Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98538Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡劭璞 | zh_TW |
| dc.contributor.advisor | Shao-Pu Tsai | en |
| dc.contributor.author | 陳貝瑜 | zh_TW |
| dc.contributor.author | Pei-Yu Chen | en |
| dc.date.accessioned | 2025-08-18T00:47:20Z | - |
| dc.date.available | 2025-08-18 | - |
| dc.date.copyright | 2025-08-15 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1] C.A. Chang, Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures, J. Appl. Phys. 67(1) (1990) 566–569.
[2] N. Dalili, Q. Liu, D.G. Ivey, Thermal and electrical stability of TaNx diffusion barriers for Cu metallization, J. Mater. Sci. 48(1) (2013) 489–501. [3] H. Zhang, T. Liu, S. Zhao, Z. Xu, Y. Lv, J. Fan, Y. Han, Size-dependent alloying ability of immiscible W–Cu bimetallic nanoparticles: a theoretical and experimental study, Nanomaterials 11(4) (2021) 1047. [4] Q.X. Wang, S.H. Liang, X.H. Wang, Z.K. Fan, Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization, Vacuum 84(11) (2010) 1270–1274. [5] J.C. Zhou, Y.Z. Li, D.H. Huang, Fabrication and diffusion barrier properties of nanoscale Ta/Ta–N bi-layer, J. Mater. Process. Technol. 209(2) (2009) 774–778. [6] Z.L. Yuan, D.H. Zhang, C.Y. Li, K. Prasad, C.M. Tan, Thermal stability of Cu/α–Ta/SiO2/Si structures, Thin Solid Films 462 (2004) 284–287. [7] J.P. Chu, C.H. Lin, Formation of a reacted layer at the barrierless Cu(WN)/Si interface, Appl. Phys. Lett. 87(21) (2005) 211902. [8] B.S. Suh, Y.J. Lee, J.S. Hwang, C.O. Park, Properties of reactively sputtered WNx as Cu diffusion barrier, Thin Solid Films 348(1) (1999) 299–303. [9] M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, T. Ohta, WNx diffusion barriers between Si and Cu, Thin Solid Films 286(1) (1996) 170–175. [10] Y. Liu, S. Song, D. Mao, H. Ling, M. Li, Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si, Microelectron. Eng. 75(3) (2004) 309–315. [11] S.Y. Chang, C.E. Li, S.C. Chiang, Y.C. Huang, 4–nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects, J. Alloys Compd. 515 (2012) 4–7. [12] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization, Appl. Phys. Lett. 92(5) (2008) 052109. [13] K. Cui, Y. Zhang, High-entropy alloy films, Coatings, 2023, p. 635. [14] P. Yiu, W. Diyatmika, N. Bönninghoff, Y.C. Lu, B.Z. Lai, J.P. Chu, Thin film metallic glasses: Properties, applications and future, J. Appl. Phys. 127(3) (2020) 030901. [15] C.L. Li, J.C. Chang, B.S. Lou, J.W. Lee, J.P. Chu, Fabrication of W–Zr–Si thin film metallic glasses and the influence of post-annealing treatment, J. Non-Cryst. Solids 482 (2018) 170–176. [16] C.W. Wang, P. Yiu, J.P. Chu, C.H. Shek, C.H. Hsueh, Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon, J. Mater. Sci. 50(5) (2014) 2085–2092. [17] C. Wang, Z. Zhang, C. Wang, J. Feng, X. Wang, S. Song, Thermally stable Mo-Co-B thin film metallic glass as a potential diffusion barrier in Cu/Si contact system, Intermetallics 169 (2024) 108296. [18] J.C. Chang, J.W. Lee, B.S. Lou, C.L. Li, J.P. Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses, Thin Solid Films 584 (2015) 253–256. [19] S.V. Madge, A. Caron, R. Gralla, G. Wilde, S.K. Mishra, Novel W-based metallic glass with high hardness and wear resistance, Intermetallics 47 (2014) 6–10. [20] M. Ohtsuki, K. Nagata, R. Tamura, S. Takeuchi, Tungsten-based metallic glasses with high crystallization temperature, high modulus and high hardness, Mater. Trans. 46(1) (2005) 48–53. [21] S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12(11) (2009) 12–19. [22] R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10(11) (2011) 817–822. [23] P. Kumar, M. Kawasaki, T.G. Langdon, Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures, J. Mater. Sci. 51(1) (2016) 7–18. [24] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65(12) (2013) 1759–1771. [25] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67(10) (2015) 2254–2261. [26] I. Moravcik, H. Hadraba, L.L. Li, I. Dlouhy, D. Raabe, Z.M. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scr. Mater. 178 (2020) 391–397. [27] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [28] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [29] B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016) 10602. [30] W.C. Chang, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with Ti additions, Intermetallics 163 (2023) 108072. [31] L.C. Chang, Y.C. Lu, C.H. Hsueh, Effects of aluminum addition on microstructures and mechanical properties of NbTiVZr high-entropy alloy nitride films, Intermetallics 156 (2023) 107868. [32] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [33] X.W. Hong, C.H. Hsueh, Effects of yttrium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy, Intermetallics 140 (2022) 107405. [34] L.Y. Guo, Y.C. Lu, C.H. Hsueh, Effects of erbium addition on microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Mater. Eng. Perform. (2023) 4856–4866. [35] Y.S. Lin, Y.C. Lu, C.H. Hsueh, Strengthening of CoCrNi medium entropy alloy with gadolinium additions, Vacuum 211 (2023) 111969. [36] Y.S. Lin, C.H. Hsueh, Mitigation of strength-ductility trade-off of CoCrNi medium entropy alloys with heterogenous structure by controlled Gd addition and annealing, Mater. Sci. Eng. A 902 (2024) 146630. [37] H.W. Peng, C.H. Hsueh, Effects of silicon and neodymium additions on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 476 (2024) 130206. [38] Y.L. Wu, C.C. Tsai, P.Y. Chen, J.D. You, C.H. Hsueh, Transforming microstructures and mechanical properties of (CoCrNi)93-xAl7Ndx medium entropy alloy films by annealing, Surf. Coat. Technol. 477 (2024) 130331. [39] R.B. Chang, W. Fang, X. Bai, C.Q. Xia, X. Zhang, H.Y. Yu, B.X. Liu, F.X. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [40] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187–196. [41] Y. Xie, P.C. Zhao, Y.G. Tong, J.P. Tan, B.H. Sun, Y. Cui, R.Z. Wang, X.C. Zhang, S.T. Tu, Precipitation and heterogeneous strengthened CoCrNi-based medium entropy alloy with excellent strength-ductility combination from room to cryogenic temperatures, Sci. China Technol. Sci. 65(8) (2022) 1780–1797. [42] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater. 116 (2016) 332–342. [43] H. Kim, D. Lee, H. Kim, Y. Kim, M. Jang, D. Kwen, Y. Koo, E. Kim, H. Cho, M.P. Agustianingrum, N. Park, B. Straumal, The formation of B2-precipitate and its effect on grain growth behavior in aluminum-containing CoCrNi medium-entropy alloy, Mater. Lett. 303 (2021) 130481. [44] S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure, Acta Mater. 165 (2019) 444–458. [45] P. Sathiyamoorthi, J.M. Park, J. Moon, J.W. Bae, P. Asghari-Rad, A. Zargaran, H.S. Kim, Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure, Materialia 8 (2019) 100442. [46] M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy, J. Alloys Compd. 781 (2019) 866–872. [47] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, T.X. Bai, K. Wang, Z.Q. Li, Z.H. Wang, Strengthening and strain hardening mechanisms in precipitation-hardened CrCoNi medium entropy alloys, J. Alloys Compd. 896 (2022) 162962. [48] K.F. Lin, S.C. Chen, H.W. Yen, H.C. Lin, Mechanical performance of a novel low-cost Fe–25Mn–5Co–12.5Cr–5Ni–2.5Si (in at. %) medium-entropy alloy, Mater. Sci. Eng. A 892 (2024) 146032. [49] C.H. Peng, P.Y. Hou, W.S. Lin, P.K. Shen, H.H. Huang, J.W. Yeh, H.W. Yen, C.Y. Huang, C.W. Tsai, Investigation of microstructure and wear properties of precipitates-strengthened Cu–Ni–Si–Fe alloy, Mater. 16(3) (2023) 1149. [50] D.Y. Qin, Y.F. Lu, Q. Liu, L. Zhou, Effects of Si addition on mechanical properties of Ti–5Al–5V–5Mo–3Cr alloy, Mater. Sci. Eng. A 561 (2013) 460–467. [51] A. Kumar, A.K. Swarnakar, M. Chopkar, Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering, J. Mater. Eng. Perform. 27(7) (2018) 3304–3314. [52] C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, H.F. Zhang, J.Q. Wang, Microstructure and corrosion behavior of AlCoCrFeNiSi0.1 high-entropy alloy, Intermetallics 114 (2019) 106599. [53] B.Q. Jin, N.N. Zhang, S. Guan, Y. Zhang, D.Y. Li, Microstructure and properties of laser re-melting FeCoCrNiAl0.5Six high-entropy alloy coatings, Surf. Coat. Technol. 349 (2018) 867–873. [54] P. Cheng, Y. Zhao, X. Xu, S. Wang, Y. Sun, H. Hou, Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates, Mater. Sci. Eng. A 772 (2020) 138681. [55] S.P. Murarka, Metallization: Theory and practice for VLSI and ULSI, Elsevier Science & Technology Books1993. [56] Y.S. Wang, K.W. Chen, M.Y. Cheng, W.H. Lee, Y.L. Wang, Effects of (002) β-Ta barrier on copper chemical mechanical polishing behavior, Thin Solid Films 529 (2013) 435–438. [57] P. Chen, Y. Li, F. Qin, T. An, Y. Dai, M. Zhang, M. Liu, L. Zhang, First-principles study of copper contamination in silicon semiconductor, Surfaces and Interfaces 31 (2022) 102084. [58] G.C. Gruber, M. Kirchmair, S. Wurster, M.J. Cordill, R. Franz, A new design rule for high entropy alloy diffusion barriers in Cu metallization, J. Alloys Compd. 953 (2023) 170166. [59] Y.I. Chen, K.H. Yeh, T.Y. Ou, L.C. Chang, Diffusion barrier characteristics of WSiN films, Coatings 12(6) (2022) 811. [60] A.E. Kaloyeros, E.T. Eisenbraun, Ultrathin diffusion barriers/liners for gigascale Copper metallization, Annu. Rev. Mater. Sci. 30 (2000) 363–385. [61] Y. Yan, S. Xu, Preparation, properties and applications of metal glass, MATEC Web Conf. 175 (2018) 01011. [62] M. Chen, A brief overview of bulk metallic glasses, NPG Asia Materials 3(9) (2011) 82–90. [63] Y.D. Liu, S. Hata, K. Wada, A. Shimokohbe, Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass, Jpn. J. Appl. Phys., Part 1 40(9a) (2001) 5382–5388. [64] Z. Li, Y. Tian, C. Teng, H. Cao, Recent Advances in Barrier Layer of Cu Interconnects, Mater. 13(21) (2020) 5049. [65] K. Holloway, P.M. Fryer, Tantalum as a diffusion barrier between copper and silicon, Appl. Phys. Lett. 57(17) (1990) 1736–1738. [66] K. Holloway, P.M. Fryer, C. Cabral, Jr., J.M.E. Harper, P.J. Bailey, K.H. Kelleher, Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions, J. Appl. Phys. 71(11) (1992) 5433–5444. [67] C.Y. Ting, M. Wittmer, The use of titanium-based contact barrier layers in silicon technology, Thin Solid Films 96(4) (1982) 327–345. [68] M.M. Farahani, T.E. Turner, J.J. Barnes, Evaluation of Titanium as a diffusion barrier between Aluminum and Silicon for 1.2 μm CMOS integrated circuits, J. Electrochem. Soc. 134(11) (1987) 2835–2845. [69] Y. Pauleau, F.C. Dassapa, P. Lami, J.C. Oberlin, F. Romagna, Silicide formation in metal/Si structures and diffusion barrier properties of CVD tungsten films, J. Mater. Res. 4(1) (1989) 156–162. [70] B.W. Shen, G.C. Smith, J.M. Anthony, R.J. Matyi, Diffusion barrier properties of thin selective chemical vapor deposited tungsten films, J. Vac. Sci. Technol., B:Microelectron. Process. Phenom. 4(6) (1986) 1369–1376. [71] K.S. Park, S. Kim, Seedless copper electrodeposition onto Tungsten diffusion barrier, J. Electrochem. Soc. 157(12) (2010) D609–D613. [72] L.Y. Yang, D.H. Zhang, C.Y. Li, P.D. Foo, Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration, Thin Solid Films 462-463 (2004) 176–181. [73] N. Fréty, F. Bernard, J. Nazon, J. Sarradin, J.C. Tedenac, Copper diffusion into silicon substrates through TaN and Ta/TaN multilayer barriers, J. Phase Equilib. Diffus. 27(6) (2006) 590–597. [74] Q. Xie, X.P. Qu, J.J. Tan, Y.L. Jiang, M. Zhou, T. Chen, G.P. Ru, Superior thermal stability of Ta/TaN bi-layer structure for copper metallization, Appl. Surf. Sci. 253(3) (2006) 1666–1672. [75] B.H. Lee, K. Yong, Diffusion barrier properties of metalorganic chemical vapor deposition -WNx compared with other barrier materials, J. Vac. Sci. Technol. B 22(5) (2004) 2375–2379. [76] S.Q. Wang, I. Raaijmakers, B.J. Burrow, S. Suthar, S. Redkar, K.B. Kim, Reactively sputtered TiN as a diffusion barrier between Cu and Si, Journal of Applied Physics 68(10) (1990) 5176-5187. [77] S.K. Rha, W.J. Lee, S.Y. Lee, Y.S. Hwang, Y.J. Lee, D.I. Kim, D.W. Kim, S.S. Chun, C.O. Park, Improved TiN film as a diffusion barrier between copper and silicon, Thin Solid Films 320(1) (1998) 134–140. [78] Y.C. Ee, Z. Chen, S.B. Law, S. Xu, N.L. Yakovlev, M.Y. Lai, Copper diffusion in Ti–Si–N layers formed by inductively coupled plasma implantation, Appl. Surf. Sci. 253(2) (2006) 530–534. [79] X.P. Qu, H. Lu, T. Peng, G.P. Ru, B.Z. Li, Effects of preannealing on the diffusion barrier properties for ultrathin W–Si–N thin film, Thin Solid Films 462-463 (2004) 67–71. [80] J.L. Ruan, J.L. Huang, J.S. Chen, D.F. Lii, Effects of substrate bias on the reactive sputtered Zr–Al–N diffusion barrier films, Surf. Coat. Technol. 200(5) (2005) 1652–1658. [81] Y.L. Cheng, C.Y. Lee, G.S. Chen, J.S. Fang, Comparison of precursors for self-assembled monolayers as Cu barriers, ECS J. Solid State Sci. Technol. 12(6) (2023) 063001. [82] M.H. Tsai, J.W. Yeh, J.Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films 516(16) (2008) 5527–5530. [83] M.H. Tsai, C.H. Lai, J.W. Yeh, J.Y. Gan, Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nx coatings, J. Phys. D Appl. Phys. 41(23) (2008) 235402. [84] J. Lee, J.G. Duh, Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature, Vacuum 142 (2017) 81–86. [85] W. Diyatmika, L.J. Xue, T.N. Lin, C.W. Chang, J.P. Chu, Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study, Jpn. J. Appl. Phys. 55(8) (2016) 080303. [86] Y.T. Hsiao, C.H. Tung, S.J. Lin, J.W. Yeh, S.Y. Chang, Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy, Acta Mater. 199 (2020) 107–115. [87] S.Y. Chang, D.S. Chen, 10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900°C, Appl. Phys. Lett. 94(23) (2009) 231909. [88] R. Li, B. Qiao, H. Shang, J. Zhang, C. Jiang, W. Zhang, Multi-component AlCrTaTiZrMo-nitride film with high diffusion resistance in copper metallization, J. Alloys Compd. 748 (2018) 258–264. [89] W.L. Johnson, A.R. Williams, Structure and properties of transition-metal-metalloid glasses based on refractory metals, Phys. Rev. B 20(4) (1979) 1640–1655. [90] A.P. Thakoor, J.L. Lamb, S.K. Khanna, M. Mehra, W.L. Johnson, Refractory amorphous metallic (W0.6Re0.4)76B24 coatings on steel substrates, J. Appl. Phys. 58(9) (1985) 3409–3414. [91] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213–218. [92] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511. [93] M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2(3) (2014) 107–123. [94] J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion, I. Guillot, Microstructure of a near-equimolar refractory high-entropy alloy, Mater. Lett. 126 (2014) 285–287. [95] B. Gludovatz, E.P. George, R.O. Ritchie, Processing, microstructure and mechanical properties of the CrMnFeCoNi High-Entropy Alloy, JOM 67(10) (2015) 2262–2270. [96] J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform. 24(10) (2015) 3685–3698. [97] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog Mater Sci 61 (2014) 1–93. [98] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater. 6(5) (2004) 299–303. [99] W. Abuzaid, H. Sehitoglu, Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy, Mater. Charact. 129 (2017) 288–299. [100] W.G. Nohring, W.A. Curtin, Cross-slip of long dislocations in FCC solid solutions, Acta Mater. 158 (2018) 95–117. [101] I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, A.V. Vyrodova, I.V. Kuksgauzen, D.A. Kuksgauzen, Orientation and temperature dependence of a planar slip and twinning in single crystals of Al0.3CoCrFeNi high-entropy alloy, Mater. Sci. Eng. A 737 (2018) 47–60. [102] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev. 61(3) (2016) 183–202. [103] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties, J. Alloys Compd. 760 (2018) 15–30. [104] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid State Mater. Sci. 21(6) (2017) 299–311. [105] M.S. Xaba, Additively manufactured high-entropy alloys for hydrogen storage: Predictions, Heliyon 10(12) (2024) e32715. [106] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61(13) (2013) 4887–4897. [107] H. Hamdi, H.R. Abedi, Y. Zhang, A review study on thermal stability of high entropy alloys: Normal/abnormal resistance of grain growth, J. Alloys Compd. 960 (2023) 170826. [108] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails, Curr. Sci. 85(10) (2003) 1404–1406. [109] H. Ohtani, K. Ishida, Application of the CALPHAD method to material design, Thermochim. Acta 314(1) (1998) 69–77. [110] C. Zhang, M.C. Gao, CALPHAD modeling of high-entropy alloys, in: M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang (Eds.), High-entropy alloys: Fundamentals and applications, Springer International Publishing, Cham, (2016) 399–444. [111] J. Van Laar, Melting or solidification curves in binary system, Z Phys Chem 63 (1908) 216. [112] Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid Fetzer, W.A. Oates, Phase diagram calculation: past, present and future, Prog Mater Sci 49(3) (2004) 313–345. [113] L. Kaufman, H. Bernstein, Computer calculation of phase diagrams with special reference to refractory metals, Academic Press1970. [114] B. Sundman, B. Jansson, J.O. Andersson, The Thermo-Calc databank system, Calphad 9(2) (1985) 153–190. [115] S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, The PANDAT software package and its applications, Calphad 26(2) (2002) 175–188. [116] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende, Reprint of: FactSage thermochemical software and databases, 2010–2016, Calphad 55 (2016) 1–19. [117] Z.K. Liu, Y. Wang, Computational thermodynamics of materials, Cambridge University Press, Cambridge, 2016. [118] R. Ferro, G. Cacciamani, Remarks on crystallochemical aspects in thermodynamic modeling, Calphad 26(3) (2002) 439–458. [119] J. Kim, S.J. Hong, J.K. Lee, K.B. Kim, J.H. Lee, J. Han, C. Lee, G. Song, Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni2TiAl precipitates in CrMnFeCoNiAlxTiy alloys, Mater. Sci. Eng. A 823 (2021) 141763. [120] H.C. Huang, J.S. Chen, J.J. Chen, K. Lin, H.C. Lin, J.R. Yang, T.C. Su, Understanding the solidification and heat treatment characteristics in the CoCrNiSix medium-entropy alloy by experimentally verifiable multiscale thermodynamic and kinetic computational techniques, 2024. [121] H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding, Solid solution strengthening of high-entropy alloys from first-principles study, J. Mater. Sci. Technol. 121 (2022) 105–116. [122] J. Freudenberger, F.T.D. Utt, K. Albe, A. Kauffmann, S. Seils, M. Heilmaier, Solid solution strengthening in medium- to high-entropy alloys, Mater. Sci. Eng. A 861 (2022) 144271. [123] R.L. Fleischer, Effects of non-uniformities on the hardening of crystals, Acta Metall. 8(9) (1960) 598–604. [124] R.L. Fleischer, Solution hardening by interaction of impurity gradients and dislocations, Acta Metall. 8(1) (1960) 32–35. [125] R. Labusch, Statistische theorien der mischkristallhärtung, Acta Metall. 20(7) (1972) 917–927. [126] C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater. 118 (2016) 164–176. [127] C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Solute strengthening in random alloys, Acta Mater. 124 (2017) 660–683. [128] S.X. Jin, A.D. Wang, K. Wang, W.F. Li, B.B. Wan, T.G. Zhai, Significant strengthening effect in ultra-fine grained Al alloy made by fast solidification and hot extrusion processes, J. Mater. Res. Technol. 16 (2022) 1761–1769. [129] R.G. Guan, D. Tie, A review on grain refinement of Aluminum alloys: Progresses, challenges and prospects, Acta Metall. Sin. (Engl. Lett.) 30(5) (2017) 409–432. [130] C.H. Liu, X.L. Li, S.H. Wang, J.H. Chen, Q. Teng, J. Chen, Y. Gu, A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys, Mater. Des. 54 (2014) 144–148. [131] E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B, 64(9) (1951) 747. [132] J. Petch N, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25–28. [133] Y.R. Zhang, R.B. Sills, Strengthening via orowan looping of misfitting plate-like precipitates, J. Mech. Phys. Solids 173 (2023) 105234. [134] Q.H. Fang, L. Li, J. Li, H.Y. Wu, Z.W. Huang, B. Liu, Y. Liu, P.K. Liaw, A statistical theory of probability-dependent precipitation strengthening in metals and alloys, J. Mech. Phys. Solids 122 (2019) 177–189. [135] Q. Wang, Z. Li, S.J. Pang, X.N. Li, C. Dong, P.K. Liaw, Coherent precipitation and strengthening in compositionally complex alloys: A review, Entropy 20(11) (2018) 878. [136] S. Wang, L. Li, G. Chen, F. Li, S. Peng, X. Zeng, J. Li, Y. Zhang, R. Li, Q. Fang, Modeling the effect of precipitation spatial geometry and size distribution on the yield strength of aluminum alloys, Acta Mech. 234(9) (2023) 4323–4342. [137] T. Xiong, S.J. Zheng, J.Y. Pang, X.L. Ma, High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure, Scr. Mater. 186 (2020) 336–340. [138] S.W. Wu, T. Yang, B.X. Cao, J.H. Luan, Y.F. Jia, L. Xu, Y.K. Mu, T.L. Zhang, H.J. Kong, X. Tong, J.C. Peng, G. Wang, Q.J. Zhai, J. Lu, C.T. Liu, Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries, Scr. Mater. 204 (2021) 114066. [139] B. Gwalani, S. Gorsse, V. Soni, M. Carl, N. Ley, J. Smith, A.V. Ayyagari, Y.F. Zheng, M. Young, R.S. Mishra, R. Banerjee, Role of copper on L12 precipitation strengthened based high entropy alloy, Materialia 6 (2019) 100282. [140] X.H. Du, W.P. Li, H.T. Chang, T. Yang, G.S. Duan, B.L. Wu, J.C. Huang, F.R. Chen, C.T. Liu, W.S. Chuang, Y. Lu, M.L. Sui, E.W. Huang, Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy, Nat. Commun. 11(1) (2020) 2390. [141] Z.Y. Ding, B.X. Cao, J.H. Luan, Z.B. Jiao, Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys, Corros. Sci. 184 (2021) 109365. [142] D. Lee, H.U. Jeong, K.H. Lee, J.B. Jeon, N. Park, Precipitation and grain-boundary strengthening of Al-added CoCrNi medium-entropy alloys, Mater. Lett. 250 (2019) 127–130. [143] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloys Compd. 800 (2019) 372–378. [144] H. Gasan, E. Lökçü, A. Ozcan, O.N. Celik, I. Celikyurek, M. Ulutan, Y. Kurtulus, Effects of Al on the phase volume fractions and wear properties in the AlCoCrFeMoNi high entropy alloy system, Met. Mater. Int. 26(3) (2020) 310–320. [145] S. Dasari, A. Sarkar, A. Sharma, B. Gwalani, D. Choudhuri, V. Soni, S. Manda, I. Samajdar, R. Banerjee, Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation, Acta Mater. 202 (2021) 448–462. [146] J.M. Park, J. Moon, J.W. Bae, J. Jung, S. Lee, H.S. Kim, Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A 728 (2018) 251–258. [147] Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, B. Xu, Z.H. Wang, Superior tensile properties of Al0.3CoCrFeNi high entropy alloys with B2 precipitated phases at room and cryogenic temperatures, Mater. Sci. Eng. A 767 (2019) 138424. [148] J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal, Acta Mater. 131 (2017) 206–220. [149] S.Z. Niu, H.C. Kou, T. Guo, Y. Zhang, J. Wang, J.S. Li, Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 671 (2016) 82–86. [150] L. Wang, L. Wang, Y.C. Tang, L. Luo, L.S. Luo, Y.Q. Su, J.J. Guo, H.Z. Fu, Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles, J. Alloys Compd. 843 (2020) 155997. [151] Y. Liu, Y.X. Xie, S.G. Cui, Y.L. Yi, X.W. Xing, X.J. Wang, W. Li, Effect of Mo element on the mechanical properties and tribological responses of CoCrFeNiMox high-entropy alloys, Metals 11(3) (2021) 486. [152] N. Li, J. Gu, B. Gan, Q. Qiao, S. Ni, M. Song, Effects of Mo-doping on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Mater. Res. 35(20) (2020) 2726–2736. [153] H. Kwon, P. Asghari-Rad, J.M. Park, P. Sathiyamoorthi, J.W. Bae, J. Moon, A. Zargaran, Y.T. Choi, S. Son, H.S. Kim, Synergetic strengthening from grain refinement and nano-scale precipitates in non-equiatomic CoCrFeNiMo medium-entropy alloy, Intermetallics 135 (2021) 107212. [154] R.B. Chang, W. Fang, H.Y. Yu, X. Bai, X. Zhang, B.X. Liu, F.X. Yin, Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity, Scr. Mater. 172 (2019) 144–148. [155] J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, H.S. Kim, Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys, J. Alloys Compd. 781 (2019) 75–83. [156] P.Y. Chen, C.H. Hsueh, Effects of Ti addition and annealing on microstructure and mechanical properties of CoCrFeMnNi high-entropy alloy, J. Mater. Sci. 59(23) (2024) 10526–10540. [157] B. Han, J. Wei, Y. Tong, D. Chen, Y.L. Zhao, J. Wang, F. He, T. Yang, C. Zhao, Y. Shimizu, K. Inoue, Y. Nagai, A. Hu, C.T. Liu, J.J. Kai, Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy, Scr. Mater. 148 (2018) 42–46. [158] Z.G. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y.F. Gao, H.B. Bei, Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy, J. Mater. Res. 33(19) (2018) 3301–3309. [159] Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang, Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy, Mater. Sci. Eng. A 696 (2017) 503–510. [160] H. Jiang, K.M. Han, D.X. Qiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 43–48. [161] Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures, Acta Mater. 165 (2019) 228–240. [162] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [163] D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds, Acta Mater. 165 (2019) 420–430. [164] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater. 138 (2017) 72–82. [165] A. Argon, Strengthening mechanisms in crystal plasticity, Oxford University Press, 2007. [166] W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog Mater Sci 118 (2021) 100777. [167] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152–163. [168] G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag.-J. Theor. Exp. Appl. Phys. 1(1) (1956) 34–46. [169] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40–54. [170] W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys Compd. 589 (2014) 143–152. [171] S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures, J. Alloys Compd. 662 (2016) 361–367. [172] Y.H. Fang, N. Chen, G.P. Du, M.X. Zhang, X.R. Zhao, H. Cheng, J.B. Wu, High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder, J. Alloys Compd. 815 (2020) 152486. [173] W.J. Lu, X. Luo, Y.Q. Yang, J.T. Zhang, B. Huang, Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy, Mater. Chem. Phys. 238 (2019) 121841. [174] Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Compd. 509(5) (2011) 1607–1614. [175] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd. 488(1) (2009) 57–64. [176] C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics 19(3) (2011) 288–294. [177] D.X. Wei, W. Gong, T. Tsuru, I. Lobzenko, X.Q. Li, S. Harjo, T. Kawasaki, H.S. Do, J.W. Bae, C. Wagner, G. Laplanche, Y. Koizumi, H. Adachi, K. Aoyagi, A. Chiba, B.J. Lee, H.S. Kim, H. Kato, Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys, Int. J. Plast. 159 (2022) 103443. [178] H. Yi, X. Yang, Y. Yang, B. Yin, J. Hu, M. Liang, J. Yue, F. Yin, New insights in the oxidation behavior of (FeCoCrNi)94Al4Ti2Six high entropy alloys at 1100 °C, Corros. Sci. 227 (2024) 111673. [179] Z.J. Li, L. Chen, H.H. Su, P.Q. Dai, Q.H. Tang, The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy, Mater. Sci. Eng. A 852 (2022) 143655. [180] C. Zhang, G.F. Wu, P.Q. Dai, Phase transformation and aging behavior of Al0.5CoCrFeNiSi0.2 high-entropy alloy, J. Mater. Eng. Perform. 24(5) (2015) 1918–1925. [181] C.Y. Chuang, J.W. Lee, C.L. Li, J.P. Chu, Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass, Surf. Coat. Technol. 215 (2013) 312–321. [182] J.H. Chu, H.W. Chen, Y.C. Chan, J.G. Duh, J.W. Lee, J.S.C. Jang, Modification of structure and property in Zr-based thin film metallic glass via processing temperature control, Thin Solid Films 561 (2014) 38–42. [183] P.C. Wang, J.W. Lee, Y.C. Yang, B.S. Lou, Effects of silicon contents on the characteristics of Zr–Ti–Si–W thin film metallic glasses, Thin Solid Films 618 (2016) 28–35. [184] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097–5122. [185] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films, J. Alloys Compd. 483(1–2) (2009) 337–340. [186] Y.P. Deng, Y. Guan, J.D. Fowkes, S.Q. Wen, F.X. Liu, G.M. Phaff, P.K. Liaw, C.T. Liu, P.D. Rack, A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses, Intermetallics 15(9) (2007) 1208–1216. [187] A. Hitit, P. Öztürk, H. Şahin, A.M. Aşgın, Effect of tungsten content on glass forming ability and microhardness of Ni–Cr–B–W metallic glasses, J. Achiev. Mater. Manuf. Eng. 62(1) (2014) 5–9. [188] P. Ozturk, A. Hitit, Effects of Tungsten and Boron contents on crystallization temperature and microhardness of Tungsten based metallic glasses, Acta Metall. Sin. (Engl. Lett.) 28(6) (2015) 733–738. [189] S. Mirzaei, M. Alishahi, P. Soucek, L. Zabransky, V. Burgilovaa, M. Stupayska, V. Perina, K. Balazsi, Z. Czigany, P. Vagina, Effect of bonding structure on hardness and fracture resistance of W–B–C coatings with varying B/W ratio, Surf. Coat. Technol. 358 (2019) 843–849. [190] D.D. Liang, X.S. Wei, C.T. Chang, J.W. Li, X.M. Wang, J. Shen, Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass, J. Alloys Compd. 731 (2018) 1146–1150. [191] M. Muhlbacher, G. Greczynski, B. Sartory, F. Mendez-Martin, N. Schalk, J. Lu, L. Hultman, C. Mitterer, TiN diffusion barrier failure by the formation of Cu3Si investigated by electron microscopy and atom probe tomography, J. Vac. Sci. Technol., B 34(2) (2016) 022202. [192] C. Lee, Y.L. Kuo, The evolution of diffusion barriers in copper metallization, JOM 59(1) (2007) 44–49. [193] Y.L. Kuo, C. Lee, J.C. Lin, Y.W. Yen, W.H. Lee, Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and silicon, Thin Solid Films 484(1–2) (2005) 265–271. [194] J.S. Chen, J.L. Wang, Diffusion barrier properties of sputtered TiB2 between Cu and Si, J. Electrochem. Soc. 147(5) (2000) 1940–1944. [195] J.C. Chuang, S.L. Tu, M.C. Chen, Sputtered Cr and reactively sputtered CrNx serving as barrier layers against copper diffusion, J. Electrochem. Soc. 145(12) (1998) 4290–4296. [196] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1(1) (2013) 011002. [197] Y. Meng, Z.X. Song, Y.H. Li, D. Qian, W. Hu, K.W. Xu, Thermal stability of ultra thin Zr–B–N films as diffusion barrier between Cu and Si, Appl. Surf. Sci. 527 (2020) 146810. [198] S.C. Cifuentes, M.A. Monge, P. Pérez, On the oxidation mechanism of pure tungsten in the temperature range 600–800°C, Corros. Sci. 57 (2012) 114–121. [199] J.P. Chu, C.H. Lin, V.S. John, Barrier-free Cu metallization with a novel copper seed layer containing various insoluble substances, Vacuum 83(3) (2008) 668–671. [200] K.M. Yin, L. Chang, F.R. Chen, J.J. Kai, C.C. Chiang, G. Chuang, P. Ding, B. Chin, H. Zhang, F. Chen, Oxidation of Ta diffusion barrier layer for Cu metallization in thermal annealing, Thin Solid Films 388(1) (2001) 27–33. [201] K. Ooe, T. Seki, Y. Ikuhara, N. Shibata, High contrast STEM imaging for light elements by an annular segmented detector, Ultramicroscopy 202 (2019) 148–155. [202] Y. Lin, M. Zhou, X.L. Tai, H.F. Li, X. Han, J.G. Yu, Analytical transmission electron microscopy for emerging advanced materials, Matter 4(7) (2021) 2309–2339. [203] W.H. Lee, Y.L. Kuo, H.J. Huang, C.P. Lee, Effect of density on the diffusion barrier property of TiNx films between Cu and Si, Mater. Chem. Phys. 85(2–3) (2004) 444–449. [204] C.Y. Wen, F. Spaepen, In situ electron microscopy of the phases of Cu3Si, Philos. Mag. 87(35) (2007) 5581–5599. [205] J.M.E. Harper, A. Charai, L. Stolt, F.M. Dheurle, P.M. Fryer, Room-temperature oxidation of silicon catalyzed by Cu3Si, Appl. Phys. Lett. 56(25) (1990) 2519–2521. [206] C.S. Liu, L.J. Chen, Room-temperature oxidation of silicon in the presence of Cu3Si, Thin Solid Films 262(1–2) (1995) 187–198. [207] K.M. Yin, L. Chang, F.R. Chen, J.J. Kai, The effect of oxygen on the interfacial reactions of Cu/TaNx/Si multilayers, Mater. Chem. Phys. 71(1) (2001) 1–6. [208] L. Stolt, A. Charai, F.M. Dheurle, P.M. Fryer, J.M.E. Harper, Formation of Cu3Si and its catalytic effect on silicon oxidation at room-temperature, J. Vac. Sci. Technol. A: Vac. Surf. Films. 9(3) (1991) 1501–1505. [209] M.R. Marks, F.K. Yong, K.Y. Cheong, Z. Hassan, Mechanism study of SiO2 layer formation and separation at the Si die sidewall during nanosecond laser dicing of ultrathin Si wafers with Cu backside layer, Appl. Phys. A: Mater. Sci. Process. 126(2) (2020) 138. [210] V.T. Renard, M. Jublot, P. Gergaud, P. Cherns, D. Rouchon, A. Chabli, V. Jousseaume, Catalyst preparation for CMOS-compatible silicon nanowire synthesis, Nat. Nanotechnol. 4(10) (2009) 654–657. [211] L. Romano Brandt, E. Salvati, D. Wermeille, C. Papadaki, E. Le Bourhis, A.M. Korsunsky, Stress-assisted thermal diffusion barrier breakdown in Ion beam deposited Cu/W nano-multilayers on Si substrate observed by in situ GISAXS and transmission EDX, ACS Appl. Mater. Interfaces 13(5) (2021) 6795–6804. [212] J.B. Yeh, D.C. Perng, K.C. Hsu, Amorphous RuW film as a diffusion barrier for advanced Cu metallization, J. Electrochem. Soc. 157(8) (2010) H810–H814. [213] C.C. Yu, H.J. Wu, M.T. Agne, I.T. Witting, P.Y. Deng, G.J. Snyder, J.P. Chu, Titanium-based thin film metallic glass as diffusion barrier layer for PbTe-based thermoelectric modules, APL Mater. 7(1) (2019) 013001. [214] S.J. Wang, H.Y. Tsai, S.C. Sun, M.H. Shiao, Thermal stability of sputtered tungsten carbide as diffusion barrier for copper metallization, J. Electrochem. Soc. 148(9) (2001) G500–G506. [215] J.P. Chu, C.H. Lin, Y.Y. Hsieh, Thermal performance of sputtered insoluble Cu(W) films for advanced barrierless metallization, J. Electron. Mater. 35(1) (2006) 76–80. [216] T. Laurila, K. Zeng, J. Molarius, T. Riekkinen, I. Suni, J.K. Kivilahti, Effect of oxygen on the reactions in Si/Ta/Cu and Si/TaC/Cu systems, Microelectron. Eng. 64(1–4) (2002) 279–287. [217] Y.L. Kuo, J.J. Huang, S.T. Lin, C. Lee, W.H. Lee, Diffusion barrier properties of sputtered TaN between Cu and Si using TaN as the target, Mater. Chem. Phys. 80(3) (2003) 690–695. [218] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, E. Phoon, L. Chan, Study of Ru barrier failure in the Cu/Ru/Si system, J. Mater. Res. 22(9) (2007) 2505–2511. [219] T. Laurila, K.J. Zeng, J.K. Kivilahti, J. Molarius, I. Suni, Failure mechanism of Ta diffusion barrier between Cu and Si, J. Appl. Phys. 88(6) (2000) 3377–3384. [220] B. Cao, Y.H. Jia, G.P. Li, X.M. Chen, Atomic diffusion in annealed Cu/SiO2/Si (100) system prepared by magnetron sputtering, Chin. Phys. B 19(2) (2010) 026601. [221] S.Z. Li, H. Cai, C.L. Gan, J. Guo, Z.L. Dong, J. Ma, Controlled synthesis of Copper-Silicide nanostructures, Cryst. Growth Des. 10(7) (2010) 2983–2989. [222] N. Benouattas, A. Mosser, D. Raiser, J. Faerber, A. Bouabellou, Behaviour of copper atoms in annealed Cu/SiOx/Si systems, Appl. Surf. Sci. 153(2-3) (2000) 79–84. [223] R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang, J.A. Hawk, J.C. Neuefeind, Y. Ren, P.K. Liaw, Phase stability and transformation in a light-weight high-entropy alloy, Acta Mater. 146 (2018) 280–293. [224] E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scr. Mater. 113 (2016) 106–109. [225] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. [226] A. Asabre, P. Gemagami, A.B. Parsa, C. Wagner, A. Kostka, G. Laplanche, Influence of Mo/Cr ratio on the lamellar microstructure and mechanical properties of as-cast Al0.75CoCrFeNi compositionally complex alloys, J. Alloys Compd. 899 (2022) 163183. [227] C. Hombourger, M. Outrequin, Quantitative analysis and high-resolution X-ray mapping with a field emission electron microprobe, Microsc. Today 21(3) (2013) 10–15. [228] R.E. Smallman, R.J. Bishop, Chapter 5 - The characterization of materials, in: R.E. Smallman, R.J. Bishop (Eds.), Modern Physical Metallurgy and Materials Engineering (Sixth Edition), Butterworth-Heinemann, Oxford, (1999) 125–167. [229] H. Watanabe, T. Murata, S. Nakamura, N. Ikeo, T. Mukai, K. Tsuchiya, Effect of cold-working on phase formation during heat treatment in CrMnFeCoNi system high-entropy alloys with Al addition, J. Alloys Compd. 872 (2021) 159668. [230] A. Singh, T. Hiroto, H. Watanabe, N. Ikeo, T. Mukai, K. Tsuchiya, Phase transformation and morphological features in a cold-worked CrMnFeCoNi high entropy alloy with Al addition, Materials Characterization 182 (2021). [231] R. Feng, Y. Rao, C.H. Liu, X. Xie, D.J. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H.M. Wang, K. An, P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun. 12(1) (2021) 3588. [232] X. Liu, P. Yu, R. Li, A. Li, S. Yu, M. Jiang, J. Zhang, C. Che, D. Huang, G. Li, Investigating the strengthening and deformation behavior of B2-strengthened high entropy alloys with high Co and Al contents, Mater. Sci. Eng. A 887 (2023) 145756. [233] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46(12) (2005) 2817–2829. [234] R. Hu, P. Nash, Review: Experimental enthalpies of formation of compounds in Al-Ni-X systems, J. Mater. Sci. 41(3) (2006) 631–641. [235] J.M. Joubert, Crystal chemistry and Calphad modeling of the σ phase, Prog Mater Sci 53(3) (2008) 528–583. [236] S. Liu, W. Lin, Y. Zhao, D. Chen, G. Yeli, F. He, S. Zhao, J.j. Kai, Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys, J. Alloys Compd. 844 (2020) 156162. [237] Z. Li, X. Ding, L. Chen, J. He, J. Chen, J. Chen, N. Hua, P. Dai, Q. Tang, Effect of Si content and annealing temperatures on microstructure, tensile properties of FeCoCrNiMn high entropy alloys, J. Alloys Compd. 935 (2023) 168090. [238] Y. Weng, H. Dong, Y. Gan, Advanced steels: the recent scenario in steel science and technology, Springer Science & Business Media2011. [239] K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, Y.K. Lee, The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel, Acta Mater. 61(9) (2013) 3399–3410. [240] I. Jung, S.J. Lee, B.C. De Cooman, Influence of Al on internal friction spectrum of Fe-18Mn-0.6C twinning-induced plasticity steel, Scr. Mater. 66(10) (2012) 729–732. [241] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mater. Sci. Eng. A 764 (2019) 138192. [242] C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, Z.F. Zhang, Recovery of strain-hardening rate in Ni-Si alloys, Sci. Rep. 5 (2015) 15532. [243] Q. Wang, T. Zhang, Z. Jiao, J. Wang, D. Zhao, G. Wu, J. Qiao, P.K. Liaw, Z. Wang, Hierarchical precipitates facilitate the excellent strength-ductility synergy in a CoCrNi-based medium-entropy alloy, Mater. Sci. Eng. A 873 (2023) 145036. [244] D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, The B2 phase-driven microstructural heterogeneities and twinning enable ultrahigh cryogenic strength and large ductility in NiCoCr-based medium-entropy alloy, Acta Mater. 233 (2022) 117981. [245] X. Liu, M. Zhang, Y. Ma, W. Dong, R. Li, Y. Lu, Y. Zhang, P. Yu, Y. Gao, G. Li, Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect, Mater. Sci. Eng. A 776 (2020) 139028. [246] F. Ding, Y. Cao, A. Fu, J. Wang, W. Zhang, J. Qiu, B. Liu, Effect of Si on microstructure and mechanical properties of FeCrNi medium entropy alloys, Mater. 16(7) (2023) 2697. [247] G. He, C. He, X. Sheng, H. Huang, Q. Peng, S. Xu, Z. Fu, C. Huang, Deciphering the effect of W and Mo co-additions on recrystallization behavior and strengthening mechanism of CrCoNi medium entropy alloy, J. Alloys Compd. 923 (2022) 166404. [248] J.M. Park, J. Moon, J.W. Bae, D.H. Kim, Y.H. Jo, S. Lee, H.S. Kim, Role of BCC phase on tensile behavior of dual-phase Al0.5CoCrFeMnNi high-entropy alloy at cryogenic temperature, Mater. Sci. Eng. A 746 (2019) 443–447. [249] I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Mater. Sci. Eng. A 675 (2016) 99–109. [250] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater. 124 (2017) 143–150. [251] H.M. Daoud, A. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Microstructure and tensile behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloys, JOM 65(12) (2013) 1805–1814. [252] H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel, High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy), JOM 67(10) (2015) 2271–2277. [253] W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys, Mater. Des. 134 (2017) 226–233. [254] P. Li, A. Wang, C.T. Liu, A ductile high entropy alloy with attractive magnetic properties, J. Alloys Compd. 694 (2017) 55–60. [255] J. Kang, N. Park, J.K. Kim, J.H. Park, Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)95.2Al3.2Ti1.6 high entropy alloy, Mater. Sci. Eng. A 814 (2021) 141249. [256] Z. Wang, I. Baker, W. Guo, J.D. Poplawsky, The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater. 126 (2017) 346–360. [257] Z. Wang, I. Baker, Effects of annealing and thermo-mechanical treatment on the microstructures and mechanical properties of a carbon-doped FeNiMnAl multi-component alloy, Mater. Sci. Eng. A 693 (2017) 101–110. [258] X.H. Gu, Y.Q. Meng, H. Chang, T.X. Bai, S.G. Ma, Y.Q. Zhang, W.D. Song, Z.Q. Li, Enhanced strength and plasticity of CoCrNiAl0.1Si0.1 medium entropy alloy via deformation twinning and microband at cryogenic temperature, Mater. 14(24) (2021) 7574. [259] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J Alloy Compd 790 (2019) 732-743. [260] N. Ali, L. Zhang, D. Liu, H. Zhou, K. Sanaullah, C. Zhang, J. Chu, Y. Nian, J. Cheng, Strengthening mechanisms in high entropy alloys: A review, Mater. Today Commun. 33 (2022) 104686. [261] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scr. Mater. 