes F, Dudas SE, Kimori J, Coole S, Kidd J, Thomson HM, Sizmur T (2022) Sediment geochemistry influences infaunal invertebrate community composition and population abundances. Mar Biol 170:4 Glover T, Mitchell K (2008) An introduction to biostatistics. Waveland Press, Inc., Illinois, USA Google (2025) Google map of Taiwan. https://www.google.com/maps Gray A, Pasternack G, Watson E (2010) Hydrogen peroxide treatment effects on the particle size distribution of alluvial and marsh sediments. Holocene 20:293–301 Gray JS, Elliott M (2009) Ecology of marine sediments: from science to management. Oxford university press, UK Grömping U (2006) Relative Importance for Linear Regression in R: The Package relaimpo. J Stat Softw 17:1–27 Gusmao JB, Lee MR, MacDonald I, Ory NC, Sellanes J, Watling L, Thiel M (2018) No reef-associated gradient in the infaunal communities of Rapa Nui (Easter Island) – Are oceanic waves more important than reef predators? Estuar Coast Shelf Sci 210:123–131 Halpern BS (2014) Making marine protected areas work. Nature 506:167–168 Her J-C (1993) The Study of Fe-Ti Oxide Minerals in Dacite from Chilung Volcano Group and Their Geological Significance (in Chinease). Master Thesis, Natl Cheng K Univ Taiwan Hill MO (1973) Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 54:427–432 Ho C-S (1973) 臺灣的主要金屬礦床 (Major Metallic Mineral Deposits of Taiwan)(in Chinese). Min Metall Bull Chinese Inst Min Metall Eng 17:76–81 Horng C-S, Huh C-A, Chen K-H, Lin C-H, Shea K-S, Hsiung K-H (2012) Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophys Geosystems 13: Huang Y-CA, Huang S-C, Hsieh HJ, Meng P-J, Chen CA (2012) Changes in sedimentation, sediment characteristics, and benthic macrofaunal assemblages around marine cage culture under seasonal monsoon scales in a shallow-water bay in Taiwan. J Exp Mar Bio Ecol 422–423:55–63 Huston M (1979) A General Hypothesis of Species Diversity. Am Nat 113:81–101 Hutchings P (1998) Biodiversity and functioning of polychaetes in benthic sediments. Biodivers Conserv 7:1133–1145 Jacquot MP, Nordström MC, De Wever L, Ngom Ka R, Ka S, Le Garrec V, Raffray J, Sadio O, Diouf M, Grall J, Tito de Morais L, Le Loc’h F (2023) Human activities and environmental variables drive infaunal community structure and functioning in West African mangroves. Estuar Coast Shelf Sci 293:108481 Jeng C-C (2023) Why a Variance Inflation Factor of 10 Is Not an Ideal Cutoff for Multicollinearity Diagnostics. J Educ Stud 57:067–092 Jeng M-S, Chiu Y-W (2015) An ecological investivagtion on the sorrounding waters of Shoushan National Nature Park (in Chinese). J Natl Park 25:1–16 Jones AR (1984) Sedimentary relationships and community structure of benthic crustacean assemblages of reef-associated sediments at Lizard Island, Great Barrier Reef. Coral Reefs 3:101–111 Jost L (2006) Entropy and diversity. Oikos 113:363–375 Keshavmurthy S, Beals M, Hsieh HJ, Choi K-S, Chen CA (2021) Physiological plasticity of corals to temperature stress in marginal coral communities. Sci Total Environ 758:143628 Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159 Kramer M, Bellwood DR, Bellwood O (2014) Benthic Crustacea on coral reefs: a quantitative survey. Mar Ecol Prog Ser 511:105–116 Kuo C-Y, Yuen YS, Meng P-J, Ho P-H, Wang J-T, Liu P-J, Chang Y-C, Dai C-F, Fan T-Y, Lin H-J, Baird AH, Chen CA (2012) Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS One 7:e44364 Lai J, Zou Y, Zhang J, Peres‐Neto P (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods Ecol Evol 13:782–788 Langlois TJ, Anderson MJ, Babcock RC (2005) Reef‐associated