請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉德銘 | zh_TW |
| dc.contributor.advisor | Der-Ming Yeh | en |
| dc.contributor.author | 李百軒 | zh_TW |
| dc.contributor.author | Bai-Xuan Li | en |
| dc.date.accessioned | 2025-08-18T00:47:47Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Aazami MA, Asghari-Aruq M, Hassanpouraghdam MB, Ercisli S, Baron M, Sochor J. 2021. Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants. 10:1877. https://www.mdpi.com/2223-7747/10/9/1877.
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots Plant Cell. 26:962-980. https://doi.org/10.1105/tpc.113.122069. Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot. 60:2191-2202. 10.1093/jxb/erp097. Aluru MR, Bae H, Wu D, Rodermel SR. 2001. The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol. 127:67-77. 10.1104/pp.127.1.67. Baptiste FJ, Fang JY. 2023. Study on pollen viability and stigma receptivity throughout the flowering period in the selected taxa of the Gesneriaceae family. Folia Horticulturae. Berry J, Bjorkman O. 2003. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 31:491-543. 10.1146/annurev.pp.31.060180.002423. Bi H, Guo M, Wang J, Qu Y, Du W, Zhang K. 2017. Transcriptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature. Acta Physiol Plant. 40:10. 10.1007/s11738-017-2578-3. Blanchard MG, Runkle ES, Fisher PR. 2011. Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Sci Hortic. 129:313-320. https://doi.org/10.1016/j.scienta.2011.03.044. Boldt JK, Meyer MH, Erwin JE. 2014. Foliar anthocyanins: A horticultural review, p 209-252.). Horticultural Reviews: Volume 42. https://doi.org/10.1002/9781118916827.ch04. Borek M, Bączek-Kwinta R, Rapacz M. 2016. Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques. Photosynthetica. 54:331-339. 10.1007/s11099-016-0225-7. Bradley D, Xu P, Mohorianu I, Whibley A, Field D, Tavares H, Couchman M, Copsey L, Carpenter R, Li M, Li Q, Xue Y, Dalmay T, Coen E. 2017. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 358:925-928. 10.1126/science.aao3526. Cai ZQ, Wang WH, Yang J, Cai CT. 2009. Growth, photosynthesis and root reserpine concentrations of two Rauvolfia species in response to a light gradient. Ind Crops Prod. 30:220-226. Cao Z, Sui S, Yang Q, Deng Z. 2016. Inheritance of rugose leaf in Caladium and genetic relationships with leaf shape, main vein color, and leaf spotting. J Amer Soc Hort Sci. 141:527-534. https://www.doi.org/10.21273/JASHS03854-16. Cao Z, Sui S, Yang Q, Deng Z. 2017. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity. Hort Res. 4. https://doi.org/10.1038/hortres.2016.67. Chabot BF, Chabot JF. 1977. Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia. 26:363-377. 10.1007/BF00345535. Chase AR, Poole RT. 1987. Effect of fertilizer, temperature, and light level on growth of Syngonium podophyllum ‘White Butterfly’. J Am Soc Hortic Sci. 112:296-300. 10.21273/JASHS.112.2.296. Chaudhary A, Poudyal S. 2025. Influence of daily light integral on irrigation needs and flowering of greenhouse-grown geranium and petunia. Sci Hortic. 347:114188. https://doi.org/10.1016/j.scienta.2025.114188. Chen CT, Lee CL, Yeh DM. 2018. Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma. HortScience. 53:795-798. Chen J, Henley RW, Henny RJ, Carldwell RD, Robinson CA. 2001. Aglaonema cultivars differ in resistance to chilling temperatures. J Environ Hort. 19:198-202. https://doi.org/10.24266/0738-2898-19.4.198. Chen J, Henny RJ. 2008. Ornamental foliage plants: improvement through biotechnology. Recent advances in plant biotechnology and its applications. IK International Publishing House, New Delhi, India.140-156. Chen J, McConnell DB, Henny RJ. 2004. Light induced coordinative changes in leaf variegation between mother plants and daughter plantlets of chlorophytum comosum 'vittatum'. Acta Hortic. 659:453-459. 10.17660/ActaHortic.2004.659.60. Chen J, McConnell DB, Henny RJ, Norman DJ. 2005a. The foliage plant industry, p p 45–110. In: J. Janick (ed.). Horticultural reviews. Vol. 31. John Wiley & Sons, Hoboken, NJ, USA. https://doi.org/10.1002/9780470650882.ch2. Chen J, Qu L, Henny RJ, Robinson CA, Caldwell RD, Huang Y. 2014a. Chilling injury in tropical foliage Plants: I. Spathiphyllum. EDIS. 2014. 10.32473/edis-ep101-2001. Chen J, Wang Q, Henny RJ, McConnell DB. 2005b. Response of tropical foliage plants to interior low light conditions. Acta Horticulturae. 669. 10.17660/ActaHortic.2005.669.5. Chen JM, Yu XP, Cheng J. 2006. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agriculturae Zhejiangensis. 18:51-55. Chen WL, Yang WJ, Lo HF, Yeh DM. 2014b. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci Hortic. 179:367-375. Chen YS, Chesson P, Wu HW, Pao SH, Liu JW, Chien LF, Yong JWH, Sheue CR. 2017. Leaf structure affects a plant’s appearance: combined multiple-mechanisms intensify remarkable foliar variegation. J Plant Res. 130:311-325. 10.1007/s10265-016-0890-4. Cheon IH, Oh W, Park JH, Kim KS. 2006. Long day and high photosynthetic photon flux promote the growth and flowering of Cyclamen persicum. Hort Environ Biotechnol. 47:353-358. Chin CK. 1980. Growth behavior of green and albino plants of Episcia cupreata “Pink brocade” in vitro. In Vitro. 16:847-850. Chirgwin L. 2011. EPISCIAS. African Violet Magazine. 64:53-53. Christenhusz MJ, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa. 261:201–217. 10.11646/phytotaxa.261.3.1. Cocciolone SM, Cone KC. 1993. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics. 135:575-588. https://doi.org/10.1093/genetics/135.2.575. Conover C, Poole R. 1980. Interior quality of Dracaena angustifolia Roxb. ‘Honoriae’ as influenced by light and fertilizer during production1. HortScience. 