Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98525Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 李嘉恩 | zh_TW |
| dc.contributor.author | Chia-En Lee | en |
| dc.date.accessioned | 2025-08-14T16:27:14Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1]Martínez, J., Diéguez, J. L., Ares, E., Pereira, A., Hernández, P., & Pérez, J. A. (2013). Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour. Procedia Engineering, 63, 878–884.
[2]Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A.-A., Luma, J., Borros, S., & Reyes, G. (2015). Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Materials & Design, 83, 670–677. [3]Yao, T., Ouyang, H., Dai, S., Deng, Z., & Zhang, K. (2021). Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: Material characterization, numerical analysis and experimental study. Composite Structures, 255, 113970. [4]Zimmer, J. E., & Cost, J. R. (1970). Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements. The Journal of the Acoustical Society of America, 47(4), 795–803. [5]黃榮泰(2015)。積層製造材料與噴頭壓電陶瓷之異向性力學材料常數量測(碩士論文)。國立臺灣科技大學機械工程系。 [6]林均憶(2021)。積層製造之材料量測應用於功能性梯度材料與埋入式感測(碩士論文)。國立臺灣大學工學院機械工程所。 [7]簡揚開(2023)。利用板殼振動理論搭配機器學習與遺傳演算法反算積層製造結構之正交性彈性常數(碩士論文)。國立臺灣大學工學院機械工程所。 [8]Ritz, W. (1909). Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern [Theory of transverse vibrations of a square plate with free edges]. Annalen der Physik, 333(4), 737–786. [9]Leissa, A. W. (1978). Vibration of plates, NASA SP-160 (1969). Journal of Sound and Vibration, 56, 313. [10]Dickinson, S., & Di Blasio, A. (1986). On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. Journal of Sound and Vibration, 108(1), 51–62. [11]Gorman, D. J. (1978). Free vibration analysis of the completely free rectangular plate by the method of superposition. Journal of Sound and Vibration, 57(3), 437–447. [12]Gorman, D. J. (1993). Accurate free vibration analysis of the completely free orthotropic rectangular plate by the method of superposition. Journal of Sound and Vibration, 165(3), 409–420. [13]吳亦莊(2009)。理論解析與實驗量測壓電平板的面外振動及特性探討(碩士論文)。國立臺灣大學工學院機械工程所。 [14]Butters, J., & Leendertz, J. (1971). Speckle pattern and holographic techniques in engineering metrology. Optics & Laser Technology, 3(1), 26–30. [15]Høgmoen, K., & Løkberg, O. J. (1977). Detection and measurement of small vibrations using electronic speckle pattern interferometry. Applied Optics, 16(7), 1869–1875. [16]Koyuncu, B. (1980). The investigation of high frequency vibration modes of PZT-4 transducers using ESPI techniques with reference beam modulation. Optics and Lasers in Engineering, 1(1), 37–49. [17]Nakadate, S., Saito, H., & Nakajima, T. (1986). Vibration measurement using phase-shifting stroboscopic holographic interferometry. Journal of Modern Optics, 33(10), 1295–1309. [18]Oswin, J., Salter, P., Santoyo, F. M., & Tyrer, J. (1994). Electronic speckle pattern interferometric measurement of flextensional transducer vibration patterns: In air and water. Journal of Sound and Vibration, 172(4), 433–448. [19]Wang, W. C., Hwang, C. H., & Lin, S. Y. (1996). Vibration measurement by the time-averaged electronic speckle pattern interferometry methods. Applied Optics, 35(22), 4502–4509. [20]黃育熙(2003)。壓電石英晶體之平板結構的動態特性研究(碩士論文)。國立臺灣大學工學院機械工程所。 [21]Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley. [22]Chakraborty, S., Mukhopadhyay, M., & Sha, O. P. (2002). Determination of physical parameters of stiffened plates using genetic algorithm. Journal of Computing in Civil Engineering, 16(3), 206–221. [23]Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Kluwer Academic Publishers. [24]Jeong, I.