Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98512
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王弘毅zh_TW
dc.contributor.advisorHurng-Yi Wangen
dc.contributor.author邱宇晨zh_TW
dc.contributor.authorYu-Chen Chiuen
dc.date.accessioned2025-08-14T16:24:09Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation1. Avise, J.C., et al., Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 1987: p. 489-522.
2. Durand, J.D., et al., Nested clade and phylogeographic analyses of the chub, Leuciscus cephalus (Teleostei, Cyprinidae), in Greece: implications for Balkan Peninsula biogeography. Molecular Phylogenetics and Evolution, 1999. 13(3): p. 566-580.
3. Tzeng, C. Distribution of the Freshwater Fishes of Taiwan. Quarterly Journal of Taiwan Museum, 1986. 39(2): p. 127-146.
4. Jean, C.-T., et al., Population genetic structure in the endemic cyprinid fish Microphysogobio alticorpus in Taiwan: evidence for a new phylogeographical area. Biochemical Systematics and Ecology, 2014. 57: p. 108-116.
5. Liao, T.-Y., et al., Phylogeography of the endangered species, Sinogastromyzon puliensis (Cypriniformes: Balitoridae), in southwestern Taiwan based on mtDNA. Zoological Studies, 2008. 47(4): p. 383-392.
6. Boggs, S., Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceanographica Taiwanica. Taiwan., 1979. 10: p. 10-49.
7. Wang, H.Y., et al., Influence of glaciation on divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Molecular Ecology, 1999. 8(11): p. 1879-1888.
8. Chen, I.-S., J.-H. Wu, and S.-P. Huang, The taxonomy and phylogeny of the cyprinid genus Opsariichthys Bleeker (Teleostei: Cyprinidae) from Taiwan, with description of a new species. Chinese Fishes, 2010: p. 165-183.
9. 邱柏豪,粗首鱲複合種群之粒線體基因族群遺傳研究,海洋科學系研究所。2017, 碩士論文,國立中山大學海洋科學系,高雄市。
10. Scribner, K.T., K.S. Page, and M.L. Bartron, Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Reviews in Fish Biology and Fisheries, 2000. 10: p. 293-323.
11. Wu, C.I., The genic view of the process of speciation. Journal of Evolutionary Biology, 2001. 14(6): p. 851-865.
12. Nosil, P., D.J. Funk, and D. Ortiz‐Barrientos, Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 2009. 18(3): p. 375-402.
13. Funk, W.C., et al., Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Molecular Ecology, 2016. 25(10): p. 2176-2194.
14. Yeaman, S., S. Aeschbacher, and R. Bürger, The evolution of genomic islands by increased establishment probability of linked alleles. Molecular Ecology, 2016. 25(11): p. 2542-2558.
15. Wang, H.Y., et al., New insights on molecular systematics of opsariichthines based on cytochrome b sequencing. Journal of Fish Biology, 2007. 71: p. 18-32.
16. Chen, S., Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta, 2023. 2(2): p. e107.
17. Chen, S., et al., fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018. 34(17): p. i884-i890.
18. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-2120.
19. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013; arXiv:1303.3997.
20. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-1760.
21. Tai, J-H. Mechanisms of Genomic Divergence in the Opsariichtyini: Chromosomal Fission and Environmental Adaptation. 2025,Taipei: National Taiwan University.
22. Danecek, P., et al., Twelve years of SAMtools and BCFtools. GigaScience, 2021. 10(2).
23. Van der Auwera, G.A. and B.D. O'Connor, Genomics in the cloud: using Docker, GATK, and WDL in Terra. O'Reilly Media , 2020.
24. Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011. 27(21): p. 2987-93.
25. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-2158.
26. Meng, G., et al., MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 2019. 47(11): p. e63-e63.
27. Kumar, S., et al., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 2018. 35(6): p. 1547-1549.
28. Bouckaert, R., et al., BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 2019. 15(4): p. e1006650.
29. Dowling, T.E., et al., Evolutionary relationships of the plagopterins (Teleostei: Cyprinidae) from cytochrome b sequences. Copeia, 2002. 2002(3): p. 665-678.
30. Rambaut, A., et al., Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 2018. 67(5): p. 901-904.
31. Chang, C.C., et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015. 4(1).
32. Alexander, D.H., J. Novembre, and K. Lange, Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009. 19(9): p. 1655-64.