15:24-26. 10.21273/HORTSCI.15.1.24. Conover CA, Poole RT. 1981. Light Acclimatization of African Violet1. HortScience. 16(1):92-93. https://doi.org/10.21273/HORTSCI.16.1.92. Cui WH, Guan KY. 2013. Diversity of leaf variegation in Chinese begonias. Plant Divers. 35:119. 10.7677/ynzwyj201312118. Cui Z, Gu J, Li J, Zhao A, Fu Y, Wang T, Li T, Li X, Sheng Y, Zhao Y, Song X, Zhou Y, Peng T, Wang J. 2022. Tyrosine promotes anthocyanin biosynthesis in pansy (Viola × wittrockiana) by inducing ABA synthesis. Trop Plant Res. 1:1-12. 10.48130/TP-2022-0009. Currey CJ, Erwin JE. 2011. Photosynthetic daily light integral impacts growth and flowering of several Kalanchoe Species. HortTechnology. 21:98-102. 10.21273/horttech.21.1.98. Currey CJ, Lopez RG. 2015. Biomass accumulation and allocation, photosynthesis, and carbohydrate status of new guinea impatiens, geranium, and petunia cuttings are affected by photosynthetic daily light integral during root development. J Am Soc Hortic Sci. 140:542-549. https://doi.org/10.21273/JASHS.140.6.542. Davies NL, Wilson JM. 1984. Ultrastructural study of chilling injury in roots of Episcia reptans (Mart.). Planta. 160:185-189. https://doi.org/10.1007/BF00392869. Dawson IA, King RW, van der Staay R. 1991. Optimising conditions for growth of Nephrolepis ferns. Sci Hortic. 45:303-314. https://doi.org/10.1016/0304-4238(91)90076-B. Deguchi A, Tatsuzawa F, Ishii K, Abe T, Miyoshi K. 2022. Localized repression of two bHLH genes is involved in the formation of white margins and white abaxial surfaces in carnation petals by inducing the absence of anthocyanin synthesis. Hort J. 91:68-84. 10.2503/hortj.UTD-313. Demmig-Adams B, Adams I. 2003. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol. 43:599-626. 10.1146/annurev.pp.43.060192.003123. Deng Z, Goktepe F, Harbaugh BK. 2008. Inheritance of Leaf Spots and Their Genetic Relationships with Leaf Shape and Vein Color in Caladium. J Amer Soc Hort Sci. 133:78-83. 10.21273/jashs.133.1.78. Deng Z, Harbaugh B. 2006. Evaluation of Caladium cultivars for sensitivity to chilling. HortTechnology. 16. 10.21273/HORTTECH.16.1.0172. Deng Z, Harbaugh BK. 2009. Leaf blotching in Caladium (Araceae) is under simple genetic control and tightly linked to vein color. HortScience. 44:40-43. 10.21273/hortsci.44.1.40. Dole JM, Wilkins HF. 2005. Floriculture: Principles and species. Pearson Education, Inc. Dolstra O, Haalstra SR, van der Putten PEL, Schapendonk AHCM. 1994. Genetic variation for resistance to low-temperature photoinhibition of photosynthesis in maize (Zea mays L.). Euphytica. 80:85-93. https://doi.org/10.1007/BF00039302. Dou H, Niu G, Gu M, Masabni JG. 2018. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience. 53:496-503. 10.21273/hortsci12785-17. Elkins C, van Iersel MW. 2020. Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. HortScience. 55:1676-1682. 10.21273/hortsci15200-20. Esteban R, Fernández-Marín B, Becerril JM, García-Plazaola JI. 2008. Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L. J Plant Physiol. 165:1255-1263. https://doi.org/10.1016/j.jplph.2007.07.024. Fan ST, Yeh DM, Chen SJ. 2013. Genotypic differences in post-storage photosynthesis and leaf chloroplasts in response to ethylene and 1-methylcyclopropene in Aglaonema. Postharvest Biol Technol. 76:98-105. Faust JE, Heins RD. 1993. Modeling leaf development of the African violet (Saintpaulia ionantha Wendl.). J Am Soc Hortic Sci. 118:747-747. Faust JE, Heins RD. 1998. Modeling shoot-tip temperature in the greenhouse environment. J Am Soc Hortic Sci. 123:208-214. Faust JE, Holcombe VB, Rajapakse NC, Layne DR. 2005. The effect of daily light integral on bedding plant growth and flowering. Hortscience. 40:645-649. Fernández-Marín B, Esteban R, Míguez F, Artetxe U, Castañeda V, Pintó-Marijuan M, Becerril JM, García-Plazaola JI. 2015. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests. AoB Plants. 7:plv042. Fooshee WC, Henny RJ. 1990. Chlorophyll levels and anatomy of variegated and nonvariegated areas of Aglaonema nitidum leaves. Florida State Hort. Soc. 103:170–172. Ford RH. 2000. Inheritance of kernel color in corn: explanations & investigations. ABT. 62:181-188. https://doi.org/10.2307/4450870. Fracheboud Y, Haldimann P, Leipner J, Stamp P. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot. 50:1533-1540. 10.1093/jxb/50.338.1533. Fu W, Li P, Wu Y. 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic. 135:45-51. https://doi.org/10.1016/j.scienta.2011.12.004. Funnell K, Hewett E, Plummer J, Warrington I. 2002. Acclimation of photosynthetic activity of Zantedeschia ‘Best Gold’ in response to temperature and photosynthetic photon flux. J Am Soc Hortic Sci. 127:290-296. 10.21273/JASHS.127.2.290. Gao C, Zhao L, Wang Qh, Ren Zx, Zhao Jw, Yin Hx. 2022. Analysis of cold resistance of seven Paris species based on leaf anatomical structure during the natural growth and the overwintering periods. Chin J Appl Environ Biol. No. 1, ref. 32:111-121. 10.19675/j.cnki.1006-687x.2020.09041. Gao Y, Jia L, Hu B, Alva A, Fan M. 2014. Potato stolon and tuber growth influenced by nitrogen form. Plant Prod Sci. 17:138-143. Garden TCB. 2025. https://www.future.url.tw/plant/view/489. [accessed May 31, 2025]. Garland K, Burnett S, Stack L, Zhang D. 2010. Minimum daily light integral for growing high-quality coleus. HortTechnology. 20:929-933. 10.21273/HORTTECH.20.5.929. Garland KF, Burnett SE, Day ME, van Iersel MW. 2012. Influence of substrate water content and daily light integral on photosynthesis, water use efficiency, and morphology of Heuchera americana. J Am Soc Hortic Sci. 137:57-67. Gould K, McKelvie J, Markham K. 2002a. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25:1261-1269. https://doi.org/10.1046/j.1365-3040.2002.00905.x. Gould K, Neill S, Vogelmann T. 2002b. A unified explanation for anthocyanins in leaves? Adv Bot Res. 37:167-192. 10.1016/S0065-2296(02)37049-6. Gould KS, Dudle DA, Neufeld HS. 2010. Why some stems are red: cauline anthocyanins shield photosystem II against high light stress. J Exp Bot. 61:2707-2717. Gould KS, Jay-Allemand C, Logan BA, Baissac Y, Bidel LP. 2018. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation. Environ Exp Bot. 154:11-22. Gould KS, Markham KR, Smith RH, Goris JJ. 2000. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot.1107-1115. Guo Q, Li H, Gao C, Yang R. 2019. Leaf traits and photosynthetic characteristics of endangered Sinopodophyllum hexandrum (Royle) Ying under different light regimes in Southeastern Tibet Plateau. Photosynthetica. 57. Hakam N, Khanizadeh S, DeEll J, Richer C. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. Hortscience. 35:184-186. 10.21273/HORTSCI.35.2.184. Hammer PA. 1976. Stolon formation in Chlorophytum1. HortScience. 11:570-572. https://doi.org/10.21273/HORTSCI.11.6.570. Hara N. 1957. Study of the variegated leaves, with special reference to those caused by air spaces. Jpn J Bot. 16:86-101. Harbaugh BK, Waters WE. 1979. Evaluation of flowering potted plants under simulated home conditions. HortScience. 14:743-745. https://doi.org/10.21273/HORTSCI.14.6.743. Harbaugh BK, Waters WE, Price JF. 1981. Influence of nutrition, propagation techniques, light intensity, and insecticides on Episcia cupreata1. J Am Soc Hortic Sci. Hare RA. 1992. Anatomical location and inheritance of variegated red seed coat color in hexaploid wheat. Crop science. 32:115-117. Hatier JHB, Clearwater MJ, Gould KS. 2013. The functional significance of black-pigmented leaves: photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’. PloS one. 8:e67850. Heins RD, Wilkins HF. 1978. Influence of photoperiod and light quality on stolon formation and flowering of Chlorophytum comosum (Thunb.) Jacques1. J Am Soc Hortic Sci. 103:687-689. Henny RJ. 1982. Inheritance of foliar variegation in two Dieffenbachia cultivars. J Hered. 73:384-384. https://doi.org/10.1093/oxfordjournals.jhered.a109679. Henny RJ. 1983. Inheritance of the white foliar midrib in Dieffenbachia and its linkage with the gene for foliar variegation. J. Hered. 74:483-484. https://doi.org/10.1093/oxfordjournals.jhered.a109848. Henny RJ. 1983a. Inheritance of foliar variegation in three Aglaonema species. J Hered. 74:475-476. https://doi.org/10.1093/oxfordjournals.jhered.a109843. Henny RJ. 1983b. Inheritance of the white foliar midrib in Dieffenbachia and its linkage with the gene for foliar variegation. J Hered. 74:483-484. https://doi.org/10.1093/oxfordjournals.jhered.a109848. Henny RJ. 1986a. Single locus, multiallelic inheritance of follar variegation in Aglaonema. J. Hered. . 77:214-215. https://doi.org/10.1093/oxfordjournals.jhered.a110221. Henny RJ. 1986b. Inheritance of foliar variegation in Dieffenbachia maculata ‘Camille’. J Hered. 77:285-286. https://doi.org/10.1093/oxfordjournals.jhered.a110242. Henny RJ. 1992. Inheritance of the foliar variegation pattern from Aglaonema nitidum (Jack) Kunth'Ernesto's Favorite'. J Hered. 27:274. https://doi.org/10.21273/HORTSCI.27.3.274. Henny RJ, Chen J. 2004a. Cultivar development of ornamental foliage plants. Plant Breed Rev. 23:245-290. 10.1002/9780470650226.ch6. Henny RJ, Chen J. 2004b. Cultivar development of ornamental foliage plants. Plant Breed Rev. 23:245-290. 10.1002/9780470650226.ch6. Hildrum H, Kristoffersen T. 1969. The effect of temperature and light intensity on flowering in Saintpaulia ionantha Wendl. Acta Hortic. 14:249-259. https://doi.org/10.17660/ActaHortic.1969.14.27. Huner NPA, Öquist G, Sarhan F. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224-230. https://doi.org/10.1016/S1360-1385(98)01248-5. Jeong K, Pasian C, McMahon M, Tay D. 2009. Growth of six Begonia species under shading. Open Hortic J. 2:22-28. 10.2174/1874840600902010022. Jiang CD, Jiang G, Wang X, Li LH, Biswas D, Li YG. 2006. Increased photosynthetic activities and thermostability of photosystem II with leaf development of ELM seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environ Exp Bot. 58:261-268. 10.1016/j.envexpbot.2005.09.007. Jiang L, Yue M, Liu Y, Zhang N, Lin Y, Zhang Y, Wang Y, Li M, Luo Y, Zhang Y. 2023. A novel R2R3‐MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria× ananassa). Plant Biotechnol J. 21:1140-1158. https://doi.org/10.1111/pbi.14024. Kan PW, Cheng YC, Yeh DM. 2021. Mechanism of leaf vein coloration and inheritance of leaf vein color, flower form, and floral symmetry in Gloxinia. J Am Soc Hortic Sci. 146:1-6. 10.21273/JASHS05034-20. Kang I, Lopez RG. 2024. Photosynthetic daily light integral effects on rooting and vegetative growth of cuttings of six foliage plants. HortScience. 59:1757-1762. 10.21273/hortsci18109-24. Karlsson MG, Heins RD, Erwin JE, Berghage RD, Carlson WH, Biernbaum JA. 1989. Temperature and photosynthetic photon flux influence chrysanthemum shoot development and flower initiation under short-day conditions. J Am Soc Hortic Sci. 114:158-163. Kim J, Kang S, Pak C, Kim M. 2012. Changes in leaf variegation and coloration of english ivy and polka dot plant under various indoor light intensities. HortTechnology. 22:49-55. 10.21273/HORTTECH.22.1.49. Kim JH, Lee AK, Roh MS, Suh JK. 2015. The effect of irradiance and temperature on the growth and flowering of Sinningia cardinalis. Sci Hortic. 