-K., & Lee, J.-J. (1996). Adaptive simulated annealing genetic algorithm for system identification. Engineering Applications of Artificial Intelligence, 9(5), 523–532. [25]Brown, D. E., Huntley, C. L., & Spillane, A. R. (1989). A parallel genetic heuristic for the quadratic assignment problem. In Proceedings of the 3rd International Conference on Neural Information Processing Systems (pp. 406–415). Morgan Kaufmann Publishers. [26]Tan, K. C., Li, Y., Murray-Smith, D. J., & Sharman, K. C. (1995). System identification and linearization using genetic algorithms with simulated annealing. In Proceedings of the IEEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (Vol. 414, pp. 164–169). IEEE. [27]Hwang, S.-F., & He, R.-S. (2006). Improving real-parameter genetic algorithm with simulated annealing for engineering problems. Advances in Engineering Software, 37(6), 406–418. [28]Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7–21. [29]Majumdar, A., Maiti, D. K., & Maity, D. (2012). Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Applied Mathematics and Computation, 218(17), 9759–9772. [30]Jalil, N. S. A. A., Julai, S., & Ramli, R. (2015). Parametric modelling of flexible plate structures using continuous ant colony optimization. Journal of Simulation, 9(3), 223–231 [31]Ghanmi, S., Bouajila, S., & Guedri, M. (2013). Numerical-experimental updating identification of elastic behavior of a composite plate using new multi-objective optimization procedure. Journal of Surface Engineered Materials and Advanced Technology, 3(1), 13–20. [32]Sankar, P. A., Machavaram, R., & Shankar, K. (2014). System identification of a composite plate using hybrid response surface methodology and particle swarm optimization in time domain. Measurement, 55, 499–511. [33]Sheikhalishahi, M., Ebrahimipour, V., Shiri, H., & Ahmadi, A. (2013). A hybrid GA-PSO approach for reliability optimization in redundancy allocation problem. The International Journal of Advanced Manufacturing Technology, 68(1–4), 317–338. [34]Teo, Y. T., & Ponnambalam, S. G. (2008, August 23–26). A hybrid ACO/PSO heuristic to solve single row layout problem. In Proceedings of the 2008 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 597–602). IEEE. [35]Fidanova, S., Paprzycki, M., & Roeva, O. (2014, September 7–10). Hybrid GA-ACO algorithm for a model parameters identification problem. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems (FedCSIS) (pp. 371–376). IEEE. [36]Xu, Y. L., Lim, M. H., Ong, Y. S., & Zhu, Y. (2006, July 8–12). A GA-ACO-local search hybrid algorithm for solving quadratic assignment problem. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO 2006) (pp. 1053–1060). ACM. [37]Tam, J. H., Ong, Z. C., Ismail, Z., Ang, B. C., Khoo, S. Y., & Li, W. L. (2018). Inverse identification of elastic properties of composite materials using hybrid GA-ACO-PSO algorithm. Inverse Problems in Science and Engineering, 26(10), 1432–1463. [38]Reismann, H., & Pawlik, P. S. (1991). Elasticity: Theory and applications. John Wiley & Sons. [39]Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press. [40]De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems (Doctoral dissertation, University of Michigan). [41]Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley. [42]Eshelman, L. J., Caruana, R. A., & Schaffer, J. D. (1989). Biases in the crossover landscape. In Proceedings of the 3rd International Conference on Genetic Algorithms (pp. 10–19). Morgan Kaufmann. [43]De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems (Doctoral dissertation, University of Michigan). Deep Blue. [44]Schwefel, H. P. (1981). Numerical optimization of computer models. Wiley. [45]Hu, Y.