33. Ortiz, E., vcf2phylip v2. 0: Convert a VCF Matrix into Several Matrix Formats for Phylogenetic Analysis [Computer Software]. 2019.
34. Minh, B.Q., et al., IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 2020. 37(5): p. 1530-1534.
35. Patterson, N., et al., Ancient admixture in human history. Genetics, 2012. 192(3): p. 1065-1093.
36. Browning, B.L., et al., Fast two-stage phasing of large-scale sequence data. The American Journal of Human Genetics, 2021. 108(10): p. 1880-1890.
37. Browning, B.L., Y. Zhou, and S.R. Browning, A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 2018. 103(3): p. 338-348.
38. Alves, T.D., Modélisation du déséquilibre de liaison en génomique des populations par méthodes d'optimisation. 2017, Université Grenoble Alpes.
39. Dias-Alves, T., J. Mairal, and M.G.B. Blum, Loter: A Software Package to Infer Local Ancestry for a Wide Range of Species. Molecular Biology and Evolution, 2018. 35(9): p. 2318-2326.
40. Wu, T., et al., clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2021. 2(3).
41. Zhang, C., et al., PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2018. 35(10): p. 1786-1788.
42. Santiago, E., et al., Recent Demographic History Inferred by High-Resolution Analysis of Linkage Disequilibrium. Molecular Biology and Evolution, 2020. 37(12): p. 3642-3653.
43. Terhorst, J., J.A. Kamm, and Y.S. Song, Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature genetics, 2017. 49(2): p. 303-309.
44. 楊芷毓,石門水庫集水區湳仔溝溪之臺灣馬口魚族群生態學研究,漁業科學研究所。2011,碩士論文,國立臺灣大學漁業科學研究所,台北市。
45. Bergeron, L.A., et al., Evolution of the germline mutation rate across vertebrates. Nature, 2023. 615(7951): p. 285-291.
46. Allio, R., et al., Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Molecular Biology and Evolution, 2017. 34(11): p. 2762-2772.
47. Smith, B.T. and J. Klicka, Examining the role of effective population size on mitochondrial and multilocus divergence time discordance in a songbird. PLoS One, 2013. 8(2): p. e55161.
48. Chang, Q., et al., Rapid topographic growth of the Taiwan orogen since~ 1.3–1.5 Ma. Science Advances, 2023. 9(25): p. eade6415.
49. Siddall, M., et al., Sea-level fluctuations during the last glacial cycle. Nature, 2003. 423(6942): p. 853-858.
50. Mellado, M., et al., Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annual Review of Immunology, 2001. 19(1): p. 397-421.
51. Doody, G.M., et al., Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nature Immunology, 2001. 2(6): p. 542-547.
52. Koubek, E.J. and L.C. Santy, Actin up: an overview of the Rac GEF Dock1/Dock180 and its role in cytoskeleton rearrangement. Cells, 2022. 11(22): p. 3565.
53. Lu, D.L., et al., Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. The Journal of Physiology, 2019. 597(6): p. 1585-1603.
54. Wei, Y., et al., The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife, 2015. 4: p. e05289.
55. Little, A., Thyroid hormone regulation of thermal acclimation in ectotherms: physiological mechanisms and ecoevolutionary implications. Molecular and Cellular Endocrinology, 2021. 530: p. 111285.
56. Lema, S.C., et al., Endocrine and metabolic impacts of warming aquatic habitats: differential responses between recently isolated populations of a eurythermal desert pupfish. Conservation Physiology, 2016. 4(1): p. cow047.
57. Parsons, A.E., et al., Expression dynamics of genes in the hypothalamic-pituitary-thyroid (HPT) cascade and their responses to 3, 3′, 5-triiodo-l-thyronine (T3) highlights potential vulnerability to thyroid-disrupting chemicals in zebrafish (Danio rerio) embryo-larvae. Aquatic Toxicology, 2020. 225: p. 105547.
58. Little, A.G., et al., Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio). BMC Biology, 2013. 11: p. 1-15.
59. Levin, B. and M. Levina, Poly‐and oligomerization of scales in the blue bream Ballerus ballerus (Cyprinidae) as a consequence of thyroid status regulation. Journal of Applied Ichthyology, 2014. 30(4): p. 809-813.
60. Chen, F., et al., Systematics and phylogeography of the Taiwanese endemic minnow Candidia barbatus (Pisces: Cyprinidae) based on DNA sequence, allozymic, and morphological analyses. Zoological Journal of the Linnean Society, 2011. 161: p. 613-632.