194:147-153. https://doi.org/10.1016/j.scienta.2015.07.040. Kitaya Y, Niu G, Kozai T, Ohashi M. 1998. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience. 33. 10.21273/HORTSCI.33.6.988. Kjaer KH, Ottosen CO, Jørgensen BN. 2012. Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system. Sci Hortic. 143:189-196. Klančnik K, Levpušček M, Gaberščik A. 2016. Variegation and red abaxial epidermis define the leaf optical properties of Cyclamen purpurascens. Flora. 224:87-95. https://doi.org/10.1016/j.flora.2016.07.010. Krause GH, Weis E. 1984. Chlorophyll fluorescence as a tool in plant physiology. Photosynth Res. 5:139-157. 10.1007/BF00028527. Kubatsch A, Grüneberg H, Ulrichs C. 2007. The effect of low light intensity and temperature on growth of Schefflera arboricola in interior landscapes. HortScience. 42:65-67. 10.21273/hortsci.42.1.65. Kumar D, Wareing PF. 1972. Factors controlling stolon development in the potato plant. New Phytol. 71:639-648. Kuo CY, Yeh DM. 2006. Effects of boric acid concentration and shading on growth, leaf physiology, and anatomy of Guzmania. HortScience. 41:618-621. https://doi.org/10.21273/HORTSCI.41.3.618. Kuo WH, Cunningham E, Guo E, Olsen KM. 2024. Genetics and plasticity of white leaf mark variegation in white clover (Trifolium repens L.). Ann. Bot. 134:949-958. https://doi.org/10.1093/aob/mcae129. La Rocca N, Rascio N, Pupillo P. 2011. Variegation in Arum italicum leaves. A structural–functional study. Plant Physiol Biochem. 49:1392-8. https://doi.org/10.1016/j.plaphy.2011.09.009. Lebowltz RJ, Kloth RH. 1986. Genetics of foliar variegation in coleus. J Hered. 77:125-126. Legardón A, García-Plazaola JI. 2023. Gesneriads, a Source of Resurrection and Double-Tolerant Species: Proposal of New Desiccation- and Freezing-Tolerant Plants and Their Physiological Adaptations. Biology. 12:107. Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, Mitchell A, Bellasio C, Green A, Bouyer D, Schnittger A, Sturrock C, Osborne CP, Rolfe S, Mooney S, Fleming AJ. 2017. Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant J. 92:981-994. 10.1111/tpj.13727. Leng P, Qi JX. 2003. Effect of anthocyanin on David peach (Prunus davidiana Franch) under low temperature stress. Sci Hortic. 97:27-39. https://doi.org/10.1016/S0304-4238(01)00374-0. Li Q, Chen J, McConell D, Henny R. 2007. A simple and effective method for quantifying leaf variegation. HORTTECHNOLOGY. 17:285-288. 10.21273/HORTTECH.17.3.285. Li Q, Chen J, Stamps RH, Parsons LR. 2008. Variation in chilling sensitivity among eight Dieffenbachia cultivars. HortScience. 43:1742-1745. 10.21273/hortsci.43.6.1742. Lim SH, Im NH, An SK, Lee HB, Kim KS. 2022. Daily light integral affects photosynthesis, growth, and flowering of Korean native Veronica rotunda and V. longifolia. Hortic Environ Biote. 63:13-22. 10.1007/s13580-021-00374-7. Lin CY, Yeh DM. 2008. Potassium nutrition affects leaf growth, anatomy, and macroelements of Guzmania. HortScience. 43:146-148. 10.21273/HORTSCI.43.1.146. Lin KH, Hwang WC, Lo HF. 2007. Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica. 45:628-632. https://doi.org/10.1007/s11099-007-0108-z. Liu Y, Feng X, Zhang Y, Zhou F, Zhu P. 2021. Simultaneous changes in anthocyanin, chlorophyll, and carotenoid contents produce green variegation in pink–leaved ornamental kale. BMC Gen. 22:455. 10.1186/s12864-021-07785-x. Lo Piccolo E, Landi M, Pellegrini E, Agati G, Giordano C, Giordani T, Lorenzini G, Malorgio F, Massai R, Nali C. 2018. Multiple consequences induced by epidermally-located anthocyanins in young, mature and senescent leaves of Prunus. Front Plant Sci. 9:917. 10.3389/fpls.2018.00917. Logan BA, Stafstrom WC, Walsh MJL, Reblin JS, Gould KS. 2015. Examining the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by revisiting comparisons of green- and red-leafed varieties of coleus (Solenostemon scutellarioides). Photosynth Res. 124:267-274. 10.1007/s11120-015-0130-0. Lopez RG, Runkle ES. 2008. Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea impatiens and petunia. HortScience. 43:2052-2059. https://doi.org/10.21273/HORTSCI.43.7.2052. Marcotrigiano M, Gradziel T. 1997. Genetic mosaics and plant improvement. Plant Breed Rev. 15:43-84. Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. J Exp Bot. 51:659-668. 10.1093/jexbot/51.345.659. McMahon MJ, Pertuit AJ, Arnold JE. 1994. Effects of chilling on Episcia and Dieffenbachia. J Am Soc Hortic Sci. 119:80-83. 10.21273/jashs.119.1.80. Mendes M, Gazarini L, Rodrigues M. 2001. Acclimation of Myrtus communis to contrasting Mediterranean light environments - Effects on structure and chemical composition of foliage and plant water relations. Environ Exp Bot. 45. 10.1016/S0098-8472(01)00073-9. Mortensen LM. 2014. The effect of photosynthetic active radiation and temperature on growth and flowering of ten flowering pot plant species. Am J Plant Sci. 5(13):1907–1917. http://doi.org/10.4236/ajps.2014.513204. Mortensen LM, Moe R. 1995. Effects of temperature, carbon dioxide concentration, day length and photon flux density on growth, morphogenesis and flowering of miniature roses pp. 63-70. Acta Hort. Moustaka J, Tanou G, Giannakoula A, Adamakis I-DS, Panteris E, Eleftheriou EP, Moustakas M. 2020. Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress. Environ Exp Bot. 175:104065. https://doi.org/10.1016/j.envexpbot.2020.104065. Moynihan MR, Ordentlich A, Raskin I. 1995. Chilling-induced heat evolution in plants. Plant Physiol. 108:995-999. https://doi.org/10.1104/pp.108.3.995. Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 64:3983-3998. 10.1093/jxb/ert208. Murphy C, Wilson J. 1981. Ultrastructural features of chilling‐injury in Episcia reptans. Plant Cell Environ. . 4:261-265. https://doi.org/10.1111/1365-3040.ep11611230. Nam YK, Kwack BH, Kwack HR. 1997. Different extents of leaf-variegation in Epipremnum aureum as influenced by different light levels. Hortic. Sci. Technol. 38. Naylor EE, Sperry JJ. 1938. Vegetative reproduction in Chlorophytum elatum. American Journal of Botany.695-699. Neill S, Gould KS. 2000. Optical properties of leaves in relation to anthocyanin concentration and distribution. Can. J. Bot. 77:1777-1782. https://doi.org/10.1139/b99-153. Neill SO, Gould KS. 2003. Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol. 30:865-873. https://doi.org/10.1071/FP03118. Nemali K, Van Iersel M. 2004. Light effects on wax begonia: photosynthesis, growth respiration, maintenance respiration, and carbon use efficiency. J Am Soc Hortic Sci. 129:416-424. 10.21273/JASHS.129.3.0416. Nguyen P, Cin VD. 2009. The role of light on foliage colour development in coleus (Solenostemon scutellarioides (L.) Codd). Plant Physiol Biochem. 47 10:934-45. Nielsen SL, Simonsen AM. 2011. Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis — the effect of anthocyanin content. Photosynthetica. 49:346-352. 10.1007/s11099-011-0042-y. Nishio J. 2000. Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ. 23:539-548. 10.1046/j.1365-3040.2000.00563.x. Niu G, Heins RD, Cameron AC, Carlson WH. 2001. Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of Campanula carpatica ‘Blue Clips’. Sci Hortic. 87:93-105. https://doi.org/10.1016/S0304-4238(00)00164-3. Oh W, Cheon IH, Kim KS, Runkle ES. 2009. Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience. 44:341-344. 10.21273/hortsci.44.2.341. Oloyede F, Illoh H, Oloyede F. 2007. Taxonomical studies of selected ornamental plants. IFE Journal of Science. 9:167-171. Olsen RT, Ranney TG, Werner DJ. 2006. Fertility and inheritance of variegated and purple foliage across a polyploid series in Hypericum androsaemum L. J. Am. Soc. Hortic. Sci. 131:725-730. Olson J, Clark M. 2021. Characterization of anatomical and physiological effects of variegation mutation on grapevine. HortScience. 56:1251-1257. 10.21273/hortsci15929-21. Olson J, Zou C, Karn A, Reisch B, Cadle-Davidson L, Sun Q, Clark M. 2022. Genetic analyses for leaf variegation in hybrid grape populations (Vitis spp.) reveals two loci, Lvar1 and Lvar2. HortScience. 57:1416-1423. 10.21273/hortsci16763-22. Ospina Calvo B, Lagorio MG. 2019. Quantitative effects of pigmentation on the re‐absorption of chlorophyll a fluorescence and energy partitioning in leaves. Photochem Photobiol. 95:1360-1368. Owen WG, Meng Q, Lopez RG. 2018. Promotion of flowering from far-red radiation depends on the photosynthetic daily light integral. HortScience. 53:465-471. https://doi.org/10.21273/HORTSCI12544-17. Pao SH, Liu JW, Yang JY, Chesson P, Sheue CR. 2020. Uncovering the mechanisms of novel foliar variegation patterns caused by structures and pigments. Taiwania. 65:74-80. 10.6165/tai.2020.65.74. Park Y, Runkle ES. 2018. Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ Exp Bot. 155:206-216. https://doi.org/10.1016/j.envexpbot.2018.06.033. Pennisi S, Burnett S. 2005. Photosynthetic irradiance and nutrition effects on growth of english ivy in subirrigation systems. HortScience. 40. 10.21273/HORTSCI.40.6.1740. Pietsch GM, Carlson WH, Heins RD, Faust JE. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.)'Grape Cooler'. J Am Soc Hortic Sci. 120:877-877. Poole RT, Conover CA. 1990. Severity of necrosis of Spathiphyllum ‘Petite’ foliage grown under various air temperatures, fertilization rates, and irrigation frequencies. Univ Florida IFAS CFREC-Apopka Res Rep. RH-90-16. Powles SB. 1984. Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol Plant Mol Biol. 35:15-44. https://doi.org/10.1146/annurev.pp.35.060184.000311. Qu L, Chen J, Henny RJ, Caldwell RD, Robinson CA. 2000. Response of Spathiphyllum cultivars to chilling temperatures. Proc Fla State Hort Soc. 113:165-169. Rezai S, Etemadi N, Nikbakht A, Yousefi M, Majidi M. 2018. Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in Sage (Salvia officinalis L.). Korean Journal of Horticultural Science and Technology. 36:46-57. 10.12972/kjhst.20180006. Rhie YH, Oh W, Park JH, Chun C, Kim KS. 2006. Flowering response of ‘Metis Purple’ cyclamen to temperature and photoperiod according to growth stages. Hort Environ Biotechnol. 47:198-202. Ribas-Carbo M, Aroca R, Gonzàlez-Meler MA, Irigoyen JJ, Sánchez-Díaz M. 2000. The electron partitioning between the cytochrome and alternative respiratory pathways during chilling recovery in two cultivars of maize differing in chilling sensitivity. Plant Physiol. 122:199-204. https://doi.org/10.1104/pp.122.1.199. Seltsam L, Owen WG. 2022. Photosynthetic daily light integral influences growth, morphology, physiology, and quality of swordfern cultivars. HortScience. 57:1564–1571. DOI:10.21273/hortsci16717-22. Shao L, Shu Z, Lan SS, Lian PC, Jing WX, Fang LZ. 2007. Antioxidation of anthocyanins in photosynthesis under high temperature stress. J Integr Plant Biol. 49:1341-1351. Shelef O, Summerfield L, Lev-Yadun S, Villamarín-Cortez S, Sadeh R, Herrmann I, Rachmilevitch S. 2019. Thermal benefits from white variegation of Silybum marianum leaves. Front Plant Sci. 10. 10.3389/fpls.2019.00688. Shen GW-h, Seeley JG. 1983. The effect of shading and nutrient supply on variegation and nutrient content of variegated cultivars of Peperomia obtusifolia. J. Am. Soc. Hortic. Sci. 108:429-433. 