請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 中井太郎 | zh_TW |
| dc.contributor.advisor | Taro Nakai | en |
| dc.contributor.author | 李逸帆 | zh_TW |
| dc.contributor.author | Yi-Fan Li | en |
| dc.date.accessioned | 2025-08-14T16:28:48Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | 鄭智馨、李泓儒、李咅蓁、陳秋萍 (2018) 溪頭自然教育園區人工造林地之林分特性 臺灣林業44(6):60-65
Abdoli, M., Lapo, K., Schneider, J., Olesch, J., & Thomas, C. K. (2023). Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing. Atmos. Meas. Tech., 16(3), 809-824. https://doi.org/10.5194/amt-16-809-2023 Amiri, I. S., Houssien, F. M. A. M., Rashed, A. N. Z., & Mohammed, A. E.-N. A. (2019). Temperature effects on characteristics and performance of near-infrared wide bandwidth for different avalanche photodiodes structures. Results in Physics, 14, 102399. https://doi.org/https://doi.org/10.1016/j.rinp.2019.102399 Barr, A. G., Richardson, A. D., Hollinger, D. Y., Papale, D., Arain, M. A., Black, T. A., Bohrer, G., Dragoni, D., Fischer, M. L., Gu, L., Law, B. E., Margolis, H. A., McCaughey, J. H., Munger, J. W., Oechel, W., & Schaeffer, K. (2013). Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies. Agricultural and Forest Meteorology, 171-172, 31-45. https://doi.org/https://doi.org/10.1016/j.agrformet.2012.11.023 Bense, V. F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S., Chalari, A., Mondanos, M., Ciocca, F., & Selker, J. S. (2016). Distributed Temperature Sensing as a downhole tool in hydrogeology. Water Resources Research, 52(12), 9259-9273. https://doi.org/https://doi.org/10.1002/2016WR018869 Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D., Mroz, G. D., Brookshire, B. L., & Franklin, J. F. (1999). Microclimate in Forest Ecosystem and Landscape Ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience, 49(4), 288-297. https://doi.org/10.2307/1313612 Chiesi, M., Fibbi, L., Genesio, L., Gioli, B., Magno, R., Maselli, F., Moriondo, M., & Vaccari, F. P. (2011). Integration of ground and satellite data to model Mediterranean forest processes. International Journal of Applied Earth Observation and Geoinformation, 13(3), 504-515. https://doi.org/https://doi.org/10.1016/j.jag.2010.10.006 De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., . . . Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279-2297. https://doi.org/https://doi.org/10.1111/gcb.15569 des Tombe, B., Schilperoort, B., & Bakker, M. (2020). Estimation of Temperature and Associated Uncertainty from Fiber-Optic Raman-Spectrum Distributed Temperature Sensing. Sensors, 20(8), 2235. https://www.mdpi.com/1424-8220/20/8/2235 Dupont, S., Irvine, M. R., Motisi, N., Allinne, C., Avelino, J., & Bagny Beilhe, L. (2022). Wind-flow dynamics and spore-like particle dispersal over agroforestry systems: Impact of the tree density distribution. Agricultural and Forest Meteorology, 327, 109214. https://doi.org/https://doi.org/10.1016/j.agrformet.2022.109214 Fenner, D., Meier, F., Bechtel, B., Otto, M., & Scherer, D. (2017). Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorologische Zeitschrift, 26. https://doi.org/10.1127/metz/2017/0861 Fenner, D., Meier, F., Scherer, D., & Polze, A. (2014). Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate, 10, 308-331. https://doi.org/https://doi.org/10.1016/j.uclim.2014.02.004 Foken, T. (2008). General Basics. In Micrometeorology (pp. 1-24). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74666-9_1 Freundorfer, A., Lapo, K., Schneider, J., & Thomas, C. K. (2021). Distributed Sensing of Wind Direction Using Fiber-Optic Cables. Journal of Atmospheric and Oceanic Technology, 38(10), 1871-1883. https://doi.org/https://doi.org/10.1175/JTECH-D-21-0019.1 Goetz, J. D., Kalnajs, L. E., Deshler, T., Davis, S. M., Bramberger, M., & Alexander, M. J. (2023). A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons. Atmos. Meas. Tech., 16(3), 791-807. https://doi.org/10.5194/amt-16-791-2023 GOULDEN, M. L., MUNGER, J. W., FAN, S.