predators influence adjacent soft‐sediment communities. Ecology 86:1508–1519 Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Netherlands Liao J-X, Wei C-L, Yasuhara M (2020) Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon. Front Mar Sci 7:1–18 Lin H-T (2023) The study of nematode communities in the sediment surrounding Turtle Island (in Chinese). Master Thesis, Natl Taiwan Univeristy, Taiwan Lin YV, Château P-A, Nozawa Y, Wei C-L, Wunderlich RF, Denis V (2024) Drivers of coastal benthic communities in a complex environmental setting. Mar Pollut Bull 203:116462 Lörz A-N, Oldeland J, Kaiser S (2022) Niche breadth and biodiversity change derived from marine Amphipoda species off Iceland. Ecol Evol 12:e8802 MacArthur RH (1965) Patterns of species diversity. Biol Rev 40:510–533 Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, Van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P, Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129 McManus J, Polsenberg J (2004) Coral-algal phase shifts on coral reefs: Ecological and environmental aspects. Prog Oceanogr 60:263–279 Meng P-J, Lee H-J, Wang J-T, Chen C-C, Lin H-J, Tew KS, Hsieh W-J (2008) A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environ Pollut 156:67–75 Mulik J, Sukumaran S, Jisna MJ, Rao MN (2023) Tracing the impact and recovery trajectory of oil spill affected tropical rocky intertidal macrobenthic communities using the BOPA index. Mar Pollut Bull 186:114435 Netto SA, Warwick RM, Attrill MJ (1999) Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (North-east, Brazil). Estuar Coast Shelf Sci 48:39–50 Ng W-L, Chen C-A, Mustafa S, Soo C-L, Liao Y-C, Shih T-W (2022) Free-living marine nematodes community structure in the conservation area (Chaojing Park) and its adjacent area of Keelung, Taiwan. PLoS One 17:e0268691 O’brien RM (2007) A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual Quant 41:673–690 Ocean Conservation Administration OAC (2024) Marine protected areas of Taiwan. https://mpa.oca.gov.tw/DefaultEN.aspx#lastPage Oksanen J, G S, F B, R K, P L, P M, R O, P S, M S, E S, H W, M B, M B, B B, D B, G C, M C, M DC, S D, H E, R F, M F, Furneaux, T B (2025) vegan: Community Ecology Package. Pedelacq ME, Garaffo G, Llanos E, Venturini N, Muniz P (2022) Pollution has negative effects on macrozoobenthic trait diversity in a large subtropical estuary. Mar Pollut Bull 184:114101 R Core Team (2025) R: A Language and Environment for Statistical Computing. Reichelt R (1979) Infaunal polychaetes of reef crest habitats at Heron Island, Great Barrier Reef. Micronesica 15:297–307 Rettinger C, Rüde U, Vollmer S, Frings RM (2022) Effect of sediment form and form distribution on porosity: a simulation study based on the discrete element method. Granul Matter 24:118 Ribas-Deulofeu L, Denis V, Château P-A, Chen C (2021) Impacts of heat stress and storm events on the benthic communities of Kenting National Park (Taiwan). PeerJ 9:e11744 Riddle MJ (1988a) Patterns in the distribution of macrofaunal communities in coral reef sediments on the central Great Barrier Reef. Mar Ecol Prog Ser Oldend 47:281–292 Riddle MJ (1988b) Cyclone and bioturbation effects on sediments from coral reef lagoons. Estuar Coast Shelf Sci 27:687–695 Riddle MJ, Alongi DM, Dayton PK, Hansen JA, Klumpp DW (1990) Detrital pathways in a coral reef lagoon. Mar Biol 104:109–118 Romoth K, Darr A, Papenmeier S, Zettler M, Gogina M (2023) Substrate Heterogeneity as a Trigger for Species Diversity in Marine Benthic Assemblages. Biology (Basel) 12:825 Ruiz-Abierno A, Armenteros M (2017) Coral reef habitats