-C. (1996). Real-valued genetic algorithms for fuzzy grey prediction system. Information Sciences, 93(3–4), 165–183. [46]Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29–41. [47]Osorio, G., Delgado, M., & Caicedo, E. (2015). Variations of ant colony optimization for the solution of the structural damage identification problem. Procedia Computer Science, 55, 114–123. [48]Peng, Y., Li, Z., Li, X., & Li, X. (2014). Ant colony optimization analysis on overall stability of high arch dam basis of field monitoring. The Scientific World Journal, 2014, Article ID 845874, 10 pages. [49]Amin, M. H., Hassan, K. S., & Abdullah, A. R. (2021). Adapting ant colony optimization of compliant structures using elements with linearly varying cross-sections. SN Applied Sciences, 3, Article 392. [50]Rakowski, T. (2023). On the application of the particle swarm optimization to the inverse determination of material model parameters for cutting simulations. Inventions, 2(1), Article 7. [51]Pietrzyk, M., & Łodygowski, T. (2012). Particle swarm optimization and identification of inelastic material parameters. Engineering Computations, 29(1), 33–54. [52]Yamamoto, T., Luo, C., Ide, K., Aoki, K., Jian, Y.-K., Huang, Y.-H., & Uetsuji, Y. (2025). Fused filament fabrication and mechanical characterization of hybrid reinforced polypropylene composites with talc fillers and cellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 188, Article 108536. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98525 | - |
| dc.description.abstract | 本研究旨在針對自由邊界正交性材料矩形薄板,建立一套基於共振頻率與模態振形之非破壞材料常數量測方法。透過實驗量測薄板共振頻率與模態,結合疊加法理論與最佳化演算法,反算九個獨立正交性材料常數。
實驗部分以熱熔堆疊式3D列印製作三種不同列印方向之實心與網格週期結構試片,經由喇叭激振,並使用雷射都卜勒振動儀量測共振頻率,搭配電子斑點干涉術擷取模態振形。 理論推導方面,本研究基於正交性材料關係搭配薄板假設,由面外振動的統御方程式利用疊加法滿足特定邊界條件,再透過位移函數的正交性解析特徵值問題,求得薄板之共振頻率與模態振形,並與有限元素模擬進行相互驗證。 本研究最佳化演算法以基因演算法為核心,針對其於高維多峰非線性問題中,易陷入局部最小值與過早收斂之缺點,進而結合自適應模擬退火以強化搜尋能力,雖可跳脫局部搜尋限制,但全域探索與穩定性仍不足。為克服此問題,本研究最終改以混合型基因演算法-螞蟻群演算法-粒子群演算法,結合基因演算法的全域搜尋能力、螞蟻群演算法的歷史記憶引導與粒子群演算法的動態速度調整,提升求解效率與穩定性,並改善解易陷入局部極小值之問題。最終成功反算出九個獨立正交材料常數,並代回理論模型與有限元素法模擬進行正向驗證,證實本研究所採最佳化方法在材料常數反算上之準確性與可行性。 | zh_TW |
| dc.description.abstract | This study proposes a non-destructive identification method for orthotropic material constants of rectangular plates with free boundaries, based on resonance frequencies and mode shapes. Experimentally, specimens with solid and grid-periodic structures were fabricated using fused deposition modeling 3D printing in three different printing directions. The specimens were excited using a loudspeaker, and their resonance frequencies were measured via laser Doppler vibrometer, while corresponding mode shapes were captured using electronic speckle pattern interferometry.
Theoretically, the analytical framework was developed by integrating orthotropic material constitutive relations with classical thin plate assumptions. The governing equation for out-of-plane vibration was solved using a superposition method to satisfy specific free boundary conditions. The displacement functions were expressed in orthogonal form to analytically solve the eigenvalue problem, yielding the resonance frequencies and mode shapes, which were then cross-validated with finite element method (FEM) simulations. To inversely determine nine independent orthotropic material constants, a genetic algorithm (GA) was initially adopted. However, due to its tendency to become trapped