61. 粘閔智;邱瓏臻,粗首鱲遺傳多樣性與形態變異之研究。1996,基隆市私立聖心高級中學,基隆市。
62. Xavier, I.J., et al., Glycogen synthase kinase 3β negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. Journal of Biological Chemistry, 2000. 275(37): p. 29147-29152.
63. Tucker, N.R., et al., HSF1 is essential for the resistance of zebrafish eye and brain tissues to hypoxia/reperfusion injury. PLoS One, 2011. 6(7): p. e22268.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98512-
dc.description.abstract粗首馬口鱲(Opsariichthys pachycephalus)是屬於鲴科(Xenocyprididae)的初級淡水魚類,主要分布於臺灣西部河川。以高屏溪為界其粒線體基因以及同功酶基因型能分為南北兩個族群,並且過去的研究中以cytb 確認到有高屏溪以北的個體被放流至南部的狀況。目前粗首馬口鱲缺少對核基因的族群研究,因此將透過全基因組定序(Whole genome sequencing)探討粗首馬口鱲南北族群的高度分化是否有天擇參與,並調查近期的河川雜交狀況。此研究蒐集了臺灣西部從瑪鋉溪至港口溪總共48個樣本,定序結果為86.79%的平均覆蓋率以及10.79X的平均深度。
PCA、演化樹以及ADMIXTURE的結果與過去的研究一致。以高屏溪為界分為兩個族群,北部族群可以再分為兩個小族群,分別為苗栗中港溪以北的北部族群與介於中港溪及高屏溪之間的中部族群。高屏溪以南的河川存在許多雜交個體,而高屏溪以北則沒有檢測到任何雜交個體;粒線體與核基因的演化樹不匹配也應證了雜交的現狀。透過族群間的固定SNP (Fixed SNP)以及F3 Statistic,確認到高屏溪、枋山溪、楓港溪、四重溪以及港口溪含有雜交的基因型,高屏溪的個體則屬於對南部族群的多次回交族群,而枋山溪、楓港溪、四重溪以及港口溪則屬於F2或是中部族群的多次回交的族群。所以南北族群間還未演化出完全的生殖隔離機制。
在核基因與粒線體的演化樹上分別計算出0.47%與4.67%的遺傳距離(Genetic distance),結合南部族群不論在核基因的π值都是三個族群中的最低值,還有粒線體基因組在南北族群間最近共祖時間的高估(226萬年)。代表粒線體基因組可能受到基因漂變(Genetic drift)的影響而加速的分化。
此研究使用了FST以及族群間核苷酸多樣性(π)比率預測以高屏溪為界南北族群的候選天擇基因,檢測到Mammalian target of rapamycin (mTOR)以及Thyroid hormone receptor beta (thrb),它們分別在斑馬魚(Danio rerio)以及食藻鱂(Cyprinodon nevadensis amargosae)上被證實參與溫度調節反應。另外南部族群中還檢測到了顯著的Thyroid hormone signaling pathway (ko04919),過去的研究顯示側線鱗數與甲狀腺素有關,而且在臺灣鬚鱲身上也發現了側線鱗與河川溫度的負相關關係。表示南北分化可能與河川溫度適應有關。
zh_TW
dc.description.abstractOpsariichthys pachycephalus, a primary freshwater fish species belonging to the family Xenocyprididae, is mainly distributed in rivers of western Taiwan. Based on mitochondrial DNA (mtDNA) and allozyme markers, populations can be divided into two group , northern and southern, using the Kaoping River as the boundary. Previous studies using the cytb gene have confirmed that individuals from north of the Kaoping River were introduced into rivers in the south. However, there is currently a lack of population studies based on nuclear genomic data.
In this study, we applied whole-genome sequencing (WGS) to investigate whether the pronounced differentiation between the northern and southern populations of O. pachycephalus is shaped by natural selection, and to assess recent hybridization events across rivers. A total of 48 individuals were collected from rivers across western Taiwan, ranging from the Masu River to the Gangkou River. The sequencing yielded an average coverage of 86.79% and a mean depth of 10.79×.
