請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98523完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | zh_TW |
| dc.contributor.advisor | Ru Shi Liu | en |
| dc.contributor.author | 蘇秀惠 | zh_TW |
| dc.contributor.author | Hsiu-Hui Su | en |
| dc.date.accessioned | 2025-08-14T16:26:47Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-27 | - |
| dc.identifier.citation | [1] Bard, A. J.; Faulkner, L. R. Introduction and Overview of Electrode Processes. In Electrochemical Methods: Fundamentals and Applications; Harris, D., Swain, E., Eds.; John Wiley & Sons, Inc.: New York, NY, 2001; pp 2–19.
[2] Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2009, 22, 587–603. [3] Kumar, N.; Siegel, D. J. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries. J. Phys. Chem. Lett. 2016, 7, 874–881. [4] Faraday, M. On Electrical Decomposition. Philos. Trans. R. Soc. London 1834, 124, 77–122. [5] Gibbs, J. W. On the Equilibrium of Heterogeneous Substances. Am. J. Sci. 1878, 3, 441–458. [6] Archer, M. D. Genesis of the Nernst Equation. In Electrochemistry, Past and Present; American Chemical Society: Washington, WA, 1989; pp 115–126. [7] Huang, J.; Zhang, Y. Essays on Conceptual Electrochemistry: I. Bridging Open-Circuit Voltage of Electrochemical Cells and Charge Distribution at Electrode-Electrolyte Interfaces. Front. Chem. 2022, 10, 938064–938070. [8] Dicks, A. L.; Rand, D. A. J. Introducing Fuel Cells. In Fuel Cell Systems Explained; John Wiley & Sons, Inc.: New York, NY, 2018; pp 1–26. [9] Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem 2000, 1, 162–193. [10] Ferriday, T. B.; Middleton, P. H. Alkaline Fuel Cell Technology—A Review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [11] Lewis, G. N.; Keyes, F. G. The Potential of the Lithium Electrode. J. Am. Chem. Soc. 1913, 35, 340–344. [12] Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127. [13] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun. 1977, 16, 578–580. [14] Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<−1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789. [15] Yoshino, A.; Sanechika, K.; Nakajima, T. Secondary Battery. US4668595, 1987. [16] Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [17] Shiga, T.; Hase, Y.; Kato, Y.; Inoue, M.; Takechi, K. A Rechargeable Non-Aqueous Mg–O2 Battery. Chem. Commun. 2013, 49, 9152–9154. [18] Wang, H. F.; Xu, Q. Materials Design for Rechargeable Metal–Air Batteries. Matter 2019, 1, 565–595. [19] Hannan, M. A.; Lipu, M. S. H.; Hussain, A.; Mohamed, A. A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations. Renew. Sust. Energ. Rev. 2017, 78, 834−854. [20] Clark, S.; Latz, A.; Horstmann, B. A Review of Model-Based Design Tools for Metal−Air Batteries. Batteries 2018, 4, 5−30. [21] Fischer, M.; Werber, M.; Schwartz, P. V. Batteries: Higher Energy Density than Gasoline? Energy Policy 2009, 37, 2639−2641. [22] Liu, H.; Xie, W.; Huang, Z.; Yao, C.; Han, Y.; Huang, W. Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes. Small Methods 2022, 6, 2101116–2101132. [23] Zhang, G.; Yang, S.; Yang, J. F.; Gonzalez-Medrano, D.; Miskin, M. Z.; Koman, V. B.; Zeng, Y.; Li, S. X.; Kuehne, M.; Liu, A. T.; Brooks, A. M.; Kumar, M.; Strano, M. S. High Energy Density Picoliter-Scale Zinc–Air Microbatteries for Colloidal Robotics. Sci. Robot. 2024, 9, eade4642–eade4654. [24] Olabi, A. G.; Sayed, E. T.; Wilberforce, T.; Jamal, A.; Alami, A. H.; Elsaid, K.; Rahman, S. M. A.; Shah, S. K.; Abdelkareem, M. A. Metal–Air Batteries—A Review. Energies 2021, 14, 7373–7418. [25] Danner, T.; Eswara, S.; Schulz, V. P.; Latz, A. Characterization of Gas Diffusion Electrodes for Metal–Air Batteries. J. Power Sources 2016, 324, 646–656. [26] Mladenova, E.; Slavova, M.; Mihaylova-Dimitrova, E.; Burdin, B.; Abrashev, B.; Krapchanska, M.; Raikova, G.; Vladikova, D. Monolithic Carbon-Free Gas Diffusion Electrodes for Secondary Metal–Air Batteries. J. Electroanal. Chem. 2021, 887, 115112–115117. [27] Zhang, Y. L.; Goh, K.; Zhao, L.; Sui, X. L.; Gong, X. F.; Cai, J. J.; Zhou, Q. Y.; Zhang, H. D.; Li, L.; Kong, F. R.; Gu, D. M.; Wang, Z. B. Advanced Non-Noble Materials in Bifunctional Catalysts for ORR and OER toward Aqueous Metal–Air Batteries. Nanoscale 2020, 12, 21534–21559. [28] Zhang, M.; Li, H.; Chen, J.; Ma, F. X.; Zhen, L.; Wen, Z.; Xu, C. Y. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery. Small 2022, 18, 2202476–2202485. [29] Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-Ion Batteries: A Look into the Future. Energy Environ. Sci. 2011, 4, 3287–3295. [30] Zhang, J.; Zhang, H.; Zhang, Y.; Wang, X.; Li, H.; Feng, F.; Wang, K.; Zhang, G.; Sun, S.; Zhang, Y. Approaches to Construct High-Performance Mg–Air Batteries: From Mechanism to Materials Design. J. Mater. Chem. A 2023, 11, 7924–7948. [31] Gewirth, A. A.; Varnell, J. A.; Diascro, A. M. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chem. Rev. 2018, 118, 2313–2339. [32] Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118, 2302–2312. [33] Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [34] Tan, Q.; Shu, C.; Abbott, J.; Zhao, Q.; Liu, L.; Qu, T.; Chen, Y.; Zhu, H.; Liu, Y.; Wu, G. Highly Dispersed Pd-CeO2 Nanoparticles Supported on N-Doped Core-Shell Structured Mesoporous Carbon for Methanol Oxidation in Alkaline Media. ACS Catal. 2019, 9, 6362–6371. [35] Du, L.; Lou, S.; Chen, G.; Zhang, G.; Kong, F.; Qian, Z.; Du, C.; Gao, Y.; Sun, S.; Yin, G. Direct Dimethyl Ether Fuel Cells with Low Platinum-Group-Metal Loading at Anode: Investigations of Operating Temperatures and Anode Pt/Ru Ratios. J. Power Sources 2019, 433, 126690–126695. [36] He, Y.; Yang, X.; Li, Y.; Liu, L.; Guo, S.; Shu, C.; Liu, F.; Liu, Y.; Tan, Q.; Wu, G. Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catal. 2022, 12, 1216–1227. [37] Poudel, M. B.; Balanay, M. P.; Lohani, P. C.; Sekar, K.; Yoo, D. J. Atomic Engineering of 3D Self‐Supported Bifunctional Oxygen Electrodes for Rechargeable Zinc–Air Batteries and Fuel Cell Applications. Adv. Energy Mater. 2024, 14, 2400347–2400358. [38] Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; Wu, Y.; Li, Y. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284. [39] Xi, Z.; Han, J.; Jin, Z.; Hu, K.; Qiu, H. J.; Ito, Y. All-Solid-State Mg–Air Battery Enhanced with Free-Standing N-Doped 3D Nanoporous Graphene. Small 2024, 20, 2308045–2308052. [40] Lim, J.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D.; Kim, S. O. N2-Dopant of Graphene with Electrochemically Switchable Bifunctional ORR/OER Catalysis for Zn–Air Battery. Energy Storage Mater. 2020, 32, 517–524. [41] Bharadwaj, N.; Pathak, B. Localized Charge-Induced ORR/OER Activity in Doped Fullerenes for Li–Air Battery Applications. Nanoscale 2024, 16, 5257–5266. [42] Zhao, Y.; Adiyeri Saseendran, D. P.; Huang, C.; Triana, C. A.; Marks, W. R.; Chen, H.; Zhao, H.; Patzke, G. R. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem. Rev. 2023, 123, 6257–6358. [43] Gupta, R. K.; Maurya, P. K.; Mishra, A. K. Advancements in Rechargeable Zn–Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. ChemPlusChem 2024, 89, e202400278–e202400299. [44] Niu, S.; Yue, D.; Wang, H.; Ma, Z.; Li, Q. Cu Regulating the Bifunctional Activity of Co-O Sites for the High-Performance Rechargeable Zinc–Air Battery. ACS Appl. Mater. Interfaces 2024, 16, 36295–36303. [45] Yadav, S. K.; Deckenbach, D.; Yadav, S.; Njel, C.; Trouillet, V.; Schneider, J. J. CoFe2O4@N‐CNH as Bifunctional Hybrid Catalysts for Rechargeable Zinc–Air Batteries. Adv. Mater. Interfaces 2024, 11, 2400415–2400426. [46] Chen, X.; Yue, D.; Yu, X.; Chen, Y.; Chen, X.; Wang, H.; Li, Q.; Ma, Z. Microenvironment Tailoring of NiCo Alloys Coupled with FePc as Efficient Bifunctional Catalysts for High-Rate Zn–Air Batteries. Langmuir 2024, 40, 17038–17048. [47] Rebrov, E. V.; Gao, P. Z. Molecular Catalysts for OER/ORR in Zn–Air Batteries. Catalysts 2023, 13, 1289–1313. [48] Dilshad, K. A. J.; Rabinal, M. K. Manganese-Cobalt Oxide as an Effective Bifunctional Cathode for Rechargeable Zn–Air Batteries with a Compact Quad-Cell Battery Design. Phys. Chem. Chem. Phys. 2023, 25, 11566–11576. [49] Chen, D.; Chen, C.; Baiyee, Z. M.; Shao, Z.; Ciucci, F. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chem. Rev. 2015, 115, 9869–9921. [50] Ingavale, S.; Gopalakrishnan, M.; Enoch, C. M.; Pornrungroj, C.; Rittiruam, M.; Praserthdam, S.; Somwangthanaroj, A.; Nootong, K.; Pornprasertsuk, R.; Kheawhom, S. Strategic Design and Insights into Lanthanum and Strontium Perovskite Oxides for Oxygen Reduction and Oxygen Evolution Reactions. Small 2024, 20, 2308443–2308473. [51] Barman, M.; Pal, M.; Biswas, R.; Dutta, A. A Comprehensive Review of Metal–Air Batteries: Mechanistic Aspects, Advantages and Challenges. Catal. Today 2025, 451, 115229–115262. [52] Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li−O2 and Li-S Batteries with High Energy Storage. Nat. Mater. 2011, 11, 19−29. [53] Li, Y.; Lu, J. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377. [54] Wang, C.; Yu, Y.; Niu, J.; Liu, Y.; Bridges, D.; Liu, X.; Pooran, J.; Zhang, Y.; Hu, A. Recent Progress of Metal–Air Batteries—A Mini Review. Appl. Sci. 2019, 9, 2787–2798. [55] Li, L.; Manthiram, A. Long‐Life, High‐Voltage Acidic Zn–Air Batteries. Adv. Energy Mater. 2015, 6, 1502054–1502060. [56] Ichida, S.; Mori, D.; Taminato, S.; Zhang, T.; Takeda, Y.; Yamamoto, O.; Imanishi, N. A Rechargeable Aqueous Lithium–Air Battery with an Acetic Acid Catholyte Operated at High Pressure. JEPT 2022, 4, 2201009–2201019. [57] Wen, H.; Liu, Z.; Qiao, J.; Chen, R.; Qiao, G.; Yang, J. Ultrahigh Voltage and Energy Density Aluminum–Air Battery Based on Aqueous Alkaline‐Acid Hybrid Electrolyte. Int. J. Energy Res. 2020, 44, 10652–10661. [58] Sui, Y.; Ji, X. Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chem. Rev. 2021, 121, 6654−6695. [59] Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization Perspective on Metal Anodes for Aqueous Batteries. Adv. Energy Mater. 2020, 11, 2000962−2000979. [60] Sharma, S.; Andrade, G. A.; Maurya, S.; Popov, I. A.; Batista, E. R.; Davis, B. L.; Mukundan, R.; Smythe, N. C.; Tondreau, A. M.; Yang, P.; Gordon, J. C. Iron-Iminopyridine Complexes as Charge Carriers for Non-Aqueous Redox Flow Battery Applications. Energy Storage Mater. 2021, 37, 576–586. [61] Li, T.; Zhang, X. Q.; Shi, P.; Zhang, Q. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule 2019, 3, 2647−2661. [62] Ye, L.; Liao, M.; Zhang, K.; Zheng, M.; Jiang, Y.; Cheng, X.; Wang, C.; Xu, Q.; Tang, C.; Li, P.; Wen, Y.; Xu, Y.; Sun, X.; Chen, P.; Sun, H.; Gao, Y.; Zhang, Y.; Wang, B.; Lu, J.; Zhou, H.; Wang, Y.; Xia, Y.; Xu, X.; Peng, H. A Rechargeable Calcium–Oxygen Battery that Operates at Room Temperature. Nature 2024, 626, 313–318. [63] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 Electrode for Lithium Batteries. J. Am. Chem. Soc. 2006, 128, 1390−1393. [64] Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Rechargeable Li–Air Batteries with Carbonate-Based Liquid Electrolytes. J. Electrochem. 2010, 78, 403–405. [65] Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Barde, F.; Novak, P.; Bruce, P. G. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047. [66] Kim, J.; Lim, H. D.; Gwon, H.; Kang, K. Sodium–Oxygen Batteries with Alkyl-Carbonate and Ether-Based Electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 3623–3629. [67] Xu, W.; Viswanathan, V. V.; Wang, D.; Towne, S. A.; Xiao, J.; Nie, Z.; Hu, D.; Zhang, J. G. Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li–O2 Batteries with Organic Carbonate Electrolytes. J. Power Sources 2011, 196, 3894–3899. [68] Veith, G. M.; Dudney, N. J.; Howe, J.; Nanda, J. Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes. J. Phys. Chem. C 2011, 115, 14325–14333. [69] Jeon, A. R.; Han, B. Y.; Kwon, M.; Yu, S. H.; Chung, K. Y.; Shim, J.; Lee, M. Bilayer Interphase for Air-Stable and Dendrite-Free Lithium Metal Anode Cycling in Carbonate Electrolytes. Small 2024, 20, 2402213–2402221. [70] Read, J. Ether-Based Electrolytes for the Lithium–Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2006, 153, A96–A100. [71] Ye, L.; Hong, Y.; Liao, M.; Wang, B.; Wei, D.; Peng, H.; Ye, L.; Hong, Y.; Liao, M.; Wang, B.; Wei, D.; Peng, H. Recent Advances in Flexible Fiber-Shaped Metal–Air Batteries. Energy Stor. Mater. 2020, 28, 364–374. [72] Wu, Z.; Wang, H.; Xiong, P.; Li, G.; Qiu, T.; Gong, W. B.; Zhao, F.; Li, C.; Li, Q.; Wang, G.; Geng, F. Molecularly Thin Nitride Sheets Stabilized by Titanium Carbide as Efficient Bifunctional Electrocatalysts for Fiber-Shaped Rechargeable Zn–Air Batteries. Nano Lett. 2020, 20, 2892–2898. [73] Sarkar, A.; Huang, S. Y.; Rasupillai Dharmaraj, V.; Bazri, B.; Iputera, K.; Su, H. H.; Chen, Y. A.; Chen, H. C.; Lin, Y. P.; Chung, R. J.; Wei, D. H.; Liu, R. S. Polyethylene Oxide-Based Solid-State Polymer Electrolyte Hybridized with Liquid Catholyte for Semi-Solid-State Rechargeable Mg–O2 Batteries. J. Mater. Chem. A 2024, 12, 25968–25978. [74] Xu, Z.; Liu, Z.; Gu, Z.; Zhao, X.; Guo, D.; Yao, X. Polyimide-Based Solid-State Gel Polymer Electrolyte for Lithium–Oxygen Batteries with a Long-Cycling Life. ACS Appl. Mater. Interfaces 2023, 15, 7014–7022. [75] Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium−Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193−2203. [76] Jilani, A.; Awan, Z.; Taqvi, S. A. A.; Khan, F.; Alshahrani, T. Recent Advances in the Development of Li–Air Batteries, Experimental and Predictive Approaches—Prospective, Challenges, and Opportunities. ChemBioEng Rev. 2023, 11, 95–114. [77] Abraham, K. M.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium−Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1−5. [78] Abraham, K. M. Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium–Air Batteries. J. Electrochem. Soc. 2015, 162, A3021–A3031. [79] Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen Reactions in a Non-Aqueous Li+ Electrolyte. Angew. Chem. Int. Ed. 2011, 50, 6351–6355. [80] Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. A Reversible and Higher-Rate Li–O2 Battery. Science 2012, 337, 563–566. [81] Wang, T.; Pan, X.; Chen, J.; Chen, Y. Critical CO2 Concentration for Practical Lithium–Air Batteries. J. Phys. Chem. Lett. 2021, 12, 4799–4804. [82] Giordani, V.; Freunberger, S. A.; Bruce, P. G.; Tarascon, J. M.; Larcher, D. H2O2 Decomposition Reaction as Selecting Tool for Catalysts in Li–O2 Cells. Electrochem. Solid-State Lett. 2010, 13, A180–A183. [83] Huang, Y. K.; Pan, R.; Rehnlund, D.; Wang, Z.; Nyholm, L. First‐Cycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithium‐Metal Electrodes. Adv. Energy Mater. 