in local minima and premature convergence in high-dimensional, multi-modal nonlinear problems, an adaptive simulated annealing mechanism was incorporated to enhance search capabilities. Despite improvements, global exploration and stability remained limited. To address this, a hybrid optimization strategy combining GA, ant colony optimization (ACO), and particle swarm optimization (PSO) was ultimately proposed. This hybrid approach integrates the global search ability of GA, the historical memory guidance of ACO, and the dynamic velocity adjustment of PSO, significantly improving the convergence efficiency and stability while avoiding local optima. The final identified material constants were successfully validated through forward analyses using the theoretical model and FEM simulations, confirming the accuracy and feasibility of the proposed optimization framework for inverse identification of orthotropic material properties. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:27:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:27:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iv Abstract v 目次 vii 圖次 xi 表次 xv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究簡介 5 第二章 實驗儀器原理與架設方式 8 2.1 3D列印機 8 2.2 雷射都卜勒振動儀 10 2.3 電子斑點干涉術 13 第三章 自由邊界正交性矩形薄板穩態振動分析 16 3.1 線性彈性力學理論 16 3.2 正交各向異性材料之本構方程式 18 3.3 薄板理論 21 3.3.1 薄板假設 21 3.3.2 位移場推導 23 3.3.3 應變與應力場推導 24 3.4 面外變形之統御方程式與邊界條件 26 3.4.1 統御方程式 26 3.4.2 自由邊界條件 28 3.4.3 無因次化 30 3.5 自由邊界薄板面外振動位移解析解 30 3.6 理論數值計算與有限元素分析結果比較 51 3.6.1 數值方法求解共振頻率 51 3.6.2 收斂性分析 53 3.6.3 有限元素分析 54 3.7 尺寸比例對薄板共振頻率與模態之影響 60 3.7.1 理論適用尺寸比例範圍 60 3.7.2 尺寸比例與模態轉換之關係 61 3.8 小結 68 第四章 演算法 69 4.1 基因遺傳演算法 69 4.1.1 演算法架構與流程 72 4.1.2 演算法適用性與穩定性分析 77 4.2 自適應模擬退火基因演算法 80 4.2.1 演算法架構與流程 81 4.2.2 演算法適用性與穩定性分析 85 4.2.2.1 以等效係數為反算目標 85 4.2.2.2 以材料常數為反算目標 90 4.2.3 反算結果與討論 92 4.2.3.1 反算目標之影響 92 4.2.3.2 演算法之限制 93 4.3 GA-ACO-PSO混合演算法 94 4.3.1 螞蟻群演算法簡介 94 4.3.2 粒子群演算法簡介 97 4.3.3 混合演算法之架構與流程 99 4.3.4 混合演算法適用性與穩定性分析 108 4.4 小結 114 第五章 正交薄板材料常數反算 115 5.1 各排向正交週期結構薄板之命名與列印方式 116 5.1.1 實心正交結構薄板試片 116 5.1.2 方形網格週期結構薄板試片 118 5.2 實驗量測與反算結果 119 5.2.1 以喇叭作為激振源 122 5.2.1.1 實心正交結構薄板試片 123 5.2.1.2 方形網格週期結構薄板試片 130 5.2.2 以壓電纖維作為激振源 137 5.3 週期性結構試片於破壞式拉伸試驗量測結果 142 5.4 小結 154 第六章 結論與未來展望 155 6.1 研究成果 155 6.2 未來展望 157 參考文獻 158 附錄 164 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 正交性材料 | zh_TW |
| dc.subject | 疊加法 | zh_TW |
| dc.subject | 自由邊界薄板 | zh_TW |
| dc.subject | 電子斑點干涉術 | zh_TW |
| dc.subject | 模擬退火演算法 | zh_TW |
| dc.subject | 螞蟻群演算法 | zh_TW |
| dc.subject | 粒子群演算法 | zh_TW |
| dc.subject | Superposition method | en |
| dc.subject | Particle Swarm Optimization | en |
| dc.subject | Ant Colony Optimization | en |
| dc.subject | Simulated Annealing | en |
| dc.subject | ESPI | en |
| dc.subject | Free boundary plates | en |
| dc.subject | Orthotropic materials | en |
| dc.title | 利用最佳化演算法於週期結構薄板以振動特性反算積層製造之正交性材料常數 | zh_TW |
| dc.title | Inverse Identification of Orthotropic Properties in Additively Manufactured Periodic Plates via Vibration-Based Optimization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;廖展誼 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Chan-Yi Liao | en |
| dc.subject.keyword | 正交性材料,疊加法,自由邊界薄板,電子斑點干涉術,模擬退火演算法,螞蟻群演算法,粒子群演算法, | zh_TW |
| dc.subject.keyword | Orthotropic materials,Superposition method,Free boundary plates,ESPI,Simulated Annealing,Ant Colony Optimization,Particle Swarm Optimization, | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202502379 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 18.34 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