strongly influence the diversity of macro- and meiobenthos in the Caribbean. Mar Biodivers 47:101–111 Santos SL, Simon and JL (1980) Marine soft-bottom community establishment following annual defaunation: larval or adult recruitment. Mar Ecol Prog Ser 2:235–241 Shao K-T (2014) 我國海洋保護區的現況與挑戰 (The Current Status and Challenges of Marine Protected Areas in Taiwan)(in Chinese). Mar Aff Policy Rev 3:107–124 Siegenthaler A, Mastin A, Dufaut C, Mondal D, Benvenuto C (2018) Background matching in the brown shrimp Crangon crangon: adaptive camouflage and behavioural-plasticity. Sci Rep 8:3292 Soltwedel T, Rapp JZ, Hasemann C (2023) Impact of local iron enrichment on the small benthic biota in the deep Arctic Ocean. Front Mar Sci Volume 10:1118431 Sorokin YI (2013) Coral reef ecology. Springer Science & Business Media, Germany Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol An Annu Rev 49:43–104 Stevens M (2016) Color Change, Phenotypic Plasticity, and Camouflage. Front Ecol Evol 4:51 Storlazzi CD, Norris BK, Rosenberger KJ (2015) The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs 34:967–975 Stratmann T, van Oevelen D, Martínez Arbizu P, Wei C-L, Liao J-X, Cusson M, Scrosati RA, Archambault P, Snelgrove PVR, Ramey-Balci PA, Burd BJ, Kenchington E, Gilkinson K, Belley R, Soetaert K (2020) The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci Data 7:206 Tebbett SB, Bellwood DR (2019) Algal turf sediments on coral reefs: what’s known and what’s next. Mar Pollut Bull 149:110542 Thoen HH, How MJ, Chiou T-H, Marshall J (2014) A Different Form of Color Vision in Mantis Shrimp. Science (80- ) 343:411–413 Thomassin B (1978) Soft-bottom communities. In: Stoddart D.R., Johannes R.E. (eds) Coral reefs : research methods. UNESCO: United Nations Educational, Scientific and Cultural Organisation, France, pp 263–298 Thomassin B, Vivier M-H, Vitiello P (1976) Distribution de la méiofaune et de la macrofaune des sables coralliens de la retenue d’eau épirécifale du grand récif de tuléar (Madagascar). J Exp Mar Bio Ecol 22:31–53 De Troch M, Raes M, Muthumbi A, Gheerardyn H, Vanreusel A (2008) Spatial diversity of nematode and copepod genera of the coral degradation zone along the Kenyan coast, including a test for the use of higher-taxon surrogacy. African J Mar Sci 30:25–33 Wang F-Y, Liu M-Y (2023) Microbial Community Diversity of Coral Reef Sediments on Liuqiu Island, Southwestern Taiwan. J Mar Sci Eng 11:85 Watanabe A, Nakamura T (2019) Carbon Dynamics in Coral Reefs BT - Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation. In: Kuwae T., Hori M. (eds) Springer Singapore, Singapore, pp 273–293 Wentworth CK (1922) A Scale of Grade and Class Terms for Clastic Sediments. J Geol 30:377–392 Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70 Yeager LA, Marchand P, Gill DA, Baum JK, McPherson JM (2017) Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98:1976 Yu H-Y, Huang S-C, Lin H-J (2020) Factors structuring the macrobenthos community in tidal algal reefs. Mar Environ Res 161:105119 Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, USA | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98553 | - |
| dc.description.abstract | 沉積物中的大型底泥動物(benthic macrofauna)構成海洋食物網的基礎,並在沉積物重整與生物地球化學循環中扮演關鍵角色,也被廣泛認為是環境監測中可靠的生態指標。然而,珊瑚礁沉積物中的大型底泥動物仍鮮少被研究,尤其在臺灣更是資料匱乏。為填補此知識缺口,本研究首次在臺灣的淺水珊瑚礁生態系中進行大空間尺度的系統性量化調查。於2021至2023年間,我們以水肺潛水方式採集體長大於0.5毫米的大型底泥動物,並蒐集23項環境變數,包括8項水文變數、2項人為因子、6項沉積物特性,以及7項代表周圍固著生物(如珊瑚、藻類與海綿)覆蓋率的生態變數。樣區範圍涵蓋北臺灣22站、東台灣10站、墾丁15站、澎湖22站、小琉球9站、綠島12站與蘭嶼8站,共98個樣點。本研究主要聚焦於兩個問題:(1)底泥動物的生物密度、α多樣性(以有效物種數ENS計算)與分類組成在臺灣周圍是否存在空間差異?(2)哪些環境因子最能解釋這些差異模式?