2021, 11, 2003674–2003686. [84] Kim, S.; Cho, K. Y.; Kwon, J.; Sim, K.; Seok, D.; Tak, H.; Jo, J.; Eom, K. An Inorganic-Rich SEI Layer by the Catalyzed Reduction of LiNO3 Enabled by Surface-Abundant Hydrogen Bonding for Stable Lithium Metal Batteries. Small 2023, 19, 2207222–2207230. [85] Baek, M.; Kim, J.; Jeong, K.; Yang, S.; Kim, H.; Lee, J.; Kim, M.; Kim, K. J.; Choi, J. W. Naked Metallic Skin for Homo-Epitaxial Deposition in Lithium Metal Batteries. Nat. Commun. 2023, 14, 1296–1306. [86] Wang, Y.; Noguchi, H. Revealing the Enhancement of Li Plating/Stripping Efficiency in TEGDME-Based Low-Concentration Electrolytes for Anode-Free Lithium Metal Batteries. Phys. Chem. Chem. Phys. 2024, 26, 25352–25362. [87] Lu, T.; Qian, Y.; Liu, K.; Wu, C.; Li, X.; Xiao, J.; Zeng, X.; Zhang, Y.; Chou, S. L. Recent Progress of Electrolyte Materials for Solid‐State Lithium–Oxygen (Air) Batteries. Adv. Energy Mater. 2024, 14, 2400766–2400804. [88] Maiché, L. The First Alkaline Zn–Air Battery. FR127069, 1878. [89] Heise, G. W. Air-Depolarized Primary Battery. US1899615, 1925. [90] Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A Brief History of Zinc–Air Batteries: 140 Years of Epic Adventures. Energy Environ. Sci. 2022, 15, 4542–4553. [91] Heise, G. W.; Schumacher, E. A. An Air‐Depolarized Primary Cell with Caustic Alkali Electrolyte. Trans. Electrochem. Soc. 1932, 62, 383–391. [92] Li, Y.; Dai, H. Recent Advances in Zinc–Air Batteries. Chem. Soc. Rev. 2014, 43, 5257–5275. [93] Zhang, P.; Chen, Z.; Shang, N.; Wang, K.; Zuo, Y.; Wei, M.; Wang, H.; Zhong, D.; Pei, P. Advances in Polymer Electrolytes for Solid-State Zinc–Air Batteries. Mater. Chem. Front. 2023, 7, 3994–4018. [94] Li, Y.; Zhong, C.; Liu, J.; Zeng, X.; Qu, S.; Han, X.; Deng, Y.; Hu, W.; Lu, J. Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Adv. Mater. 2018, 30, 1703657–1703665. [95] Shi, H.; Gao, S.; Liu, X.; Wang, Y.; Zhou, S.; Liu, Q.; Zhang, L.; Hu, G. Recent Advances in Catalyst Design and Performance Optimization of Nanostructured Cathode Materials in Zinc–Air Batteries. Small 2024, 20, 2309557–2309585. [96] Wang, J.; Ni, M.; Qian, J.; Ge, Y.; Cai, D.; Nie, H.; Zhou, X.; Yang, Z. Ultrafine Ir Nanoparticles Anchored on Carbon Nanotubes as Efficient Bifunctional Oxygen Catalysts for Zn–Air Batteries. Chem. Commun. 2024, 60, 6415–6418. [97] Luo, T.; Lei, S.; Qi, P.; Niu, S.; Li, Z.; Luo, H.; Zhang, D. Brush-Like Co/CoSe Nanoheterostructures Embedded in N-Doped Carbon for Rechargeable Zn–Air Batteries. Dalton Trans. 2024, 53, 4631–4636. [98] Wang, M.; Chen, Z.; Song, Y.; Hu, Z.; Song, H.; Dong, S.; Yuan, D. Architecting N-Doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Inorg. Chem. 2024, 63, 4373–4384. [99] Bai, L.; Wang, D.; Wang, W.; Yan, W. An Overview and Future Perspectives of Rechargeable Flexible Zn–Air Batteries. ChemSusChem 2024, 17, e202400080–e202400096. [100] Singh, A.; Sharma, R.; Halder, A. Flexible Solid-State Zn–Air Battery Based on Polymer-Oxygen-Functionalized g-C3N4 Composite Membrane. Nanoscale 2024, 16, 4157–4169. [101] Li, Z.; Yang, J.; Ge, X.; Deng, Y. P.; Jiang, G.; Li, H.; Sun, G.; Liu, W.; Zheng, Y.; Dou, H.; Jiao, H.; Zhu, J.; Li, N.; Hu, Y.; Feng, M.; Chen, Z. Self-Assembly of Colloidal MOFs Derived Yolk-Shelled Microcages as Flexible Air Cathode for Rechargeable Zn–Air Batteries. Nano Energy 2021, 89, 106314–106323. [102] Xia, C.; Zhou, Y.; He, C.; Douka, A. I.; Guo, W.; Qi, K.; Xia, B. Y. Recent Advances on Electrospun Nanomaterials for Zinc–Air Batteries. Small Sci. 2021, 1, 2100010–2100025. [103] Kim, J.; Kim, M.; Lee, J.; An, J.; Yang, S.; Ahn, H. C.; Yoo, D. J.; Choi, J. W. Insights from Li and Zn Systems for Advancing Mg and Ca Metal Batteries. Chem. Soc. Rev. 2024, 53, 8878−8902. [104] Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [105] Li, C. S.; Sun, Y.; Gebert, F.; Chou, S. L. Current Progress on Rechargeable Magnesium–Air Battery. Adv. Energy Mater. 2017, 7, 1700869–1700879. [106] Jäckle, M.; Helmbrecht, K.; Smits, M.; Stottmeister, D.; Groß, A. Self-Diffusion Barriers: Possible Descriptors for Dendrite Growth in Batteries? Energy Environ. Sci. 2018, 11, 3400−3407. [107] Jackle, M.; Gross, A. Microscopic Properties of Lithium, Sodium, and Magnesium Battery Anode Materials Related to Possible Dendrite Growth. J. Chem. Phys. 2014, 141, 174710–174717. [108] Roe, I. T.; Selbach, S. M.; Schnell, S. K. Crystal Structure Influences Migration Along Li and Mg Surfaces. J. Phys. Chem. Lett. 2020, 11, 2891–2895. [109] Jang, K. Y.; Seo, S. W.; Kim, D. J.; Lee, D. G. Design and Performance of High-Capacity Magnesium−Air Battery for Power Generator System. Energies 2024, 17, 5643−5662. [110] Ma, B.; Ouyang, L.; Zheng, J. Magnesium-Rare Earth Intermetallic Compounds for High Performance High Power Aqueous Magnesium–Air Batteries. J. Magnesium Alloys 2024, 12, 4191–4204. [111] Ling, N.; Wang, Y.; Song, S.; Liu, C.; Yang, F.; Qi, X.; Li, Y.; Zhang, J.; Wang, L. Experimentally Validated Screening Strategy for Alloys as Anode in Mg–Air Battery with Multi-Target Machine Learning Predictions. Chem. Eng. J. 2024, 496, 153824–153835. [112] He, Y.; Wang, Q.; Zhang, J.; Wang, L.; Liu, S.; Li, Z.; Wei, Z.; Dong, H.; Zhang, X. New Strategy for Mg–Air Battery Voltage-Efficiency Synergy by Engineering Protective Film with Cation Vacancies on Mg Anode Surface. J. Mater. Sci. Technol. 