Principal Component Analysis (PCA), phylogenetic trees, and ADMIXTURE results were consistent with previous findings, identifying two major genetic groups divided by the Kaoping River. The northern group can be further subdivided into a northern subgroup (north of the Jhonggang River) and a central subgroup (between the Jhonggang and Kaoping Rivers). In contrast, many hybrid individuals were detected in rivers south of the Kaoping River, while no hybrids were found in the north. The incongruence between mitochondrial and nuclear phylogenies further supports the presence of hybridization.
Through analysis of fixed SNPs and the f3 statistic, hybrid genotypes were confirmed in the Kaoping, Fangshan, Fenggang, Sichongxi, and Gangkou Rivers. Individuals from the Kaoping River were identified as multi-generation backcrosses to the southern population, while those from the other southern rivers were either F2 hybrids or backcrosses involving the central subgroup. These findings suggest that complete reproductive isolation between the northern and southern populations has not yet evolved.
Genetic distances calculated from nuclear and mitochondrial phylogenies were 0.47% and 4.67%, respectively. Moreover, the southern group exhibited the lowest nucleotide diversity (π) among the three identified subgroups. In combination with an overestimated mitochondrial time to most recent common ancestor (TMRCA) between north and south populations (2.26 million years), these results suggest that mitochondrial divergence may have been accelerated by genetic drift.
We further used FST and inter-population nucleotide diversity ratios (π ratios) to identify candidate genes under selection between the northern and southern populations. Notably, genes such as Mammalian target of rapamycin (mTOR) and Thyroid hormone receptor beta (thrb), both previously implicated in thermal adaptation in Danio rerio and Cyprinodon nevadensis amargosae—were identified. Additionally, the southern population showed significant enrichment of the thyroid hormone signaling pathway (ko04919). Previous studies have associated lateral line scale count with thyroid hormone levels, and in Candidia barbatus, a negative correlation has been found between scale count and river temperature. These findings suggest that the observed north–south genetic divergence may be associated with adaptation to local thermal environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:24:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:24:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
誌謝 ii
摘要 iv
ABSTRACT vi
目次 viii
表次 x
圖次 xi
第一章 前言 1
第二章 材料與方法 4
2-1 樣本來源 4
2-2 DNA萃取、聚合酶連鎖反應(PCR) 以及定序 4
2-3 全基因組定序 (Whole genome sequencing) 5
2-4 粒線體全基因組組裝與分化計算 6
2-5族群結構分析 、親緣關係樹、分化計算 6
2-5-1篩除高度連鎖點位以及族群結構分析 6
2-5-2構建演化樹 7
2-5-3 分化計算 7
2-6 雜交檢測 7
2-6-1 族群的基因分化程度與基因多樣性 7
2-6-2雜交族群檢定 8
2-6-3雜交區段檢測 8
2-7 適應性基因檢測以及族群統計資料 9
2-8 族群歷史 10
第三章 結果 11
3-1 cytb結果及WGS定序 11
3-2族群結構 11
3-3雜交鑑定 13
3-4 ABBA-BABA statistic 14
3-5族群歷史、群分化時間及演化樹分化程度 14
3-6適應性基因檢測 16
第四章 討論 17
4-1 南北族群的分化時間與分化程度 17
4-2 南北族群的雜交狀況 18
4-3 南部回交族群保留的基因滲流片段與免疫有關 19
4-4 南北族群的分化與溫度具有關聯性 19
第五章 結論 22
第六章 參考文獻 23
表 29
圖 61
-
dc.language.isozh_TW-
dc.subject全基因組定序zh_TW
dc.subject族群遺傳zh_TW
dc.subject天擇zh_TW
dc.subject雜交zh_TW
dc.subject粗首馬口鱲zh_TW
dc.subjectOpsariichthys pachycephalusen
dc.subjecthybridizationen
dc.subjectnatural selectionen
dc.subjectwhole-genome sequencingen
dc.subjectPopulation geneticsen
dc.title粗首馬口鱲以高屏溪為界的南北遺傳分化機制zh_TW
dc.titleThe mechanism of north–south genetic divergence of Opsariichthys pachycephalus across the Kaoping Riveren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王子元;廖德裕zh_TW
dc.contributor.oralexamcommitteeTzi-Yuan Wang;Te-Yu Liaoen
dc.subject.keyword族群遺傳,全基因組定序,粗首馬口鱲,雜交,天擇,zh_TW
dc.subject.keywordPopulation genetics,whole-genome sequencing,Opsariichthys pachycephalus,hybridization,natural selection,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202502820-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-05-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved