請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳東諭 | zh_TW |
| dc.contributor.advisor | Tung-Yu Wu | en |
| dc.contributor.author | 何明諺 | zh_TW |
| dc.contributor.author | Ming-Yen Ho | en |
| dc.date.accessioned | 2025-08-14T16:29:02Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | Jenothan, M., Jayasinghe, J. A. S. C., & Bandara, C. S. (2023). Lateral behaviour and performance evaluation of steel piers under cyclic lateral loading. Journal of Constructional Steel Research, 201, 107764.
Bruneau, M. (1998). "Performance of steel bridges during the 1995 Hyogoken Nanbu (Kobe, Japan) earthquake—a North American perspective." Engineering Structures 20(12): 1063-1078. Kitada, T. (1998). "Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan." Engineering Structures 20(4-6): 347-354. Bruneau, M., Wilson, J. C., & Tremblay, R. (1996). Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake. Canadian Journal of Civil Engineering, 23(3), 678-713. Hayashi, H., Marui, T., Taniguchi, N., & Kayano, S. (2000). Restoration of Hanshin Expressway after Kobe/Awaji Earthquake–challenge of 623 days before opening. Cement and Concrete Composites, 22(1), 29-38. Watanabe, E., Sugiura, K., Nagata, K., & Kitane, Y. (1998). Performances and damages to steel structures during the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 20(4-6), 282-290. Jenothan, M., J. Jayasinghe, C. Bandara and A. Dammika. (2024). "Performance evaluation of steel hollow box piers under bidirectional lateral cyclic loading to enhance the existing seismic verification framework." Journal of Constructional Steel Research 212: 108246. T. Usami, H. Ge, Methodology for steel bridge systems, J. Earthq. Tsunami 3 (2009) 175–193. JRA. (1990). "Specification for highway bridges, part II, steel bridges." Association, J. R. (2017). "Specification for Highway Bridges, Part V." JSCE. (2007). "Standard Specifications for Steel and Composite Structures." Gao, S., T. Usami and H. Ge. (1998). "Ductility evaluation of steel bridge piers with pipe sections." Journal of Engineering Mechanics 124(3): 260-267. 交通部 (2018),"公路橋梁耐震設計規範." 交通部 (2004),"鋼橋極限設計法規範及解說草案之研究(二)." Caltrans. (2016). "Seismic Design Specifications for Steel Bridges." 內政部營建署(2010年9月16日)。《鋼結構極限設計法規範及解說》(「鋼構造建築物鋼結構設計技術規範」修正)。臺北:內政部營建署。 AISC. (2010). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341-10. AISC. (2022). "Seismic Provisions for Structural Steel Buildings." ANSI/AISC 341-22. Aashto, L. R. F. D. (2024). Bridge design specifications. Nishikawa, K., S. Yamamoto, T. Natori, K. Terao, H. Yasunami and M. Terada. (1998). "Retrofitting for seismic upgrading of steel bridge columns." Engineering Structures 20(4-6): 540-551. Chen, S.-J. and J. Chen. (2009). "Steel bridge columns with pre-selected plastic zone for seismic resistance." Thin-Walled Structures 47(1): 31-38. Susantha, K. A. S., Aoki, T., & Kumano, T. (2006). Strength and ductility evaluation of steel bridge piers with linearly tapered plates. Journal of constructional steel research, 62(9), 906-916. Usami, T., & Ge, H. (1994). Ductility of concrete-filled steel box columns under cyclic loading. Journal of structural engineering, 120(7), 2021-2040. Yuan, H., J. Dang and T. Aoki. (2013). "Experimental study of the seismic behavior of partially concrete‐filled steel bridge piers under bidirectional dynamic loading." Earthquake engineering & structural dynamics 42(15): 2197-2216. Yuan, H., J. Dang and T. Aoki. (2014). "Behavior of partially concrete-filled steel tube bridge piers under bi-directional seismic excitations." Journal of Constructional Steel Research 93: 44-54. MANUAL, K. U. S. (2025). ANSYS LS-DYNA®. Engelmann, B. E., R. Whirley and G. Goudreau (1989). A simple shell element formulation for large-scale elastoplastic analysis, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States). Ishizawa, T., & Iura, M. (2005). Analysis of tubular steel bridge piers. Earthquake engineering & structural dynamics, 34(8), 985-1004. Huang, Y. (2009)."Simulating the inelastic seismic behavior of steel braced frames including the effects of low-cycle fatigue." University of California, Berkeley. 土木学会鋼構造委員会 鋼・合成構造標準示方書耐震設計編小委員会(編),2018:『鋼・合成構造標準示方書 2018年制定 耐震設計編』,土木学会,東京,321頁.ISBN 978-4-8106-0912-7. Ling, Y. (1996). Uniaxial true stress-strain after necking. AMP Journal of technology, 5(1), 37-48. 井浦雅司, 熊谷洋司, & 小牧理. (1998). 繰り返し横力を受ける円形鋼製橋脚の強度と変形能に関する研究. 土木学会論文集, (598), 125-135. 半野久光, 田島仁志, 池田茂, 岡本隆, & 水谷慎吾. (1999). 縦リブを有する円形鋼製橋脚の変形性能. 構造工学論文集, 45, 207-214. 洪曉慧、周光武、許家銓、梁恩齊、黃仲偉(2024)。《鋼橋墩耐震性能試驗》(國震中心報告編號 NCREE-24-003)。國家地震中心。 陳生金, & 陳傑. (2008). 加勁材對鋼橋柱耐震行為之影響. 中國土木水利工程學刊, 20(3), 273-282. Ozkula, G., Uang, C. M., & Harris, J. (2021). Development of enhanced seismic compactness requirements for webs in wide-flange steel columns. Journal of Structural Engineering, 147(7), 04021100. 蕭玟鈺(2024)。《單柱式圓形鋼管橋墩之耐震徑厚比限制探討》(碩士論文)。國立臺灣大學,工程學院土木工程學系。https://doi.org/10.6342/NTU202401940 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98533 | - |
