請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98526完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 賴德原 | zh_TW |
| dc.contributor.author | De-Yuan Lai | en |
| dc.date.accessioned | 2025-08-14T16:27:29Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-02 | - |
| dc.identifier.citation | [1]J. Kim, J. Seo, S. H. Kim, and D. K. Kim, “Piezoelectric electro-active paper (EAPap) speaker,” Journal of Mechanical Science and Technology, vol. 25(11), pp. 2763–2768, 2011.
[2]P. M. Morse, A. S. o. America, and A.I.o. Physics, “Vibration and Sound.”, vol. 468, McGraw-Hill New York, 1948. [3]M. Jabareen and M. Eisenberger, “Free vibrations of non-homogeneous circular and annular membranes.”, Journal of Sound and Vibration, vol. 240(3), p. 409-429 , 2001. [4]S. S. Rao, “Vibration of continuous systems.”, New Jersey: Wiley, 2007. [5]E. Mathieu, “Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique.” Journal de Mathématiques Pures et Appliquées, vol. 13, pp. 137–203, 1868. [6]N. W. McLachlan, “Theory and application of Mathieu functions,” Oxford Press, UK, 1951. [7]B. A. Troesch and H. R. Troesch, “Eigenfrequencies of an elliptic membrane,” Mathematics of Computation, vol. 27(124), pp. 755–765, 1973. [8]V. D. Kupradze and M. A. Aleksidze, “The method of functional equations for the approximate solution of certain boundary value problems,” USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 82–126, 1964. [9]E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II: Solutions to parabolic, hyperbolic and elliptic partial differential equations,” Computers & Mathematics with Applications, vol. 19, no. 8–9, pp. 147–161, 1990. [10]S. N. Atluri and T. L. Zhu, “The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics,” Computational Mechanics, vol. 25, pp. 169–179, 2000. [11]A. P. Zielinski, “On trial function applied in the generalized Trefftz method,” Advances in Engineering Software, vol. 24, pp. 147–155, 1995. [12]H. F. Chan, C. M. Fan, and C. W. Kuo, “Generalized finite difference method for solving two-dimensional non-linear obstacle problems,” Engineering Analysis with Boundary Elements, vol. 37, pp. 1189–1196, 2013. [13] T. Belytschko, Y. Y. Lu, L. Gu, and M. Tabbara, “Element-free Galerkin methods for static and dynamic fracture,” International Journal of Solids and Structures, vol. 32, pp. 2547–2570, 1995. [14]M. A. Golberg and C. S. Chen, “The method of fundamental solutions for potential, Helmholtz and diffusion problems,” Boundary Integral Methods – Numerical and Mathematical Aspects, vol. 103, pp. 103–176, 1998. [15]E. Kita and N. Kamiya, “Trefftz method: An overview,” Advances in Engineering Software, vol. 24, no. 1–3, pp. 3–12, 1995. [16]J. Curie and P. Curie, “Development by pressure of polar electricity in hemihedral crystals with inclined faces,” Bulletin de la Société minéralogique de France, vol. 3, pp. 90–102, 