本研究共採集15,882隻大型底泥無脊椎動物,經鑑定後分為37個高階分類群,橫跨14個動物門。平均生物密度為47,370隻/m²,最高值出現在綠島燈塔,達409,798隻/m²,各站密度普遍高於其他海洋生態系之文獻報導值。平均 ENS為4.7類,最高數值出現在綠島的公館鼻,為9.4類,而區域平均ENS最高則為蘭嶼地區,達到6類。底泥動物的密度、ENS與分類組成在各區域間均呈顯著差異,並呈現明顯的東─西差異,與台灣珊瑚類群組成常見的南─北變化趨勢有所不同。環境因子除了沉積物變數之外,整體上呈現顯著地區差異。其中,水文(例如:波浪能量、有機碳濃度)與沉積物變數(例如:平均粒徑)為對生物密度、ENS及類群組成最重要的解釋因子。我們認為此東─西向的環境與動物群聚梯度可能反映了台灣周遭大範圍海洋性質的差異,特別是來自黑潮系統的作用。 本研究建立了臺灣珊瑚礁沉積物底泥動物群聚的重要生態基線,並突顯其在環境評估中作為補充性指標的潛力。於臺灣珊瑚礁棲地正面臨日益加劇的人為影響及氣候變遷壓力,且保育需求日趨迫切,本研究亦為未來保育與管理提供了重要的科學基礎。 | zh_TW |
| dc.description.abstract | Sediment benthic macrofauna form the foundation of marine food webs, play key roles in sediment reworking and biogeochemical cycling, and are widely recognized as reliable ecological indicators in environmental monitoring. However, benthic macrofauna in coral reef sediments remain poorly studied, particularly in Taiwan. To fill this gap, we conducted the first large-scale quantitative survey of benthic macrofauna in Taiwan’s shallow coral reef sediments. From 2021 to 2023, using SCUBA diving, we sampled macrobenthos (body size > 0.5 mm) in the sediments proximal to coral reefs around Taiwan. We also collected 23 environmental variables, including eight hydrographic, two anthropogenic, six sedimentary, and seven ecological variables representing the coverage of sessile benthos within the reef ecosystems (i.e., coral, algae, and sponge). In total, 98 sites were investigated: 22 in northern Taiwan, 10 in eastern Taiwan, 15 in Kenting, 22 in Penghu, 9 in Xiaoliuqiu, 12 in Lyudao, and 8 in Lanyu. We focused on two main research questions: (1) How do macrofaunal density, alpha diversity (effective number of species, ENS), and taxonomic composition vary across different reef regions around Taiwan? (2) Which environmental factors best explain these variations?