2025, 213, 24–41. [113] Jianchun, S.; Xue, L.; Zhoulin, L.; Jiaxin, B.; Lianhui, L.; Jie, T.; Yiqiang, Y.; Weilong, C.; Wenhong, L.; Zhiqiang, Z. Utilizing an Electrolyte Additive to Modulate Interfaces and Enhance Anode Discharge Performance in Aqueous Magnesium–Air Batteries. Inorg. Chem. Front. 2024, 11, 4347–4363. [114] Li, X.; Sha, J.; Wang, Q.; Bao, J.; Yang, Y.; Li, L.; Qiao, M.; Tian, J.; Liu, W.; Zhang, Z. Improvement of Discharge Properties for Aqueous Magnesium–Air Batteries via a Multi-Functional and Universal Electrolyte Additive. J. Colloid Interface Sci. 2025, 680, 552–571. [115] Li, H. Z.; Cao, J.; Gao, L. M.; Chen, Q. H.; Yang, J. J.; Liao, B. K.; Guo, X. P. Improving the Discharge Performance of Aqueous Mg–Air Battery Using Dicarboxylic Acid Additives. Mater. Res. Bull. 2025, 182, 113160–113169. [116] Li, L.; Chen, H.; He, E.; Wang, L.; Ye, T.; Lu, J.; Jiao, Y.; Wang, J.; Gao, R.; Peng, H.; Zhang, Y. High-Energy-Density Magnesium–Air Battery Based on Dual-Layer Gel Electrolyte. Angew. Chem. Int. Ed. Engl. 2021, 60, 15317–15322. [117] Liu, M.; Zhang, Q.; Wang, X.; Gao, J.; Liu, Q.; Wang, E.; Wang, Z. An Ultrahigh Energy Density Mg–Air Battery with Organic Acid-Solid Anolyte Biphasic Electrolytes. Sustainable Energy Fuels 2023, 7, 3244–3249. [118] Vardar, G.; Nelson, E. G.; Smith, J. G.; Naruse, J.; Hiramatsu, H.; Bartlett, B. M.; Sleightholme, A. E. S.; Siegel, D. J.; Monroe, C. W. Identifying the Discharge Product and Reaction Pathway for a Secondary Mg–O2 Battery. Chem. Mater. 2015, 27, 7564–7568. [119] Griffith, L. D.; Sleightholme, A. E.; Mansfield, J. F.; Siegel, D. J.; Monroe, C. W. Correlating Li−O2 Cell Capacity and Product Morphology with Discharge Current. ACS Appl. Mater. Interfaces 2015, 7, 7670−7678. [120] Vardar, G.; Smith, J. G.; Thompson, T.; Inagaki, K.; Naruse, J.; Hiramatsu, H.; Sleightholme, A. E. S.; Sakamoto, J.; Siegel, D. J.; Monroe, C. W. Mg−O2 Battery Based on the Magnesium–Aluminum Chloride Complex (MACC) Electrolyte. Chem. Mater. 2016, 28, 7629−7637. [121] Zhuk, A.; Belyaev, G.; Borodina, T.; Kiseleva, E.; Shkolnikov, E.; Tuganov, V.; Valiano, G.; Zakharov, V. Magnesium–Air Battery with Increased Power Using Commercial Alloy Anodes. Energies 2024, 17, 400–418. [122] Haskew, M. J.; Nikman, S.; O'Sullivan, C. E.; Galeb, H. A.; Halcovitch, N. R.; Hardy, J. G.; Murphy, S. T. Mg/Zn Metal–Air Primary Batteries Using Silk Fibroin‐Ionic Liquid Polymer Electrolytes. Nano Select 2022, 4, 90–101. [123] Qian, A.; Cui, M.; Sun, Y.; Wang, G.; Hao, Y.; Yang, C.; Shi, H. NiCo2O4 Nanowires Immobilized on Nitrogen-Doped Ti3C2Tx for High-Performance Wearable Magnesium–Air Batteries. Small 2024, 20, 2310398–2310406. [124] Dong, X.; Wang, J.; Ling, J.; Zhang, Y.; Xu, J.; Zeng, W.; Huang, G.; Wang, J.; Pan, F. Prussian Blue Analogues Derived Bimetallic CoNi@NC as Efficient Oxygen Reduction Reaction Catalyst for Mg–Air Batteries. Batteries Supercaps 2025, 8, e202400418. [125] Beyer, H.; Meini, S.; Tsiouvaras, N.; Piana, M.; Gasteiger, H. A. Thermal and Electrochemical Decomposition of Lithium Peroxide in Non-Catalyzed Carbon Cathodes for Li–Air Batteries. Phys. Chem. Chem. Phys. 2013, 15, 11025–11037. [126] Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li–Air Cathodes Pre-Filled with Discharge Products Using an Ether-Based Electrolyte Solution: Implications for Cycle-Life of Li–Air Cells. Phys. Chem. Chem. Phys. 2013, 15, 11478–11493. [127] Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. Implications of CO2 Contamination in Rechargeable Nonaqueous Li–O2 Batteries. J. Phys. Chem. Lett. 2013, 4, 276–279. [128] Takechi, K.; Shiga, T.; Asaoka, T. A Li–O2/CO2 Battery. Chem. Commun. 2011, 47, 3463–3465. [129] Meini, S.; Solchenbach, S.; Piana, M.; Gasteiger, H. A. The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li–O2 Batteries. J. Electrochem. Soc. 2014, 161, A1306–A1314. [130] Geng, D.; Ding, N.; Hor, T. S.; Chien, S. W.; Liu, Z.; Zong, Y. Investigation on the Cyclability of Lithium–Oxygen Cells in a Confined Potential Window Using Cathodes with Pre-Filled Discharge Products. Chem. Asian J. 2015, 10, 2182–2189. [131] Zou, J.; Liang, G.; Zhang, F.; Zhang, S.; Davey, K.; Guo, Z. Revisiting the Role of Discharge Products in Li–CO2 Batteries. Adv. Mater. 