1880. [17]W. G. Cady, “Piezoelectricity,” McGraw-Hill Book Company, Inc., New York, 1946. [18]W. P. Mason, “Piezoelectric crystals and their applications to ultrasonics,” Van Nostrand, New York, 1950. [19]H. F. Tiersten, “Linear piezoelectric plate vibrations: Elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates,” Springer, 2013. [20]R. Mindlin, “High frequency vibrations of piezoelectric crystal plates,” International Journal of Solids and Structures, vol. 8(7), pp. 895–906, 1972. [21]IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, “IEEE standard on piezoelectricity,” ANSI/IEEE Std 176, 1987. [22]N. N. Rogacheva, “The theory of piezoelectric shells and plates,” CRC Press, USA, 1994 [23]S. Chang, B. Du, and J. Lin, “Electro-elastic modeling of annular piezoceramic actuating disk transducers,” Journal of Intelligent Material Systems and Structures, vol. 10(5), pp. 410–421, 1999. [24]何祥瑋,「壓電圓盤與壓電圓環共振特性的理論分析與實驗量測」,國立臺灣大學機械工程學研究所碩士論文,2005年。 [25]C. H. Huang, “Free vibration analysis of the piezoceramic bimorph with theoretical and experimental investigation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52(8), pp. 1393–1403, 2005. [26]黃育熙,「壓電陶瓷平板、薄殼與雙晶片三維耦合動態特性之實驗量測、數值計算與理論解析」,國立臺灣大學機械工程學研究所碩士論文,2009年。 [27]許松逸,「多層壓電圓盤及圓環複合等向性材料三維振動特性之理論解析、數值分析與實驗量測」,國立臺灣科技大學機械工程學研究所碩士論文,2018年。 [28]A. W. Leissa, “Vibration of plates, NASA SP-160,” Sound and Vibration, vol. 56, pp. 313, 1978. [29]D. J. Gorman, “Free vibration analysis of the completely free rectangular plate by the method of superposition,” Journal of Sound and Vibration, vol. 57(3), pp. 437–447, 1978. [30]C. S. Kim, P. G. Young, and S. M. Dickinson, “On the flexural vibration of rectangular plates approached by using simple polynomials in the Rayleigh-Ritz method,” Journal of Sound and Vibration, vol. 143(3), pp. 379–394, 1990. [31]吳亦莊,「理論解析與實驗量測壓電平板的面外振動及特性探討」,國立臺灣大學機械工程所碩士論文,2009。 [32]Y. H. Huang and C. C. Ma, “Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59(4), pp. 785–798, 2012. [33]王惠儀,「應用樑函數法於壓電平板撓性邊界之振動特性分析」,國立臺灣科技大學機械工程所碩士論文,2019。 [34]陳新承,「可變剛性邊界應用於壓電平板理論之能量擷取系統」,國立臺灣大學機械工程所碩士論文,2021。 [35]C. Wang, “Vibration of an annular membrane attached to a free, rigid core,” Journal of Sound and Vibration, vol. 260(4), pp. 776–782, 2003. [36]F. Pinto, “Analytical and experimental investigation on a vibrating annular membrane attached to a central free, rigid core,” Journal of Sound and Vibration, vol. 291(3–5), pp. 1278–1287, 2006. [37]H. J. Kim, W. S. Yang, and K. No, “Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60(8), pp. 1587–1594, 2013. [38]林揚中、莊沅隴,「雙層壓電圓盤複合薄膜研製近場聲學元件之耦合聲場的理論數值與實驗研究」,國立台灣科技大學機械工程實務專題報告,2016。 [39]江信遠,「靜電和壓電揚聲器之圓形振膜振動與聲壓研究」,國立台灣科技大學機械工程研究所博士論文,2017。 [40]陳冠宇,「薄膜複合壓電圓板開發近場聲學元件之理論解析、數值計算與實驗量測」,國立台灣科技大學機械工程系碩士學位論文,2019。 [41]張哲睿,「壓電圓環複合薄膜於聲學元件之設計開發」,國立台灣大學機械工程研究所碩士論文,2021。 [42]黃御宸,「壓電薄板複合薄膜聲振研究之最佳化設計」,國立台灣大學機械工程研究所碩士論文,2022。 [43]陳奕安,「無網格法探討跑道形薄膜複合壓電板之聲振特性」,國立台灣大學機械工程研究所碩士論文,2023。 [44]H. Y. Chiang and Y. H. Huang, “Resonance mode and sound pressure of a push–pull electrostatic speaker based on elliptical diaphragm,” Journal of Vibration and Acoustics, vol. 145, 2023. [45]張大又,「超聲波幾何散射問題之研究」,國立台灣海洋大學輪機工程學系碩士論文,2022。 [46]連振原,「雷射都卜勒振動儀之自動化全場聲振量測系統開發」,國立台灣大學機械工程研究所碩士論文,2023。 [47]Polytec GmbH, “OFV-5000 Modular Vibrometer: Product Brochure,” OM_PB_OFV-5000_E_42482, 2018. [48]D. Royer, E. Dieulesaint, and S. N. LyleElastic, “Waves in Solids: Generation,” Acousto-Optic Interaction, Applications, Springer, 2000 [49]杜功焕,朱哲民,龚秀芬,声学基础 (上册). p. 3. 1981 [50]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1970. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98526 | - |
| dc.description.abstract | 本研究探討橢圓形薄膜複合壓電薄板作為揚聲器之振動與聲學特性,並結合理論推導、無網格特雷夫茨法、有限元素法與實驗量測進行綜合分析。首先分析薄膜與壓電薄板在固定與自由邊界條件下之獨立振動行為,進一步探討其複合結構於類自由邊界條件下之結構響應與聲輻射特性,並比較不同幾何與材料組合對其性能之影響。
實驗量測部分,以振動量測為基礎,進一步探討複合結構之聲學特性。振動量測方面,透過電子斑點干涉術獲得面外共振頻率與振動模態,並以雷射都卜勒振動儀搭配振鏡系統掃描整體表面以獲得完整模態;同時使用阻抗分析儀進行壓電之電性阻抗頻譜分析。聲學量測方面,分別於無響室與人工耳中進行,以對應自由音場與封閉音場之聲學行為。在自由音場下,建立有限元素模型模擬聲壓曲線,並與無響室實測數據比對,以驗證模型之準確性;遠場輻射指向性分析則結合理論,包括點聲源與活塞式聲源理論,以及數值模擬與實驗結果進行分析。封閉音場因邊界條件複雜,建構模擬人耳等效電路之有限元素模型,並與人工耳量測數據進行比較,以驗證建模準確性。 綜合振動與聲學分析結果,歸納薄膜複合壓電薄板於不同結構設計下之聲學表現,並將人工耳實驗結果與市售耳機及哈曼曲線比較,展示自製壓電揚聲器具有良好頻響特性。最終建立一套結合理論、數值與實驗方法的聲振分析流程,作為壓電揚聲器結構設計優化與聲音品質標準化之依據,提升壓電揚聲器在市場競爭力。 | zh_TW |
| dc.description.abstract | In this research, the vibration and acoustic characteristics of piezoelectric plates coupled with elliptical membranes for loudspeaker applications through an integrated approach that combines theoretical analysis, the meshfree Trefftz method, the finite element method (FEM), and experimental measurements. Initially, the independent vibration behaviors of membranes and piezoelectric plates under fixed and free boundary conditions are analyzed. Subsequently, the composite structure is examined under quasi-free conditions, with comparisons across different geometries and materials.
For experimental measurements, vibration characteristics are evaluated using a Laser Doppler Vibrometer, Electronic Speckle Pattern Interferometry, and an impedance analyzer. Acoustic measurements are performed in both an anechoic room and with an artificial ear, representing free-field and enclosed-field acoustic behavior, respectively. In the free-field condition, the sound pressure level (SPL) curve is simulated using FEM and validated against measurements. Far-field acoustic directivity is evaluated using point and piston source models, as well as numerical and experimental results. In the enclosed field, due to complex boundary conditions, FEM simulations based on equivalent circuit models of the human ear are compared with artificial ear measurements to verify the accuracy of the modeling. Based on the results, acoustic performance across configurations is summarized. SPL results from artificial ear measurements are compared with commercial earphones and the Harman Target Curve, confirming favorable performance. Finally, a standardized vibroacoustic framework is proposed to optimize design and enhance sound quality. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:27:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:27:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 X 符號表 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文內容簡介 6 第二章 實驗原理與架設 9 2.1 雷射都卜勒振動儀 9 2.2 電子斑點干涉術 13 2.3 阻抗分析儀 16 2.4 無響室量測 18 2.5 人工耳量測 21 2.6 聲學元件設計與製作流程 23 2.6.1 聲學元件設計 23 2.6.2 聲學元件製作流程 29 第三章 基本理論與方法 32 3.1 薄膜振動基本理論 32 3.2 無網格法 34 3.2.1 特雷夫茨法 35 3.3 壓電陶瓷薄板基本理論 36 3.3.1 壓電矩形薄板理論推導 39 3.3.2 壓電圓盤基本理論推導 42 3.4 聲學基本理論 45 第四章 薄膜振動特性分析 49 4.1 橢圓形薄膜之自由振動分析 49 4.1.1 自由振動理論 50 4.1.2 自由振動特雷夫茨法 53 4.1.3 試片規格 54 4.1.4 有限元素數值設定 55 4.1.5 自由振動理論與數值分析之比較 56 4.2 橢圓形薄膜中空矩形與圓形孔洞之自由振動分析 58 4.2.1 自由振動特雷夫茨法 58 4.2.2 試片規格與有限元素數值設定 60 4.2.3 自由振動特雷夫茨法與數值分析之比較 60 第五章 壓電薄板振動特性分析 63 5.1 雙層壓電矩形薄板之自由振動分析 63 5.1.1 自由邊界之疊加法理論 64 5.1.2 試片規格 70 5.1.3 有限元素數值設定 70 5.1.4 面外振動理論與數值分析之比較 71 5.2 雙層壓電圓盤之自由振動分析 73 5.2.1 軸向振動理論 73 5.2.2 試片規格與有限元素數值設定 76 5.2.3 軸向振動理論與數值分析之比較 76 第六章 橢圓形薄膜複合雙層壓電薄板振動分析 78 6.1 薄膜複合壓電薄板之活塞與薄膜主導模態振動分析 78 6.1.1 薄膜複合剛性壓電薄板特雷夫茨法 79 6.1.2 試片規格 81 6.1.3 有限元素數值設定 82 6.1.4 活塞與薄膜主導模態之振動理論與數值分析比較 82 6.2 薄膜複合壓電薄板之壓電主導模態振動分析 85 6.2.1 薄膜複合壓電薄板理論結合特雷夫茨法 85 6.2.2 試片規格與有限元素數值設定 87 6.2.3 壓電主導模態振動理論與數值分析之比較 87 第七章 聲學元件特性、實驗量測與設計成果分析 90 7.1 自由音場中無限大障板之聲學特性分析 90 7.1.1 聲學理論 91 7.1.2 有限元素數值設定 93 7.1.3 實驗量測與數值模擬之比較 96 7.2 自由音場中無限大障板之遠場輻射指向特性分析 104 7.2.1 點聲源與圓形活塞式聲源之輻射指向特性 104 7.2.2 指向特性理論與實驗量測之比較 107 7.3 封閉音場之聲學特性分析 108 7.3.1 有限元素設定 109 7.3.2 封閉音場實驗量測與數值分析之比較 112 7.4 聲學元件設計差異分析 114 7.5 哈曼目標曲線與研究成果 116 第八章 結論與未來展望 120 8.1 結論 120 8.2 未來展望 123 參考文獻 124 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聲學元件 | zh_TW |
| dc.subject | 壓電平板 | zh_TW |
| dc.subject | 無網格特雷夫茨法 | zh_TW |
| dc.subject | 橢圓形薄膜 | zh_TW |
| dc.subject | 聲壓 | zh_TW |
| dc.subject | 聲輻射指向特性 | zh_TW |
| dc.subject | 聲固耦合分析 | zh_TW |
| dc.subject | Acoustic directivity | en |
| dc.subject | Sound pressure | en |
| dc.subject | Vibroacoustic analysis | en |
| dc.subject | Acoustic component | en |
| dc.subject | Piezoelectric plate | en |
| dc.subject | Meshfree Trefftz method | en |
| dc.subject | Elliptical membrane | en |
| dc.title | 橢圓形薄膜複合壓電薄板之聲振特性與聲輻射探討 | zh_TW |
| dc.title | Vibroacoustic and Radiation Analysis Piezoelectric Plates Coupled with Elliptical Membranes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳永爲;湯耀期 | zh_TW |
| dc.contributor.oralexamcommittee | Yung-Wei Chen;Yao-Chi Tang | en |
| dc.subject.keyword | 橢圓形薄膜,無網格特雷夫茨法,壓電平板,聲學元件,聲固耦合分析,聲壓,聲輻射指向特性, | zh_TW |
| dc.subject.keyword | Elliptical membrane,Meshfree Trefftz method,Piezoelectric plate,Acoustic component,Vibroacoustic analysis,Sound pressure,Acoustic directivity, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202502259 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