In total, 15,882 macrofaunal individuals were collected and identified into 37 higher taxa, spanning 14 Animalia phyla. The average density per site was 47,370 ind./m², which is significantly higher than the macrofaunal density reported in the global dataset for similar water depths. The highest density was recorded at Garden Lighthouse in Lyudao, peaking at 409,798 ind./m². Additionally, the average density in Lyudao was significantly greater than other regions. The average ENS was 4.7 taxa, reaching up to 9.4 taxa at Gongguan in Lyudao. The highest average ENS across regions was found in Lanyu at 6 taxa. The macrofaunal density, ENS, and composition varied significantly across regions, forming a distinct west–east gradient, unlike the common north–south trend observed in coral assemblages. Although the reef sediments were dominated by sandy fractions (> 95%) across the sampling sites, the overall environmental conditions exhibited significant regional variations. Among the selected environmental variables, the hydrographic (e.g., wave energy; particulate organic carbon, POC) and sedimentary (e.g., grain size) variables consistently explained the most variation in density, ENS, and composition. The observed west-east gradient in faunal ordination constrained by environmental variables (e.g., redundancy analysis, RDA) likely reflects dominant, large-scale oceanographic influences, particularly the Kuroshio current system. These findings established a critical ecological baseline for sediment macrofaunal communities in Taiwan’s coral reef ecosystems and underscore their potential as complementary indicators in environmental assessments and management. Given the growing pressures on Taiwan’s reef ecosystems from human activities and global climate change, as well as the urgent need for effective conservation, this study offers a valuable scientific basis for future management and monitoring efforts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:51:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:51:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s thesis acceptance certificate I
Acknowledgements II Abstract IV 中文摘要 VI Contents VIII List of Figures X List of Tables XI 1. Introduction 1 2. Methods 9 2.1. Sites description 9 2.2. Sampling procedure 13 2.2.1. Sediment benthic macrofauna 13 2.2.2. Environmental factors 14 2.3. Data analyses 16 2.3.1. Univariate analyses 16 2.3.2. Multivariate analyses 17 3. Results 20 3.1. Environmental variables 20 3.1.1. Overview 20 3.1.2. Sediment property 20 3.1.3. Ecological variables 21 3.1.4. Regional patterns of environmental variables 21 3.2. Benthic macrofauna 23 3.2.1. Overview 23 3.2.2. Benthic macrofaunal density 24 3.2.3. Alpha diversity 26 3.2.4. Taxonomic composition 28 3.2.5. Summary: overall regional patterns of benthic macrofauna and environment 32 3.3. Relationships among environmental factors and benthic macrofauna 33 3.3.1. Benthic macrofaunal density and environments 33 3.3.2. Alpha diversity and environments 37 3.3.3. Taxonomic composition and environmental factors 38 3.3.4. Summary: overall regional patterns of environmental-faunal relationships 41 4. Discussion 42 4.1. Environmental variable 42 4.1.1. Sedimentary habitats for fauna 42 4.1.2. Usage of ecological variables 42 4.1.3. Regional differences in environmental conditions 43 4.2. Benthic macrofauna 45 4.2.1. Macrofaunal density 45 4.2.2. Alpha diversity 48 4.2.3. Taxonomic composition 50 4.2.4. Regional patterns of faunal-environmental relationships 52 4.3. Limitations of this study and aspects outside its scope 52 4.3.1. Morphology of sediment particles 53 4.3.2. Colors of sediment particles 54 4.3.3. Chemical composition of sediments 55 4.4. Implications for marine conservation in Taiwan’s coral reefs 56 5. Conclusions 58 6. Reference 59 7. Appendices 74 7.1. Supplementary results 74 | - |
| dc.language.iso | en | - |
| dc.subject | 大型底泥動物 | zh_TW |
| dc.subject | 珊瑚礁 | zh_TW |
| dc.subject | 生物密度 | zh_TW |
| dc.subject | 有效物種數 | zh_TW |
| dc.subject | 分類組成 | zh_TW |
| dc.subject | 沉積物生態學 | zh_TW |
| dc.subject | 群聚生態學 | zh_TW |
| dc.subject | coral reef | en |
| dc.subject | community ecology | en |
| dc.subject | sediment ecology | en |
| dc.subject | taxonomic composition | en |
| dc.subject | effective number of species | en |
| dc.subject | macrofaunal density | en |
| dc.subject | benthic macrofauna | en |
| dc.title | 臺灣淺海珊瑚礁區大型底泥動物群聚結構研究 | zh_TW |
| dc.title | Benthic macrofaunal community structure in shallow- water coral reef ecosystems in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳韋仁;單偉彌;林玉詩 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Jen Chen;Vianney Denis;Yu-Shih Lin | en |
| dc.subject.keyword | 大型底泥動物,珊瑚礁,生物密度,有效物種數,分類組成,沉積物生態學,群聚生態學, | zh_TW |
| dc.subject.keyword | benthic macrofauna,coral reef,macrofaunal density,effective number of species,taxonomic composition,sediment ecology,community ecology, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202503437 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