2023, 35, 2210671–2210703. [132] Ali, Y.; Iqbal, N.; Lee, S. Role of SEI Layer Growth in Fracture Probability in Lithium‐Ion Battery Electrodes. Int. J. Energy Res. 2020, 45, 5293–5308. [133] Wang, Y.; Wang, Z.; Zhao, L.; Fan, Q.; Zeng, X.; Liu, S.; Pang, W. K.; He, Y. B.; Guo, Z. Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification. Adv. Mater. 2021, 33, 2008133–2200141. [134] Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes. Adv. Mater. 2016, 28, 1853–1858. [135] Li, Z.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z. Towards Stable and Efficient Electrolytes for Room-Temperature Rechargeable Calcium Batteries. Energy Environ. Sci. 2019, 12, 3496–3501. [136] Hardin, N. Z.; Woodley, C. P.; McDonald, K. D.; Bartlett, B. M. Triiodide Anion as a Magnesium-Ion Transporter for Low Overpotential Battery Cycling in Iodine-Containing Mg(TFSI)2 Electrolyte. ACS Appl. Mater. Interfaces 2024, 16, 14883–14889. [137] Xiao, J.; Zhang, X.; Fan, H.; Zhao, Y.; Su, Y.; Liu, H.; Li, X.; Su, Y.; Yuan, H.; Pan, T.; Lin, Q.; Pan, L.; Zhang, Y. Stable Solid Electrolyte Interphase In Situ Formed on Magnesium-Metal Anode by Using a Perfluorinated Alkoxide-Based All-Magnesium Salt Electrolyte. Adv. Mater. 2022, 34, 2203783–2203791. [138] Rasupillai Dharmaraj, V.; Sarkar, A.; Yi, C. H.; Iputera, K.; Huang, S. Y.; Chung, R. J.; Hu, S. F.; Liu, R. S. Battery Performance Amelioration by Introducing a Conducive Mixed Electrolyte in Rechargeable Mg–O2 Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9675–9684. [139] Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Appl. Mater. Interfaces 2014, 6, 4063–4073. [140] Eaves-Rathert, J.; Moyer, K.; Zohair, M.; Pint, C. L. Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes. Joule 2020, 4, 1324–1336. [141] Zhang, M.; Zhao, W.; Liu, Y.; Zhou, M.; Pan, Z.; Yang, X. Contact Ion-Pair-Dominated Electrolyte Enabling Inorganic-Rich Solid Electrolyte Interphase for Long-Cycling Magnesium Metal Anodes. ACS Energy Lett. 2025, 10, 552−561. [142] Prabhakaran, V.; Agarwal, G.; Howard, J. D.; Wi, S.; Shutthanandan, V.; Nguyen, D. T.; Soule, L.; Johnson, G. E.; Liu, Y. S.; Yang, F.; Feng, X.; Guo, J.; Hankins, K.; Curtiss, L. A.; Mueller, K. T.; Assary, R. S.; Murugesan, V. Coordination-Dependent Chemical Reactivity of TFSI Anions at a Mg Metal Interface. ACS Appl. Mater. Interfaces 2023, 15, 7518–7528. [143] Martin, E. W.; Harmon, T. S.; Hopkins, J. B.; Chakravarthy, S.; Incicco, J. J.; Schuck, P.; Soranno, A.; Mittag, T. A Multi-Step Nucleation Process Determines the Kinetics of Prion-Like Domain Phase Separation. Nat. Commun. 2021, 12, 4513−4524. [144] Stern, O.; Volmer, M. Über die Abklingungszeit der Fluoreszenz. Phys. Z. 1919, 20, 183–188. [145] Hobold, G. M.; Kim, K. H.; Gallant, B. M. Beneficial vs. Inhibiting Passivation by the Native Lithium Solid Electrolyte Interphase Revealed by Electrochemical Li+ Exchange. Energy Environ. Sci. 2023, 16, 2247−2261. [146] Rehnlund, D.; Ihrfors, C.; Maibach, J.; Nyholm, L. Dendrite-Free Lithium Electrode Cycling via Controlled Nucleation in Low LiPF6 Concentration Electrolytes. Mater. Today 2018, 21, 1010−1018. [147] Dou, Y.; Wang, X. G.; Wang, D.; Zhang, Q.; Wang, C.; Chen, G.; Wei, Y.; Zhou, Z. Tuning the Structure and Morphology of Li2O2 by Controlling the Crystallinity of Catalysts for Li–O2 Batteries. Chem. Eng. J. 2021, 409, 128145–128154. [148] Lv, X. W.; Wang, Z.; Lai, Z.; Liu, Y.; Ma, T.; Geng, J.; Yuan, Z. Y. Rechargeable Zinc–Air Batteries: Advances, Challenges, and Prospects. Small 2024, 20, 2306396–2230443. [149] Huang, J. Y.; Iputera, K.; Lin, Y. T.; Hung, Y. T.; Liu, Y. S.; Chang, Y. P.; Bazri, B.; Liu, B. H.; Wei, D. H.; Jin, B. Y.; Liu, R. S. Exploring Dehydration Mechanisms and Conductivity Optimization in Li3InCl6·xH2O via In Situ Synchrotron Techniques. J. Mater. Chem. A 2025, 13, 2895–2901. [150] Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Röntgen. Nachr. Ges. Wiss. Göttingen 1918, 2, 96–100. [151] Hassanzadeh Tabrizi, S. A. Precise Calculation of Crystallite Size of Nanomaterials: A Review. J. Alloys Compd. 2023, 968, 171914–171933. [152] Attwood, D. Introduction. In Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications; Cambridge University Press: Cambridge, Cambs., 1999; pp 1–23. [153] Kuzmin, A.; Chaboy, J. EXAFS and XANES Analysis of Oxides at the Nanoscale. IUCrJ 2014, 1, 571–589. [154] Iglesias-Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero-Pérez, M. O. Experimental Methods in Chemical Engineering: X-Ray Absorption Spectroscopy—XAS, XANES, EXAFS. Can. J. Chem. Eng. 2022, 100, 3–22. [155] Lemgruber, L.; Ion, R. M. Scanning Electron Microscopy. In Imaging Modalities for Biological and Preclinical Research: A Compendium; IOP Publishing: Bristol, UK, 2021; pp 1–9. [156] Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of Scanning Electron Microscopy (SEM). In Scanning Microscopy for Nanotechnology: Techniques and Applications; Zhou, W., Wang, Z. L., Eds.; Springer New York: New York, NY, 2007; pp 1–40. [157] Zhang, D.; Zhu, Y.; Liu, L.; Ying, X.