10.21273/jashs.108.3.429. Sheue CR, Pao SH, Chien LF, Chesson P, Peng CI. 2012. Natural foliar variegation without costs? The case of Begonia. Ann Bot. 109:1065-74. 10.1093/aob/mcs025. Sims DA, Pearcy RW. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high Light. Am J Bot. 79:449-455. 10.2307/2445158. Skog LE. 1984. A review of chromosome numbers in the Gesneriaceae. Selbyana. 7:252-273. Smillie RM. 1984. A highly chilling-sensitive angiosperm. Carlsberg Research Communications. 49:75-87. 10.1007/BF02913967. Smillie RM, Hetherington SE. 1999. Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica. 36:451-463. 10.1023/A:1007084321859. Smith CN, ScarboroughIn EF. 1981. Status and development of foliage plant industries, p 1–39. In: J. J. (ed.) (ed.). Foliage plant production. Prentice-Hall, Englewood Cliffs, NJ. Smith JL. 2000. Breeding african violets, p133-154 In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants. Timber Press, Ore. Sonsteby A, Nes A. 1998. Short days and temperature effects on growth and flowering in strawberry (Fragaria × ananassa Duch.). J Hortic Sci Biotech. 73:730-736. 10.1080/14620316.1998.11511040. Spall CE, Lopez RG. 2024. Daily light integral, but not the photoperiod, influences the time to flower and finished quality of Dianthus specialty cut flowers. HortScience. 59:1007-1019. 10.21273/hortsci17848-24. Stamps RH, Henny RJ. 1986. Paclobutrazol and night interruption lighting affect Episcia growth and flowering. HortScience. 21:1005-1006. 10.21273/hortsci.21.4.1005. Stinson RF, Laurie A. 1954. The effect of light intensity on the initiation and development of flower buds in Saintpaulia ionantha. Proc Amer Soc Hort Sci. 64:459-467. https://doi.org/doi:10.25335/gn2t-n777. Su H, Jin L, Li M, Paré PW. 2022. Low temperature modifies seedling leaf anatomy and gene expression in Hypericum perforatum. Front Plant Sci. 13:1020857. 10.3389/fpls.2022.1020857. Su L, Dai Z, Li S, Xin H. 2015. A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol. 15:82. https://doi.org/10.1186/s12870-015-0459-8. Sugano S, Ishii M, Tanabe S-i. 2024. Adaptation of indoor ornamental plants to various lighting levels in growth chambers simulating workplace environments. Sci Rep. 14:17424. 10.1038/s41598-024-67877-y. Sydnor TD, Kimmins RK, Larson RA. 1972. The effects of light intensity and growth regulators on Gloxinia1. HortScience. 7:407-408. https://doi.org/10.21273/HORTSCI.7.4.407. Szabó I, Bergantino E, Giacometti GM. 2005. Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo‐oxidation. EMBO reports. 6:629-634. https://doi.org/10.1038/sj.embor.7400460. Tang Y, Fang Z, Liu M, Zhao D, Tao J. 2020. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall.). Biotech. 10:76. 10.1007/s13205-020-2063-3. Tilney-Bassett RA. 1986. Plant chimeras. Cambridge University Press, Cambridge, UK. Tilney-Bassett RAE. 1970. Effect of environment on plastid segregation in young embryos of Pelargonium x Hortorum Bailey. Ann Bot. 34:811-816. Trippi VS. 1965. Studies on ontogeny and senility in plants. X. Photoperiodic effect on propagation of Chlorophytum elatum (Ait.) R. Br. var. variegatum. Phyton. 22:111-112. Tsukaya H, Okada H, Mohamed M. 2004. A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. J Plant Res. 117:477-480. 10.1007/s10265-004-0179-x. Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res. 91:37-46. 10.1007/s11120-006-9077-5. Viljoen CC, Jimoh MO, Laubscher CP. 2021. Studies of vegetative growth, inflorescence development and eco-dormancy formation of abscission layers in Streptocarpus formosus (Gesneriaceae). Horticulturae. 7:120. https://doi.org/10.3390/horticulturae7060120. Vlahos JC. 1990. Daylength influences growth and development of Achimenes cultivars. HortScience. 25:1595-1596. https://doi.org/10.21273/HORTSCI.25.12.1595. Vlahos JC, Heuvelink E, Martakis GFP. 1991. A growth analysis study of three Achimenes cultivars grown under three light regimes. Sci Hortic. 46:275-282. https://doi.org/10.1016/0304-4238(91)90050-9. Vlahos JC, Martakis GFP, Heuvelink E. 1993. Daylength, light quality, and temperature influence growth and development of Achimenes. HortScience. 27:1269-1271. 10.21273/HORTSCI.27.12.1269. Walker MA, Smith DM, Pauls KP, McKersie BD. 1990. A chlorophyll fluorescence screening test to evaluate chilling tolerance in tomato. HortScience. 25:334-339. 10.21273/HORTSCI.25.3.334. Warner RM, Erwin JE. 2003. Effect of photoperiod and daily light integral on flowering of five Hibiscus sp. Sci Hortic. 97:341-351. https://doi.org/10.1016/S0304-4238(02)00157-7. Welander NT. 1984. Influence of temperature and day-length on flowering in Aeschynanthus speciosus. Sci Hortic. 22:157-161. https://doi.org/10.1016/0304-4238(84)90096-7. Wiehler H. 1978. The genera Episcia, Alsobia, Nautilocalyx, and Paradrymonia (Gesneriaceae). Selbyana. 5:11-60. Wu W, Zhu Y, Ma Z, Sun Y, Quan Q, Li P, Hu P, Shi T, Lo C, Chu IK. 2013. Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis. Plant J. 76:943-956. https://doi.org/10.1111/tpj.12344. Xia J, Mattson N. 2024. Daily light integral and far-red radiation influence morphology and quality of liners and subsequent flowering and development of petunia in controlled greenhouses. Horticulturae. 10:1106. https://doi.org/10.3390/horticulturae10101106. Xu H, Huang C, Jiang X, Zhu J, Gao X, Yu C. 2022. Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae. 8:494. https://doi.org/10.3390/horticulturae8060494. Yang Y, Medecilo-Guiang M, Yang L, Huang B, He J, Chen P. 2023. Structure and characteristics of foliar variegation in four species of medicinal Zingiberaceae. Braz J Bot. 46. 