-M., DAUBE, B. C., & WOFSY, S. C. (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2(3), 169-182. https://doi.org/https://doi.org/10.1111/j.1365-2486.1996.tb00070.x Hederová, L., Macek, M., Wild, J., Brůna, J., Kašpar, V., Klinerová, T., & Kopecký, M. (2023). Ecologically relevant canopy openness from hemispherical photographs. Agricultural and Forest Meteorology, 330, 109308. https://doi.org/https://doi.org/10.1016/j.agrformet.2023.109308 Jocher, G., Fischer, M., Šigut, L., Pavelka, M., Sedlák, P., & Katul, G. (2020). Assessing decoupling of above and below canopy air masses at a Norway spruce stand in complex terrain. Agricultural and Forest Meteorology, 294, 108149. https://doi.org/https://doi.org/10.1016/j.agrformet.2020.108149 Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Nilsson, M. B., Näsholm, T., Tarvainen, L., Öquist, M., & Peichl, M. (2017). Apparent winter CO2 uptake by a boreal forest due to decoupling. Agricultural and Forest Meteorology, 232, 23-34. https://doi.org/https://doi.org/10.1016/j.agrformet.2016.08.002 Kitaya, Y., Tsuruyama, J., Shibuya, T., Yoshida, M., & Kiyota, M. (2003). Effects of air current speed on gas exchange in plant leaves and plant canopies. Advances in Space Research, 31(1), 177-182. https://doi.org/https://doi.org/10.1016/S0273-1177(02)00747-0 Kumar, P., Bhattacharya, B. K., & Pal, P. K. (2015). Evaluation of Weather Research and Forecasting Model Predictions Using Micrometeorological Tower Observations. Boundary-Layer Meteorology, 157(2), 293-308. https://doi.org/10.1007/s10546-015-0061-5 Lapo, K., Freundorfer, A., Fritz, A., Schneider, J., Olesch, J., Babel, W., & Thomas, C. K. (2022). The Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) with high-resolution, spatially distributed observations of air temperature, wind speed, and wind direction from fiber-optic distributed sensing, towers, and ground-based remote sensing. Earth Syst. Sci. Data, 14(2), 885-906. https://doi.org/10.5194/essd-14-885-2022 Lenk, A., Richter, R., Kretz, L., & Wirth, C. (2024). Effects of canopy gaps on microclimate, soil biological activity and their relationship in a European mixed floodplain forest. Science of The Total Environment, 941, 173572. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.173572 Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary-Layer Meteorology, 90(3), 375-396. https://doi.org/10.1023/A:1001765727956 Mahrt, L. (2006). Variation of Surface Air Temperature in Complex Terrain. Journal of Applied Meteorology and Climatology, 45(11), 1481-1493. https://doi.org/https://doi.org/10.1175/JAM2419.1 Mayer, M., Kato, S., Bosilovich, M., Bechtold, P., Mayer, J., Schröder, M., Behrangi, A., Wild, M., Kobayashi, S., Li, Z., & L’Ecuyer, T. (2024). Assessment of Atmospheric and Surface Energy Budgets Using Observation-Based Data Products. Surveys in Geophysics. https://doi.org/10.1007/s10712-024-09827-x Moon, K., Duff, T. J., & Tolhurst, K. G. (2019). Sub-canopy forest winds: understanding wind profiles for fire behaviour simulation. Fire Safety Journal, 105, 320-329. https://doi.org/https://doi.org/10.1016/j.firesaf.2016.02.005 Paul-Limoges, E., Wolf, S., Eugster, W., Hörtnagl, L., & Buchmann, N. (2017). Below-canopy contributions to ecosystem CO2 fluxes in a temperate mixed forest in Switzerland. Agricultural and Forest Meteorology, 247, 582-596. https://doi.org/https://doi.org/10.1016/j.agrformet.2017.08.011 Pearcy, R. W. (1987). Photosynthetic Gas Exchange Responses of Australian Tropical Forest Trees in Canopy, Gap and Understory Micro-Environments. Functional Ecology, 1(3), 169-178. https://doi.org/10.2307/2389419 Peltola, O., Lapo, K., Martinkauppi, I., O'Connor, E., Thomas, C. K., & Vesala, T. (2021). Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface. Atmos. Meas. Tech., 14(3), 2409-2427. https://doi.org/10.5194/amt-14-2409-2021 Richter, R., Hutengs, C., Wirth, C., Bannehr, L., & Vohland, M. (2021). Detecting Tree Species Effects on Forest Canopy Temperatures with Thermal Remote Sensing: The Role of Spatial Resolution. Remote Sensing, 13(1), 135. https://www.mdpi.com/2072-4292/13/1/135 Rybar, J., Bosela, M., Marcis, P., Ujházyová, M., Polťák, D., Hederová, L., & Ujházy, K. (2023). Effects of tree canopy on herbaceous understorey throughout the developmental cycle of a temperate mountain primary forest. Forest Ecology and Management, 546, 121353. https://doi.org/https://doi.org/10.1016/j.foreco.2023.121353 Sayde, C., Thomas, C. K., Wagner, J., & Selker, J. (2015). High‐resolution wind speed measurements using actively heated fiber optics. Geophysical Research Letters, 42(22), 10,064-010,073. https://doi.org/10.1002/2015gl066729 Schilperoort, B. (2022). Heat Exchange in a Conifer Canopy: A Deep Look using Fiber Optic Sensors Delft University of Technology]. Schilperoort, B., Coenders-Gerrits, M., Rodríguez, C. J., van Hooft, A., Wiel, B. v. d., & Savenije, H. (2022). Detecting nighttime inversions in the interior of a Douglas fir canopy. Agricultural and Forest Meteorology, 321, 108960. https://doi.org/https://doi.org/10.1016/j.agrformet.2022.108960 Su, Y., Liu, L., Wu, J., Chen, X., Shang, J., Ciais, P., Zhou, G., Lafortezza, R., Wang, Y., Yuan, W., Wang, Y., Zhang, H., Huang, G., & Huang, N. (2019). Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model. Environment International, 132, 105080. https://doi.org/https://doi.org/10.1016/j.envint.2019.105080 Thomas, C. K., Martin, J. G., Law, B. E., & Davis, K. (2013). Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agricultural and Forest Meteorology, 173, 14-27. https://doi.org/https://doi.org/10.1016/j.agrformet.2013.01.001 Tyler, S. W., Selker, J. S., Hausner, M. B., Hatch, C. E., Torgersen, T., Thodal, C. E., & Schladow, S. G. (2009). Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resources Research, 45(4). https://doi.org/https://doi.org/10.1029/2008WR007052 Van de Giesen, N., Steele-Dunne, S. C., Jansen, J., Hoes, O., Hausner, M. B., Tyler, S., & Selker, J. (2012). Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors, 12(5), 5471-5485. https://www.mdpi.com/1424-8220/12/5/5471 van Ramshorst, J. G. V., Coenders-Gerrits, M., Schilperoort, B., van de Wiel, B. J. H., Izett, J. G., Selker, J. S., Higgins, C. W., Savenije, H. H. G., & van de Giesen, N. C. (2020). Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study. Atmos. Meas. Tech., 13(10), 5423-5439. https://doi.org/10.5194/amt-13-5423-2020 Williams, G. M., Compton, M., Ramirez, D. A., Hayat, M. M., & Huntington, A. S. (2013). Multi-Gain-Stage InGaAs Avalanche Photodiode With Enhanced Gain and Reduced Excess Noise. IEEE Journal of the Electron Devices Society, 1(2), 54-65. https://doi.org/10.1109/JEDS.2013.2258072 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98532 | - |
| dc.description.abstract | 大氣的觀測能提供目前與過去大氣變化的重要訊息,這些資料有助於我們了解大氣中能量的傳遞與平衡以及短期或長期的天氣變化,而目前地面的大氣觀測方式主要是單點的觀測,不過在城市或複雜地形中其空間變異性很大,如果我們使用單點的觀測資料代表這個區域的數值可能造成資料的失真,因此傳統上我們需要增加測站的密度才能解決這一問題,不過測站的增加會使得人力與維護成本大幅提高,因此我們時常需要在成本與觀測密度間取得平衡點。
分散式光纖溫度感測器(DTS)是一種新型態的溫度觀測方式,它通過量測雷射光在光纖纖維不同位置上產生的反向拉曼散射(Raman scattering)強度得到整段光纖不同位置的溫度,能提供我們長距離(>2000公尺)與高空間解析度(<0.5公尺)的溫度資料,目前此儀器已成熟的應用在不同領域,而近年來國際上開始有許多研究通過此方式觀測大氣的變化,不過目前國內對此方式的觀測還相對陌生。 為了瞭解DTS在大氣觀測的特性與應用於森林中的可行性,本研究首先於花蓮七星潭測試光纖在不同包覆方式下(PVC與不鏽鋼)對於氣溫觀測的特性,並且測試主動加熱光纖法推估二維風速的可能性。對於氣溫的觀測,最主要的干擾來自太陽輻射,不鏽鋼包覆的光纖對於短波輻射的變化相當敏感而PVC包覆的光纖則幾乎不受影響,應用此特性能很好的使用兩種不同包覆方式光纖間的溫差推估短波輻射強度,結果顯示光纖間溫差與現場短波輻射的觀測值的Pearson相關係數可達0.98。另一方面是通過加熱與未加熱的不鏽鋼包覆光纖間的溫差推估風速,其估計出的一分鐘平均風速與WXT觀測值的平均絕對誤差為0.06 m/s。 實際應於森林觀測,DTS有效的觀測到過往傳統儀器無法記錄到的微氣象過程,其中發現光斑分布與冠層開闊度的關係並不明顯,而在冬季晴朗天氣下陽光能直接照射森林地表約只有五小時。另一方面在水平溫度剖面的觀測中風對於氣溫的影響最大,在日間平均風速較高的區域呈現較低的氣溫,夜間則是相反。使用垂直風速與溫度剖面能很好呈現冠層內外氣流的互動過程,計算夜間平均紊流強度剖面得到0.06的常數值,使用此數值檢查2/23-24發現約42%的時間冠層內外的氣體可能缺乏垂直混合,顯示處於解耦狀態。 結果顯示利用DTS可以記錄森林冠層內部氣溫、日照、風速等細微的變化,以利於我們對於複雜環境中的微氣象過程有不同的見解。 | zh_TW |
| dc.description.abstract | Atmospheric observations provide crucial data about current and historical atmospheric changes, aiding our understanding of energy transmission and balance as well as short-term and long-term weather variations. Currently, ground-based atmospheric measurements are primarily point-based. However, in urban areas or complex terrains, these measurements can vary significantly in space, and using point-based data to represent regional values may lead to data distortion. Traditionally, increasing the density of monitoring stations has been the solution to this issue, but this leads to significantly higher labor and maintenance costs. Thus, a balance often needs to be struck between cost and observation density.
Distributed temperature sensing (DTS) represents a new form of temperature observation, utilizing measurements of backscattered Raman light at various points along a fiber to determine temperature profiles over long distances (>2000 m) with high spatial resolution (<0.5 m). This technology is well-established across various fields and has begun to be used internationally for atmospheric studies, although it is still relatively unfamiliar domestically. In order to understand the characteristics of DTS in atmospheric observation and its feasibility in forests, this study first tested the characteristics of temperature observation using DTS under PVC coated fiber (FO-PVC) and stainless steel jacketed fiber (FO- STL) in Qixingtan, Hualien, and tested the possibility of estimating two-dimensional wind speed using the active heating fiber method. The main interference in air temperature observations comes from solar radiation, with FO-STL cables being highly sensitive to changes in shortwave radiation while FO-PVC cables are largely unaffected. Using this characteristic, the temperature difference between the two types of coated fibers can be used to estimate shortwave radiation intensity effectively, yielding a correlation r = 0.98 with actual shortwave radiation measurements on-site. On the other hand, wind speed is estimated by the temperature difference between the heated and unheated FO-STL cables. The mean absolute error (MAE) of the one-minute mean wind speed estimated by this method compared to the WXT observed values is 0.06 m/s. In practical forest observations, DTS can effectively monitor various micrometeorological processes. It was found that the relationship between the distribution of light spots and the openness of the canopy is not obvious. During clear winter weather, sunlight can directly reach the forest floor for about five hours. On the other hand, in the observation of horizontal temperature profiles, wind has the greatest impact on air temperature. Areas with higher average wind speeds during the day exhibit lower temperatures, while the opposite is true at night. Using vertical wind speed and temperature profiles can effectively show the interaction of airflows inside and outside the canopy. Calculating the average nighttime turbulence intensity profile yields a constant value of 0.06. Using this value to check data from February 23-24, it was found that about 42% of the time, the air above and under the canopy lacks vertical mixing, indicating a decoupled state. The results show that using DTS can study processes such as temperature, solar radiation, and wind speed within the forest canopy in greater detail, providing us with different insights into micrometeorological processes in complex environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:28:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:28:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v