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-Resolution Transmission Electron Microscopy of Electron Beam-Sensitive Crystalline Materials. Science 2018, 359, 675–679. [158] Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic Microscopy of Nanoscale Cluster Growth at the Solid–Liquid Interface. Nat. Mater. 2003, 2, 532–536. [159] Luo, L.; Liu, B.; Song, S.; Xu, W.; Zhang, J. G.; Wang, C. Revealing the Reaction Mechanisms of Li–O2 Batteries Using Environmental Transmission Electron Microscopy. Nat. Nanotechnol. 2017, 12, 535–539. [160] Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Operando Observations of RuO2 Catalyzed Li2O2 Formation and Decomposition in a Li–O2 Micro-Battery. Nano Energy 2018, 47, 427–433. [161] Lee, D.; Park, H.; Ko, Y.; Park, H.; Hyeon, T.; Kang, K.; Park, J. Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O2 Battery by Liquid-Phase Transmission Electron Microscopy. J. Am. Chem. Soc. 2019, 141, 8047–8052. [162] Han, S.; Cai, C.; Yang, F.; Zhu, Y.; Sun, Q.; Zhu, Y. G.; Li, H.; Wang, H.; Shao-Horn, Y.; Sun, X.; Gu, M. Interrogation of the Reaction Mechanism in a Na–O2 Battery Using In Situ Transmission Electron Microscopy. ACS Nano 2020, 14, 3669–3677. [163] Wen, Y.; Ding, S.; Ma, C.; Jia, P.; Tu, W.; Guo, Y.; Guo, S.; Zhou, W.; Zhang, X.; Huang, J.; Zhang, L.; Shen, T.; Qiao, Y. In Situ TEM Visualization of Ag Catalysis in Li–O2 Nanobatteries. Nano Res. 2023, 16, 6833–6839. [164] Zhang, Z.; Wang, W.; Dong, Z.; Yang, X.; Liang, F.; Chen, X.; Wang, C.; Luo, C.; Zhang, J.; Wu, X.; Sun, L.; Chu, J. The Trends of In Situ Focused Ion Beam Technology: Toward Preparing Transmission Electron Microscopy Lamella and Devices at the Atomic Scale. Adv. Electron. Mater. 2022, 8, 2101401–2101413. [165] Franken, L. E.; Boekema, E. J.; Stuart, M. C. A. Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: Application and Interpretation. Adv. Sci. 2017, 4, 1600476–1600485. [166] Selvam, N. C. S.; Kumar, R. T.; Kennedy, L. J.; Vijaya, J. J. Comparative Study of Microwave and Conventional Methods for the Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. J. Alloys Compd. 2011, 509, 9809−9815. [167] Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 Morphology on Oxygen Reduction and Evolution Kinetics in Li−O2 Batteries. Energy Environ. Sci. 2013, 6, 2518−2528. [168] Qiao, R.; Chuang, Y. D.; Yan, S.; Yang, W. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy. PLoS One 2012, 7, e49182−e49187. [169] Yoshimura, T.; Tamenori, Y.; Iwasaki, N.; Hasegawa, H.; Suzuki, A.; Kawahata, H. Magnesium K-Edge XANES Spectroscopy of Geological Standards. J. Synchrotron Radiat. 2013, 20, 734–740. [170] Wan, Y.; Samundsett, C.; Bullock, J.; Hettick, M.; Allen, T.; Yan, D.; Peng, J.; Wu, Y.; Cui, J.; Javey, A.; Cuevas, A. Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells. Adv. Energy Mater. 2017, 7, 1601863–1601869. [171] Ardizzone, S.; Bianchi, C. L.; Fadoni, M.; Vercelli, B. Magnesium Salts and Oxide: An XPS Overview. Appl. Surf. Sci. 1997, 119, 253–259. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98523 | - |
| dc.description.abstract | 隨環保意識提升,全球電動汽機車產業逐漸興起,鋰離子電池已臨近其應用之極限,找尋更合適之高效電力來源成為熱門議題。金屬空氣電池(metal–air battery)之陰極活性物質於生活中隨處可見,且其能量密度約為傳統鋰離子電池十倍以上,使其同時具備質輕、高效率、低成本等優勢,為新一代能源儲備優選。本研究聚焦於鎂氧氣電池(magnesium–oxygen battery)之電化學性能,旨於探討其作為新一代高能量密度儲能系統之可能性,藉預添加氧化鎂陰極減緩鎂氧氣電池於放電過程因初始成核活化能致使之成核過電位(nucleation overpotential),以延長循環過程之放電電壓穩定性與循環壽命。
本研究以燃燒法(combustion method)合成奈米級結晶氧化鎂(magnesium oxide; MgO),並藉定性分析技術鑑定樣品晶相與純度,以電子顯微鏡觀察樣品大小與均一性。接著將奈米氧化鎂與奈米碳管以球磨(ball milling)方式共同製作為陰極漿料,並將其應用於鎂氧氣電池系統,於定電流條件下以鈕扣型電池測試添加不同比例氧化鎂陰極之長循環壽命,並藉多項儀器監測奈米氧化鎂於電化學測試前後之含量變化與放電產物種類之消長。 本研究之新穎性為將預添加奈米級放電產物之陰極應用於鎂氧氣電池系統,並成功藉預添加奈米氧化鎂陰極降低電池循環過程所需之成核過電位,使其可於0.1C電流與截止電容量700 mAh g−1條件下循環15次,顯著提升電池之長循環穩定性。本研究亦進一步將預添加奈米氧化鎂陰極之鎂氧氣電池組裝為軟包型電池,串聯後可成功點亮紅光發光二極體(light-emitting diode; LED)長達72小時,揭示其未來之商業應用價值。此外,本研究亦應用國家同步輻射(National Synchrotron Radiation Research Center; NSRRC)之原位X光繞射(in situ X-ray diffraction)技術,揭示預添加之晶相氧化鎂於充電與放電過程之含量消長。 | zh_TW |
| dc.description.abstract | With the growing demand for sustainable energy and the limitations of lithium-ion batteries, metal–air batteries have emerged as promising alternatives due to their high energy density, low cost, and utilization of ambient oxygen as the cathodic reactant. The magnesium–oxygen battery (Mg–O2 battery) offers advantages such as high theoretical capacity, natural abundance, and safety. However, challenges such as high nucleation overpotential during the initial discharge hinder its cycling stability.