| dc.description.abstract | 橋墩在橋梁系統作為主要發揮消能的韌性構件,能夠降低地震力造成橋梁整體結構的影響。因此,確保橋墩在設計地震力下有足夠的強度與韌性並且能夠立即進行修復極為重要。然檢視我國橋梁耐震設計規範,發現我國對於鋼橋墩斷面之細部設計著墨甚少,未有明確訂定標準,且各國耐震規範對於韌性的限制與背後之精神各有不同,故須經詳實之探討方可引用、參考至我國規範中。
為建立符合我國耐震規範韌性目標之細部設計標準,本研究主要針對含縱向加勁材之單柱式圓形鋼橋墩,探討其徑厚比、細長比、軸壓比以及縱向加勁材配置等參數對於耐震性能的影響。透過有限元素模型進行擬靜態的反覆載重分析以求取鋼橋墩的韌性容量值,再經由迴歸分析對含縱向加勁材單柱式圓形鋼橋墩提出耐震設計建議 。 | zh_TW |
| dc.description.abstract | Bridge piers function as the primary ductile components within a bridge system, playing a critical role in energy dissipation and thereby mitigating the impact of earthquakes on the overall bridge structure. Consequently, ensuring that bridge piers possess sufficient strength and ductility under design-level earthquake, as well as the ability to be promptly repaired, is very important. However, a review of Taiwan’s seismic design specifications for bridges reveals a lack of detailed provisions regarding cross-sectional detailing, with no clearly defined standards currently established. Furthermore, seismic codes across different countries adopt varying ductility requirements and underlying design philosophies, making it necessary to conduct detailed investigations before such standards can be referenced or incorporated into Taiwan’s design codes.
To establish a detailing standard that aligns with Taiwan’s ductility requirements, this study focuses on single-column circular hollow steel piers with longitudinal stiffeners. The research investigates the effects of parameters such as diameter-to-thickness ratio, slenderness ratio, axial load ratio, and stiffener configuration on the seismic performance of the piers. Pseudo-static cyclic loading analyses are conducted using finite element models to evaluate the ductility capacity of the steel piers. Based on regression analysis, seismic design recommendations for the sectional properties of single-column circular hollow steel piers with longitudinal stiffeners are proposed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:29:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:29:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目 次 iv 圖 次 vii 表 次 xiv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與論文結構 2 第二章 文獻回顧 3 2.1 鋼橋墩耐震性能需求 3 2.1.1 鋼橋墩破壞模式 3 2.1.2 鋼橋墩強度與韌性發展 4 2.2 相關耐震規範回顧 4 2.2.1 橋梁耐震之韌性標準 5 2.2.1.1 臺灣 5 2.2.1.2 美國 5 2.2.1.3 日本 6 2.2.2 圓形鋼管橋墩細部設計規範 8 2.2.2.1 臺灣 8 2.2.2.2 美國 9 2.2.2.3 日本 10 2.3 鋼橋墩非線性行為影響參數 10 2.4 鋼橋墩之補強方式 12 2.4.1 縱向加勁板補強 12 2.4.2 內充填混凝土 13 2.5 小結 14 第三章 有限元素模型 31 3.1 有限元素模型基本設定 31 3.1.1 有限元素分析模型 31 3.1.2 有限元素材料模型 31 3.1.3 邊界條件設定 32 3.2 有限元素模型驗證 33 3.2.1 文獻試驗介紹 33 3.2.2 試驗邊界條件設定 34 3.2.3 驗證結果與分析 34 第四章 參數分析 44 4.1 反覆載重型式 44 4.1.1 反覆載重介紹 44 4.1.2 韌性容量定義與計算方式 45 4.1.3 結果討論 46 4.2 尺寸效應 46 4.2.1 參數規劃 47 4.2.2 結果討論 47 4.3 加勁板參數配置 47 4.3.1 參數規劃 48 4.3.2 片數與寬厚比之影響 48 4.3.3 加勁板高度之影響 50 4.3.4 綜合討論 52 4.4 斷面性質與軸壓比 52 4.4.1 參數規劃 52 4.4.2 徑厚比與細長比之影響 53 4.4.3 軸壓比之影響 53 4.5 小結 54 第五章 耐震細部設計建議 109 5.1 韌性容量參數迴歸分析 109 5.2 與現行規範比較與討論 111 第六章 結論與建議 117 6.1 結論 117 6.2 建議 118 參考文獻 119 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單柱式鋼橋墩 | zh_TW |
| dc.subject | 縱向加勁材 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 韌性容量 | zh_TW |
| dc.subject | 耐震徑厚比 | zh_TW |
| dc.subject | longitudinal stiffener | en |
| dc.subject | single-column steel pier | en |
| dc.subject | seismic diameter-to-thickness ratio | en |
| dc.subject | ductility capacity | en |
| dc.subject | finite element analysis | en |
| dc.title | 含加勁材單柱式圓形鋼橋墩之耐震行為 | zh_TW |
| dc.title | Seismic Behavior of Single-Column Circular Steel Bridge Piers with Longitudinal Stiffeners | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 歐昱辰;楊國珍 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chen Ou;Kuo-Chen Yang | en |
| dc.subject.keyword | 單柱式鋼橋墩,縱向加勁材,有限元素分析,韌性容量,耐震徑厚比, | zh_TW |
| dc.subject.keyword | single-column steel pier,longitudinal stiffener,finite element analysis,ductility capacity,seismic diameter-to-thickness ratio, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202503175 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