134 (2017) 33–36. [262] G.P.M. Leyson, W.A. Curtin, L.G. Hector, C.F. Woodward, Quantitative prediction of solute strengthening in aluminium alloys, Nat. Mater. 9(9) (2010) 750–755. [263] H.J. Ge, H.Q. Song, J. Shen, F.Y. Tian, Effect of alloying on the thermal-elastic properties of 3d high-entropy alloys, Mater. Chem. Phys. 210 (2018) 320–326. [264] T.J. Jang, W.S. Choi, D.W. Kim, G. Choi, H. Jun, A. Ferrari, F. Körmann, P.P. Choi, S.S. Sohn, Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys, Nat. Commun. 12(1) (2021) 4703. [265] D. Lang, Q.G. Li, X.F. Huang, W.G. Huang, Stacking fault energy and fcc→hcp transformation driving force in Fe-Mn-C-Cr-Si high manganese steels and experimental investigation, Mater. Res. Express 8(8) (2021) 086507. [266] X. Zhang, R. Dong, Q. Guo, H. Hou, Y. Zhao, Predicting the stacking fault energy in FCC high-entropy alloys based on data-driven machine learning, J. Mater. Res. Technol. 26 (2023) 4813–4824. [267] X. Wang, W. Xiong, Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning, Sci. Technol. Adv. Mater. 21(1) (2020) 626–634. [268] X. Sun, S. Lu, R. Xie, X. An, W. Li, T. Zhang, C. Liang, X. Ding, Y. Wang, H. Zhang, L. Vitos, Can experiment determine the stacking fault energy of metastable alloys?, Mater. Des. 199 (2021) 109396. [269] A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM 65(12) (2013) 1780–1789. [270] A.J. Zaddach, R.O. Scattergood, C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys, Mater. Sci. Eng. A 636 (2015) 373–378. [271] S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys, Intermetallics 93 (2018) 269–273. [272] J. Lu, L. Hultman, E. Holmström, K.H. Antonsson, M. Grehk, W. Li, L. Vitos, A. Golpayegani, Stacking fault energies in austenitic stainless steels, Acta Mater. 111 (2016) 39–46. [273] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6(1) (2016) 35863. [274] D.J.H. Cockayne, M.L. Jenkins, I.L.F. Ray, The measurement of stacking-fault energies of pure face-centred cubic metals, Philos. Mag.-J. Theor. Exp. Appl. Phys. 24(192) (1971) 1383–1392. [275] S.F. Liu, Y. Wu, H.T. Wang, W.T. Lin, Y.Y. Shang, J.B. Liu, K. An, X.J. Liu, H. Wang, Z.P. Lu, Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy, J. Alloys Compd. 792 (2019) 444–455. [276] R.E. Schramm, R.P. Reed, Stacking fault energies of fcc Fe-Ni alloys by x-ray diffraction line profile analysis, Metall. Trans. A 7(3) (1976) 359–363. [277] G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation, Metall. Trans. A 7 (1976) 1897–1904. [278] S. Curtze, V.T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate, Acta Mater. 58(15) (2010) 5129-5141. [279] F. Niessen, W. Li, K.V. Werner, S. Lu, L. Vitos, M. Villa, M.A.J. Somers, Ab initio study of the effect of interstitial alloying on the intrinsic stacking fault energy of paramagnetic γ-Fe and austenitic stainless steel, Acta Mater. 253 (2023) 118967. [280] S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hänninen, Thermodynamic modeling of the stacking fault energy of austenitic steels, Acta Mater. 59(3) (2011) 1068–1076. [281] J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys, Proc. Natl. Acad. Sci. U. S. A. 115(36) (2018) 8919–8924. [282] Z. Dong, S. Schönecker, W. Li, D. Chen, L. Vitos, Thermal spin fluctuations in CoCrFeMnNi high entropy alloy, Sci. Rep. 8(1) (2018) 12211. [283] M.F. de Campos, S.A. Loureiro, D. Rodrigues, M.d.C. Silva, N.B. Lima, Estimative of the stacking fault energy for a FeNi(50/50) Alloy and a 316L stainless steel, Mater. Sci. Forum 591–593 (2008) 3–7. [284] W. Wu, L. Guo, B. Guo, Y. Liu, M. Song, Altered microstructural evolution and mechanical properties of CoCrFeNiMo0.15 high-entropy alloy by cryogenic rolling, Mater. Sci. Eng. A 759 (2019) 574–582. [285] A.K. Chandan, S. Tripathy, B. Sen, M. Ghosh, S. Ghosh Chowdhury, Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy, Scr. Mater. 199 (2021) 113891. [286] X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M.W. Chen, Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Mater. 144 (2018) 107–115. [287] H.Y. Yasuda, K. Shigeno, T. Nagase, Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals, Scr. Mater. 108 (2015) 80–83. [288] S. Qiu, X.C. Zhang, J. Zhou, S. Cao, H. Yu, Q.M. Hu, Z. Sun, Influence of lattice distortion on stacking fault energies of CoCrFeNi and Al-CoCrFeNi high entropy alloys, J. Alloys Compd. 846 (2020) 156321. [289] Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, Z.H. Wang, Mechanical properties and deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys with heterogeneous structure at room and cryogenic temperatures, J. Alloys Compd. 816 (2020) 152663. [290] D.T. Pierce, J. Bentley, J.A. Jiménez, J.E. Wittig, Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels, Scr. Mater. 66(10) (2012) 753–756. [291] J. Kim, S.J. Lee, B.C. De Cooman, Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity, Scr. Mater. 65(4) (2011) 363–366. [292] G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations, Metall. Trans. A 7(12) (1976) 1905–1914. [293] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Mater. Sci. Eng. A 387 (2004) 158–162. [294] S.M. Lee, S.J. Lee, S. Lee, J.H. Nam, Y.K. Lee, Tensile properties and deformation mode of Si-added Fe-18Mn-0.6C steels, Acta Mater. 144 (2018) 738–747. [295] A.T. Dinsdale, Sgte Data for Pure Elements, Calphad 15(4) (1991) 317–425. [296] K. Oikawa, G.W. Qin, T. Ikeshoji, R. Kainuma, K. Ishida, Direct evidence of magnetically induced phase separation in the fcc phase and thermodynamic calculations of phase equilibria of the Co-Cr system, Acta Mater. 50(9) (2002) 2223–2232. [297] P. Gustafson, A thermodynamic evaluation of the Cr–Ni–W system, Calphad 12(3) (1988) 277–292. [298] T.L. Achmad, W.X. Fu, H. Chen, C. Zhang, Z.G. Yang, Computational thermodynamic and first-principles calculation of stacking fault energy on ternary Co-based alloys, Comput. Mater. Sci. 143 (2018) 112–117. [299] Y.W. Choi, Z.H. Dong, W. Li, S. Schönecker, H. Kim, S.K. Kwon, L. Vitos, Predicting the stacking fault energy of austenitic Fe-Mn-Al (Si) alloys, Mater. Des. 187 (2020) 108392. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98538 | - |
| dc.description.abstract | 本研究共涵蓋兩個研究主題:鎢基金屬玻璃薄膜在半導體擴散阻障層之應用與CoCrNiAlSi中熵合金機械性質之研究。
首先,為了解決積體電路中Cu易擴散至Si基板導致元件失效的問題,本研究開發非晶態W–Ni–B金屬玻璃薄膜,作為Cu/Si間的擴散阻障層。利用磁控濺射製備了 Cu(150 nm)/W–Ni–B(10 nm)/Si 多層結構,並在 700–950°C 下退火 30 分鐘。利用奈米壓痕技術和示差掃描熱分析儀(DSC),分別測試了 W–Ni–B 金屬玻璃薄膜的機械性能和熱特性。亦使用穿透式電子顯微鏡(TEM)和能量散射光譜(EDS)進行元素分佈及相互擴散行為的研究。實驗結果顯示,W–Ni–B薄膜具備高硬度(20 GPa),以及 863°C和903°C的高玻璃轉變溫度與結晶溫度。此外,在退火溫度高達800°C時,W–Ni–B金屬玻璃薄膜能有效阻止Cu和Si之間的相互擴散。然而,在950°C的退火條件下,Cu/W–Ni–B /Si系統發生了原子相互擴散,並形成了具有高電阻率的Cu3Si化合物,導致W–Ni–B阻障層失效。由於其優異的阻障性能與高硬度的獨特組合,W–Ni–B 金屬玻璃薄膜被認為是銅互連技術中一種可靠的擴散阻障層。 第二部分則聚焦於CoCrNi中熵合金難以兼具高強度與高延展性的瓶頸,透過加入輕量元素Al與Si進行共同摻雜設計。Al促進B2相析出提升強度,Si則提供固溶強化,有助於改善合金整體機械性能。研究首先運用計算相圖法(CALPHAD)進行合金設計,透過計算熱力學模擬來預測其相形成,結果顯示合金系統將形成三種不同的相: FCC、B2 與 sigma 相。隨後在 CALPHAD 方法的指引下,本研究利用電弧熔煉技術製備了CoCrNi和(CoCrNi)97−xAlxSi3(x = 0, 3, 5, 7)中熵合金,合金經過均質化、冷軋(壓縮比~80%)與退火處理後,進行微觀結構與力學性能分析。結果顯示,隨Al含量增加,強度提升但延展性略降;其中(CoCrNi)92Al5Si3合金表現最佳,具備1203.7 MPa抗拉強度與48.5%延展性,且密度較原始合金降低約10%,顯示出其在結構應用中的巨大潛力。 | zh_TW |