This study investigates the electrochemical performance of Mg–O2 batteries through the use of a cathode pre-added with nanoscale magnesium oxide (MgO). The MgO was synthesized via a combustion method, characterized using X-ray diffraction and electron microscopy, and then combined with carbon nanotubes (CNTs) via ball milling to form a composite cathode. Coin-type Mg–O2 batteries were assembled and tested under constant current conditions. The pre-filled MgO significantly reduced nucleation overpotential and improved long-term discharge voltage stability. The optimized cell sustained 15 cycles at 0.1C with a cutoff capacity of 700 mAh g⁻¹. A pouch-type Mg–O2 battery incorporating the same cathode configuration successfully powered a red light-emitting diode (LED) for over 72 hours, demonstrating its practical applicability. Additionally, in situ X-ray diffraction conducted at the National Synchrotron Radiation Research Center (NSRRC) confirmed the reversible phase behavior of MgO during cycling. These results highlight the effectiveness of MgO pre-filled in enhancing the cycling performance of Mg–O2 batteries, suggesting a viable pathway toward practical, high-energy metal–air energy storage systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:26:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:26:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xiv 第一章 緒論 1 1.1 電化學(Electrochemistry) 1 1.1.1 法拉第定律(Faraday’s Law) 3 1.1.2 吉布斯自由能(Gibbs Free Energy) 3 1.1.3 能斯特方程式(Nernst Equation) 4 1.2 儲能系統發展與演進 6 1.2.1 燃料電池(Fuel Cell) 6 1.2.2 鋰離子電池(Li-Ion Battery) 7 1.2.3 全固態電池(All-Solid-State Battery) 9 1.3 金屬空氣電池(Metal–Air Battery) 10 1.3.1 鋰氧氣電池(Li–O2 Battery) 18 1.3.2 鋅空氣電池(Zn–Air Battery) 21 1.3.3 鎂氧氣電池(Mg–O2 Battery) 23 1.4 陰極預添加之金屬空氣電池 28 1.5 影響電池電化學表現之因素 30 1.5.1 固態電解質界面層(Solid Electrolyte Interphase; SEI) 31 1.5.2 成核動力學 33 1.6 研究動機與目的 37 第二章 實驗儀器 39 2.1 實驗藥品 39 2.2 實驗步驟 41 2.2.1 奈米氧化鎂(Magnesium Oxide Nanoparticle) 41 2.2.2 預添加奈米氧化鎂陰極(MgO/CNT Cathode) 42 2.2.3 鈕扣型鎂氧氣電池 44 2.2.4 軟包型鎂氧氣電池 46 2.3 儀器分析 48 2.3.1 粉末X光繞射儀(Powder X-Ray Diffractometer; XRD) 48 2.3.2 軟X光吸收光譜(Soft X-Ray Absorption Spectroscopy; SXAS) 51 2.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope; FESEM) 54 2.3.4 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope; FETEM) 57 2.3.5 充放電機(Cycling Machine) 58 2.3.6 原位X光繞射光譜(In Situ X-Ray Diffraction; XRD) 60 2.3.7 X光光電子能譜儀(X-Ray Photoelectron Spectroscopy; XPS) 61 第三章 結果與討論 63 3.1 氧化鎂性質鑑定 63 3.1.1 奈米氧化鎂之定性分析 64 3.1.2 奈米氧化鎂之形貌鑑定 66 3.2 預添加奈米氧化鎂陰極之鎂氧氣電池 71 3.2.1 奈米氧化鎂與奈米碳管混合粉末鑑定 71 3.2.2 預添加氧化鎂陰極之鈕扣型鎂氧氣電池 73 3.2.3 預添加氧化鎂陰極之軟包型鎂氧氣電池 76 3.3 預添加氧化鎂陰極之放電產物鑑定 77 3.3.1 鎂氧氣電池放電產物之定性分析 77 3.3.2 鎂氧氣電池放電產物之形貌鑑定 85 3.3.3 鎂氧氣電池放電產物之原位X光繞射分析 95 第四章 總結與未來展望 99 參考文獻 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鎂氧氣電池 | zh_TW |
| dc.subject | 預添加氧化鎂陰極 | zh_TW |
| dc.subject | 成核過電位 | zh_TW |
| dc.subject | 原位X光繞射 | zh_TW |
| dc.subject | pre-filled MgO cathode | en |
| dc.subject | nucleation overpotential | en |
| dc.subject | Mg–O2 battery | en |
| dc.subject | in situ XRD | en |
| dc.title | 具奈米氧化鎂預添加陰極之鎂氧氣電池 | zh_TW |
| dc.title | Magnesium–Oxygen Batteries with Nano Magnesium Oxide Pre-Filled Cathode | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 姜昌明;鍾仁傑;張文昇;顏宏儒 | zh_TW |
| dc.contributor.oralexamcommittee | Chang Ming Jiang;Ren Jei Chung;Wen Sheng Chang;Hung Ju Yen | en |
| dc.subject.keyword | 鎂氧氣電池,預添加氧化鎂陰極,成核過電位,原位X光繞射, | zh_TW |
| dc.subject.keyword | Mg–O2 battery,pre-filled MgO cathode,nucleation overpotential,in situ XRD, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202501373 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-06-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