10.1007/s40415-023-00879-8. Yang YJ, Chang W, Huang W, Zhang SB, Hu H. 2017. The effects of chilling-light stress on photosystems I and II in three Paphiopedilum species. Bot Stud. 58:53. https://doi.org/10.1186/s40529-017-0208-4. Yeh DM, Wang HM. 2000. Effects of irradiance on growth, net photosynthesis and indoor performance of the shade-adapted plant, maidenhair fern. J Hortic Sci Biotechnol. 75:293-298. https://doi.org/10.1080/14620316.2000.11511240. Zhang JH, Zeng JC, Wang XM, Chen SF, Albach DC, Li HQ. 2020. A revised classification of leaf variegation types. Flora. 272:151703. https://doi.org/10.1016/j.flora.2020.151703. Zhang KM, Wang XM, Cui JX, Ogweno JO, Shi K, Zhou YH, Yu JQ. 2011. Characteristics of gas exchange and chlorophyll fluorescence in red and green leaves of Begonia semperflorens. Biologia Plantarum. 55:361-364. https://doi.org/10.1007/s10535-011-0055-1. Zhang KM, Yu HJ, Shi K, Zhou YH, Yu JQ, Xia XJ. 2010. Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Sci. 179:202-208. https://doi.org/10.1016/j.plantsci.2010.05.006. Zhang Q, Zhang M, Ding Y, Zhou P, Fang Y. 2018. Composition of photosynthetic pigments and photosynthetic characteristics in green and yellow sectors of the variegated Aucuba japonica ‘Variegata’ leaves. Flora. 240:25-33. https://doi.org/10.1016/j.flora.2017.12.010. Zhang R, Yang P, Liu S, Wang C, Liu J. 2022a. Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sens. 14:5144. https://doi.org/10.3390/rs14205144. Zhang SB, Hu H, Xu K, Li ZR, Yang YP. 2007. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J. Plant Physiol. 164:611-620. 10.1016/j.jplph.2006.02.012. Zhang T, Fu Y. 2023. Physiological differences of green-leaf and variegated - leaf ivy (Hedera helix L.) cultivars. Bangladesh J Bot. 10.3329/bjb.v52i2.68219. Zhang Y, Chen C, Jin Z, Yang Z, Li Y. 2022b. Leaf anatomy, photosynthesis, and chloroplast ultrastructure of Heptacodium miconioides seedlings reveal adaptation to light environment. Environ Exp Bot. 195:104780. https://doi.org/10.1016/j.envexpbot.2022.104780. Zhang Y, Hayashi T, Hosokawa M, Yazawa S, Li Y. 2009. Metallic lustre and the optical mechanism generated from the leaf surface of Begonia rex Putz. Sci Hortic. 121:213-217. https://doi.org/10.1016/j.scienta.2009.01.030. Zhao D, Tao J. 2015. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci. 6:261. 10.3389/fpls.2015.00261. Zhao K, Zhang Q, Wang Y, Wei Q, Wang Y. 2025. Advances in the biosynthesis and regulatory mechanisms of anthocyanins in horticultural plants: a comprehensive review. Trop Plant Res. 4. 10.48130/tp-0025-0002. Zheng L, Steppe K, Van Labeke MC. 2020. Spectral quality of monochromatic LED affects photosynthetic acclimation to high‐intensity sunlight of Chrysanthemum and Spathiphyllum. Physiol Plant. 169:10-26. 10.1111/ppl.13067. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98539 | - |
| dc.description.abstract | 喜蔭花屬(Episcia)植物因豐富之葉片性狀與花色及耐低光性,而可做為室內開花之觀葉植物。然而,關於喜蔭花屬植物之栽培及遺傳相關研究甚少,本研究以此屬18個品種或栽培品種為親本,進行雜交或自交推估葉斑及花色之遺傳模式;另探討‘Lemon Aide’ (綠葉) 與 ‘Choco Brown Soldier’(棕葉)在不同光積值(daily light integral, DLI)下,生長、葉綠素螢光參數及開花反應。此外,評估 ‘Chocolate Soldier’、 ‘Lemon Aide’ 與 ‘Choco Brown Soldier’在不同日夜溫下的光合作用參數、葉綠素螢光參數、生長與開花表現,並透過葉綠素螢光參數指標篩選具觀賞價值且相對耐低溫之新品系。
遺傳結果顯示葉中肋條帶(M_)與花青素累積(A_)由顯性基因控制,然分別受到不同的顯性抑制基因(S與I)上位抑制。喜蔭花葉斑來自三種機制:氣隙型、氣隙型與色素型結合,或葉綠素缺乏與色素型結合。花色遺傳結果顯示紅花對黃花具顯性,而紅花與紫花或白花雜交產生粉紅色花,推測為不完全顯性遺傳。 優化光照條件對喜蔭花生產至關重要。本研究探討8 小時短日照與 16 小時長日照下與不同光強度所形成的DLI對 ‘Lemon Aide’ 與 ‘Choco Brown Soldier’ 生長、葉綠素螢光參數及開花的影響。隨著 DLI 從1.4增加至11.5 mol·m⁻²·d⁻¹, ‘Lemon Aide’ 的葉片數及走莖數隨之上升,而 ‘Choco Brown Soldier’ 在 5.8 mol·m⁻²·d⁻¹ 後漸趨緩。兩栽培種的總葉面積、平均走莖長、地上部乾重在 5.8 mol·m⁻²·d⁻¹ 時達到峰值,之後漸趨緩或下降。隨著 DLI 增加,平均葉面積及SPAD-502值下降,其中 ‘Lemon Aide’ 在較高 DLI 下黃化更明顯。葉片厚度隨 DLI 增加而增加。葉綠素螢光參數(Fo、Fm、ΦPSII 和 Fv/Fm)隨 DLI 增加而下降,而 ‘Choco Brown Soldier’ 數值較為恆定,推測葉片具花青素光化學效率較穩定。 ‘Choco Brown Soldier’ 在 DLI ≥ 2.9 mol·m⁻²·d⁻¹ 時會開花,在 5.8 mol·m⁻²·d⁻¹ 長日照下開花數增加,並在8.6 mol·m⁻²·d⁻¹ 時趨於平穩。 ‘Lemon Aide’ 在145天處理期間未開花。 溫度試驗結果顯示,‘Chocolate Soldier’ 在 25/20 與 30/25 °C 下生長與開花佳,而 ‘Choco Brown Soldier’ 和 ‘Lemon Aide’ 在 25/20 °C 則在莖徑、走莖數、乾鮮重等各生長指標表現較佳。在15/13 與35/30 °C下, ‘Chocolate Soldier’ 於處理期間Fv/Fm波動,顯著降低開花數、光合作用速率及走莖數等生長指標,顯示逆境;於15/13 與35/30 °C逆境下,葉綠素螢光參數顯示棕葉栽培種‘Choco Brown Soldier’之Fo較低,Fm亦較低且非光化學淬滅(qN)較高,推測葉片花青素累積有助提升抗逆性與環境適應力。 將四支喜蔭花雜交後代品系在30/25 °C(適當)與15/13 °C(低溫逆境)條件下進行28天低溫耐受性評估。在15/13 °C下, ‘Frosted Emerald’ × ‘Bloomlover’s Purple Passion’、‘Bloomlover’s Purple Passion’ × ‘Suomi’、與‘Thad’s Yellow Bird’ × ‘EC’s b-g’之品系,其葉面積顯著降低、葉片ΦPSII、Fv/Fm與SPAD值明顯下降。而 ‘Tiger Stripe’ × ‘Frosted Emerald’之後代品系,葉面積降低最小且具相對穩定的葉綠素螢光參數及最佳觀賞價值,顯示其具良好的低溫耐受性與觀賞潛力。 | zh_TW |
| dc.description.abstract | Episcia exhibits diverse leaf traits, flower colors, and shade tolerance, making it suitable as indoor flowering foliage plants. However, research on their cultivation and genetics remains limited. In this study, 18 species or cultivars of Episcia were used as parental lines for hybridization or selfing to estimate the inheritance patterns of leaf variegation and flower color. Additionally, growth, chlorophyll fluorescence parameters, and flowering responses of ‘Lemon Aide’ (green-leaved) and ‘Choco Brown Soldier’ (brown-leaved) were evaluated under different daily light integrals (DLIs). Furthermore, photosynthetic parameters, chlorophyll fluorescence parameters, growth, and flowering performance of ‘Chocolate Soldier’, ‘Lemon Aide’, and ‘Choco Brown Soldier’ were assessed under varying day/night temperature regimes. Based on chlorophyll fluorescence indicators, a new line with both ornamental value and relatively high low-temperature tolerance was selected.