| dc.description.abstract | Two main research topics were shown in the present study. The first part focuses on the performance of amorphous tungsten-based thin film metallic glass (TFMG) as a diffusion barrier between Cu and Si in integrated circuits. Due to the inter-diffusion between Cu and Si for Cu metallization, a qualified diffusion barrier layer in integrated circuits is essential to prevent the degradation of devices. The Cu (150 nm)/W–Ni–B (10 nm)/Si multilayered structures were fabricated by sputtering and annealed at 700–950°C for 30 min. The mechanical properties and thermal characteristics of W–Ni–B TFMG were evaluated by nanoindentation and differential scanning calorimeter, respectively. The transmission electron microscope-EDS elemental mapping and line scan were used to study the element distribution and inter-diffusion behavior of the multilayered structure. It was found that W–Ni–B TFMG possessed high hardness of 20 GPa and high glass transition/crystallization temperatures of 863°C/903°C. The W–Ni–B TFMG could effectively block Cu–Si inter-diffusion for the annealing temperature up to 800°C. Inter-diffusion and formation of Cu3Si compounds with high electric resistivity at 950°C annealing resulted in failure of the barrier layer. Based on its unique combination of excellent barrier performance and high hardness, W–Ni–B TFMG could be regarded as a robust diffusion barrier layer for Cu interconnect technology.
The purpose of the second study is to achieve excellent strength-ductility synergy in CoCrNi-based medium entropy alloys (MEAs) with lightweight. To achieve this, lightweight elements of Al and Si were adopted as dopants, in which Al and Si could promote precipitation of B2 and sigma phases, respectively, in FCC matrix for strength enhancement and Si could also reduce the stacking fault energy to facilitate twin formation. The calculation of phase diagrams (CALPHAD) method was applied to facilitate the alloy design. Under the guidance of CALPHAD, CoCrNi and (CoCrNi)97-xAlxSi3 (x = 0, 3, 5, 7, 9) MEAs were fabricated using arc melting, followed by homogenization, cold rolling and recrystallization. The effects of Al and Si co-doping on the microstructures, mechanical properties and strengthening mechanisms of CoCrNi-based MEAs were investigated. Abundant twins were observed in Al-0 (for x = 0). The grain size decreased slightly with the increasing solute atoms but significantly in the presence of precipitates, while the hardness increased slightly with the increasing solute atoms but significantly in the presence of precipitates. Considering the synergistic strengthening mechanisms of solid solution strengthening, grain boundary strengthening and precipitation strengthening, the yield strength was calculated and compared with measurements. Compared to CoCrNi MEA, (CoCrNi)92Al5Si3 MEA exhibited an optimal combination of tensile strength (1203.7 MPa) and ductility (48.5 %). Moreover, the alloy's density was ~10% lower than that of CoCrNi, suggesting the great potential of the alloy for structural applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:47:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T00:47:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Tungsten-based thin film metallic glass as diffusion barrier between copper and silicon 1 1.2 Novel lightweight CoCrNiAlSi medium-entropy alloys with high strength and ductility 4 Chapter 2 Literature Review 7 2.1 Diffusion barrier layer 7 2.1.1 Copper interconnects on Si wafer 7 2.1.2 Thin film metallic glass 9 2.1.3 Diffusion barriers for copper metallization 9 2.1.4 Tungsten-based MG/TFMGs 12 2.2 Medium / high entropy alloys 13 2.2.1 Introduction to CoCrNi medium entropy alloys 13 2.2.2 Definition and four core effects of HEAs 14 2.2.3 CALPHAD method 16 2.2.4 Strengthening mechanisms 20 2.2.5 Al and Si additions in alloys 26 Chapter 3 Tungsten-based thin film metallic glass as diffusion barrier between copper and silicon 34 3.1 Material and methods 34 3.1.1 Processing of Cu/W–Ni–B/Si multilayered structures 34 3.1.2 Characterizations 35 3.2 Results and Discussion 36 3.2.1 Chemical composition, hardness and DSC measurements 36 3.2.2 Structure, surface morphology and sheet resistance 39 3.2.3 Transmission electron microscopy 43 Chapter 4 Novel lightweight CoCrNiAlSi medium-entropy alloys with high strength and ductility 52 4.1 Material and methods 52 4.1.1 Preparation of CoCrNi and (CoCrNi)97−xAlxSi3 alloys 52 4.1.2 Microstructural characterizations 54 4.1.3 Mechanical testing 55 4.2 Results and discussion 56 4.2.1 Microstructures and crystal structures 56 4.2.2 Element and phase mappings 60 4.2.3 Mechanical properties 67 Chapter 5 Conclusions 76 5.1 Tungsten-based thin film metallic glass as diffusion barrier between copper and silicon 76 5.2 Novel lightweight CoCrNiAlSi medium-entropy alloys with high strength and ductility 77 Chapter 6 Supplementary Material 79 6.1 Tungsten-based thin film metallic glass as diffusion barrier between copper and silicon 79 6.2 Novel lightweight CoCrNiAlSi medium-entropy alloys with high strength and ductility 82 6.2.1 Calculation of Stacking fault energy 82 6.2.2 Thermodynamics calculations 88 References 90 | - |
| dc.language.iso | en | - |
| dc.subject | 擴散阻障層 | zh_TW |
| dc.subject | 金屬玻璃 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 熱穩定性 | zh_TW |
| dc.subject | 中熵合金 | zh_TW |
| dc.subject | Al和Si共同摻雜 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 機械性能 | zh_TW |
| dc.subject | microstructure | en |
| dc.subject | diffusion barrier | en |
| dc.subject | Al and Si co-doping | en |
| dc.subject | thin film metallic glass | en |
| dc.subject | mechanical properties | en |
| dc.subject | thermal stability | en |
| dc.subject | medium entropy alloys | en |
| dc.title | 鎢基金屬玻璃薄膜擴散阻障層之應用與CoCrNiAlSi中熵合金機械性質之研究 | zh_TW |
| dc.title | The study of tungsten-based thin film metallic glass as diffusion barrier for advanced Cu metallization and novel CoCrNiAlSi medium-entropy alloys with high strength and ductility | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 薛承輝;楊哲人;李志偉;郭俞麟;姚栢文 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Hway Hsueh;Jer-Ren Yang;Jyh-Wei Lee;Yu-Lin Kuo;Pak-Man Yiu | en |
| dc.subject.keyword | 擴散阻障層,金屬玻璃,機械性質,熱穩定性,中熵合金,Al和Si共同摻雜,顯微結構,機械性能, | zh_TW |
| dc.subject.keyword | diffusion barrier,thin film metallic glass,mechanical properties,thermal stability,medium entropy alloys,Al and Si co-doping,microstructure, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202503779 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 4.98 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