Contents viii List of Figures xi List of Tables xiv Chapter 1: Introduction 1 1.1 Background 1 1.2 Forest Micrometeorology 3 1.3 Distributed Temperature Sensing 4 1.4 Objective and Structure 4 Chapter 2. Site Descriptions and Setup 6 2.1 Materials 6 2.2 Experimental Setup 8 2.2.1 Preliminary experiment site in Qixingtan 8 2.2.2 Primary experiment site in Xitou 12 2.3 Data Processing 18 Chapter 3. DTS Calibration 19 3.1 Introduction 19 3.2 Methodology 22 3.2.1 Temperature Calibration of DTS 22 3.2.2 Calibration Baths 22 3.3 Result 24 3.3.1 Temperature Uncertainty 24 3.3.2 Temperature patterns in the bath 27 3.4 Conclusion 31 Chapter 4. Characteristics of DTS Air Temperature Measurements 32 4.1 Introduction 32 4.2 Study Sites and Instruments 34 4.2.1 Qixingtan site 34 4.2.2 Xitou site 34 4.3 Results and Discussion 35 4.3.1 Characteristics of Air Temperature Measurements by Fibers with Different Coatings 35 4.3.2 Effect of Shortwave Radiation on Temperature Measurements 39 4.3.3 Variation of Air Temperature Over Time 41 4.3.4 Solar radiation and Temperature Difference Between Two Types of cables 44 4.4 Conclusions and Recommendations 46 Chapter 5. Wind Speed Estimation Using DTS 48 5.1 Introduction 48 5.2 Materials and Methods 50 5.2.1 Study sites and instruments 50 5.2.2 Data processing 51 5.3 Results and Discussion 51 5.3.1 The relationship between wind speed and temperature difference 51 5.3.2 Wind speed and temperature difference under different conditions 56 5.3.3 Empirical Regression Modeling 59 5.3.4 Validation of Wind Speed Estimations 61 5.3.5 Accuracy of Estimating Wind Speed 63 5.3.6 Temporal Variation of Observation Errors and Wind-Speed Estimates under Different Heating Wattages 67 5.4 Conclusion and Recommendations 71 Chapter 6. Spatial distribution of micrometeorology in complex terrain 73 6.1 Introduction 73 6.2Methods 76 6.2.1 Canopy Openness 76 6.2.2 Sunfleck Distribution 78 6.3 Results 79 6.3.1 Sunfleck Distribution on the Forest Floor 79 6.3.2 Horizontal Profile 88 6.3.3 Vertical Profile 92 6.4 Conclusion 99 Chapter 7. Canopy Temperature Dynamics and Airflow Patterns in Complex Terrain 101 7.1 Introduction 101 7.2 Methods 102 7.2.1 Wind Speed Profile 102 7.2.2 Turbulence Intensity 103 7.2.3 Temperature Profile 103 7.2.4 Temperature Gradient 104 7.3 Results 105 7.3.1 Example Wind Profile 105 7.3.2 Turbulence Intensity Profile 108 7.3.3 Temperature Gradient and Turbulence Intensity 110 7.3.4 Temperature Dynamics and Airflow Patterns at Night 112 7.4 Conclusion 115 Chapter 8. Synthesis 117 8.1 Main Findings 117 8.1.1 Atmospheric measurements 117 8.1.2 Micrometeorological Processes 118 8.2 Recommendations and Outlook 120 Reference 122 | - |
| dc.language.iso | en | - |
| dc.subject | 分散式光纖溫度感測器 | zh_TW |
| dc.subject | 森林微氣象 | zh_TW |
| dc.subject | 風速剖面估計 | zh_TW |
| dc.subject | 光斑分布 | zh_TW |
| dc.subject | 溪頭 | zh_TW |
| dc.subject | Forest micrometeorology | en |
| dc.subject | Distributed Temperature Sensing | en |
| dc.subject | Xitou | en |
| dc.subject | Sunfleck distribution | en |
| dc.subject | Wind profile estimation | en |
| dc.title | 透過分散式光纖溫度感測器探索複雜地形中微氣象過程:揭示溫度動態和氣流模式 | zh_TW |
| dc.title | Exploring Micrometeorological Processes in Complex Terrain Through Fiber Optic Distributed Temperature Sensor: Unraveling Temperature Dynamics and Airflow Patterns | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱永嘉;林博雄;羅敏輝;賴彥任 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Chia Chiu;PO-HSIUNG LIN;Min-Hui Lo;Yen-Jen Lai | en |
| dc.subject.keyword | 分散式光纖溫度感測器,森林微氣象,風速剖面估計,光斑分布,溪頭, | zh_TW |
| dc.subject.keyword | Distributed Temperature Sensing,Forest micrometeorology,Wind profile estimation,Sunfleck distribution,Xitou, | en |
| dc.relation.page | 125 | - |
| dc.identifier.doi | 10.6342/NTU202502792 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