Genetic analysis revealed that midrib striping (M_) and anthocyanin accumulation (A_) are each controlled by a dominant gene, but are epistatically inhibited by different dominant suppressor genes (S and I, respectively). Leaf variegation in Episcia was found to result from three distinct mechanisms: air-space type, a combination of air-space type and pigment type, or a combination of chlorophyll-deficient type and pigment type. Flower color inheritance indicated that red flowers are dominant over yellow, whereas crosses between red and either purple or white flowers produced pink flowers, suggesting incomplete dominance. Optimizing light conditions is essential for Episcia production. This study examined the effects of DLI, derived from varying light intensities under 8-h short-day and 16-h long-day photoperiods. As DLI increased from 1.4 to 11.5 mol·m⁻²·d⁻¹, leaf and stolon numbers of ‘Lemon Aide’ increased steadily, whereas ‘Choco Brown Soldier’ plateaued beyond 5.8 mol·m⁻²·d⁻¹. In both cultivars, total leaf area, average stolon length, and shoot dry weight peaked at 5.8 mol·m⁻²·d⁻¹ and then stabilized or declined. Average leaf area and SPAD-502 values decreased with increasing DLI, with ‘Lemon Aide’ exhibiting more pronounced chlorosis under higher DLI. Leaf thickness increased as DLI increased. Chlorophyll fluorescence parameters (Fo, Fm, ΦPSII, and Fv/Fm) declined with increasing DLI, but remained relatively stable in ‘Choco Brown Soldier’, suggesting that anthocyanins may contribute to greater photochemical stability. ‘Choco Brown Soldier’ began flowering at DLI ≥ 2.9 mol·m⁻²·d⁻¹, with flower number increasing under 5.8 mol·m⁻²·d⁻¹ long-day conditions and leveling off at 8.6 mol·m⁻²·d⁻¹. ‘Lemon Aide’ did not flower during the 145-day treatment period. Temperature treatments showed that ‘Chocolate Soldier’ exhibited optimal growth and flowering at 25/20 °C and 30/25 °C, while ‘Choco Brown Soldier’ and ‘Lemon Aide’ performed best at 25/20 °C in stem diameter, stolon number, biomass, and other growth index. At 15/13 °C and 35/30 °C, ‘Chocolate Soldier’ displayed fluctuating Fv/Fm, reduced flower number, photosynthetic rate, and stolon production, indicating stress. Under these stress conditions, the brown-leaved ‘Choco Brown Soldier’ had lower Fo and Fm but higher qN, suggesting that anthocyanin accumulation in leaves may enhance stress tolerance. Low-temperature tolerance was further assessed in four progeny lines at 30/25 °C (favorable) and 15/13 °C (stress) for 28 days. At 15/13 °C, progeny lines ‘Frosted Emerald’ × ‘Bloomlover’s Purple Passion’, ‘Bloomlover’s Purple Passion’ × ‘Suomi’, and ‘Thad’s Yellow Bird’ × ‘EC’s b-g’ showed marked reductions in leaf area, ΦPSII, Fv/Fm, and SPAD. In contrast, ‘Tiger Stripe’ × ‘Frosted Emerald’ exhibited the smallest decrease in leaf area, stable chlorophyll fluorescence parameters, and high ornamental value, indicating good low-temperature tolerance and potential as a new cultivar. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:47:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:47:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iv Contents vii List of Tables xi List of Figures xii Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1 Episcia 4 2.1.1 Species and classification 5 2.1.2 Pollination and production 6 2.1.3 Chromosome number of Episcia 7 2.2 Inheritance of leaf variegations in ornamental plants 7 2.2.1 Inheritance of leaf midrib strip in ornamental plants 8 2.2.2 Inheritance of leaf color in ornamental plants 9 2.3 Inheritance of flower color 10 2.4 Mechanisms of leaf variegation in foliage plants 11 2.4.1 Air space type 12 2.4.2 Pigment type 14 2.4.3 Chlorophyll type 15 2.5 Daily light integral influencing growth, flowering, leaf structure and variegation of foliage plants 16 2.5.1 Growth 16 2.5.2 Flowering 19 2.5.3 Leaf structure 21 2.5.4 Leaf variegation 21 2.6 Temperature influencing growth, and flowering of foliage plants 23 2.6.1 Growth 23 2.6.2 Flowering 25 2.7 Anthocyanin in leaves 26 Chapter 3. Inheritance of Leaf Variegation and Flower Color, and Mechanism of Leaf Variegation in Episcia 29 3.1 Abstract 29 3.2 Introduction 30 3.3 Materials and Methods 32 3.4 Results 35 3.4.1 Midrib strip 35 3.4.2 Anthocyanin expression in leaves 37 3.4.3 Mechanism of leaf variegation 39 3.4.4 Flower color 40 3.5 Discussion 41 Chapter 4. Effects of Daily Light Integral on Growth, Chlorophyll Fluorescence, and Flowering in Episcia 106 4.1 Abstract 106 4.2 Introduction 107 4.3 Materials and Methods 110 4.4 Results 112 4.5 Discussion 114 Chapter 5. Effects of Temperature on Growth and Flowering of Episcia 130 5.1 Abstract 130 5.2 Introduction 131 5.3 Materials and Methods 132 5.3.1 Experiment I. Effects of temperature on growth, flowering and photosynthesis of E. ‘Chocolate Soldier’ 132 5.3.2 Experiment II. Effects of temperature on growth and flowering of E. ‘Lemon Aide’ and E. ‘Choco Brown Soldier’ 135 5.4 Results 137 5.4.1 Experiment I. Effects of temperature on growth, flowering and photosynthesis of E. ‘Chocolate Soldier’ 137 5.4.2 Experiment II. Effect of temperature on growth and flowering of E. ‘Lemon Aide’ and E. ‘Choco Brown Soldier’ 138 5.5 Discussion 139 Chapter 6. Low-Temperature Tolerance Selection in Episcia Progeny 159 6.1 Abstract 159 6.2 Introduction 159 6.3 Materials and Methods 161 6.4 Results 163 6.5 Discussion 165 | - |
| dc.language.iso | en | - |
| dc.subject | 遺傳 | zh_TW |
| dc.subject | 觀葉植物 | zh_TW |
| dc.subject | 走莖 | zh_TW |
| dc.subject | 耐低溫性 | zh_TW |
| dc.subject | 光積值 | zh_TW |
| dc.subject | daily light integral | en |
| dc.subject | low-temperature tolerance | en |
| dc.subject | stolon | en |
| dc.subject | inheritance | en |
| dc.subject | foliage plant | en |
| dc.title | 喜蔭花之葉斑及花色遺傳、栽培與耐低溫選育 | zh_TW |
| dc.title | Inheritance of Leaf Variegation and Flower Color, Cultivation Practices, and Low-Temperature Tolerance Selection in Episcia | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許富鈞;陳彥銘 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Chiun Hsu;Yen-Ming Chen | en |
| dc.subject.keyword | 觀葉植物,遺傳,光積值,耐低溫性,走莖, | zh_TW |
| dc.subject.keyword | foliage plant,inheritance,daily light integral,low-temperature tolerance,stolon, | en |
| dc.relation.page | 204 | - |
| dc.identifier.doi | 10.6342/NTU202503676 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2030-08-04 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-04 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
