請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98511完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元 | zh_TW |
| dc.contributor.advisor | Shih-Yuan Chen | en |
| dc.contributor.author | 林家琪 | zh_TW |
| dc.contributor.author | Chia-Chi Lin | en |
| dc.date.accessioned | 2025-08-14T16:23:55Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | [1] Z. -K. Weng et al., "Millimeter-Wave and Terahertz Fixed Wireless Link Budget Evaluation for Extreme Weather Conditions," IEEE Access, vol. 9, pp. 163476-163491, 2021, doi: 10.1109/ACCESS.2021.3132097.
[2] T. Eichler and R. Ziegler, “Fundamentals of THz technology for 6G”, Rhode & Schwarz, Munich, Germany, White Paper, 2022, pp. 1-56. [3] F. Liu, Y. Cui, C. Masouros, J. Xu, T. Han, and Y. C. Eldar, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728-1767, June 2022 [4] X. Yang, Y. R. Zheng, M. T. Ghasr, and K. M. Donnell, “Microwave imaging from sparse measurements for near-field synthetic aperture radar,” IEEE Trans. Instrum. Meas., vol. 66, no. 10, pp. 2680–2692, Oct. 2017. [5] H.-J. Yang, T.-Y. Lin, and S.-Y. Chen, “Indoor millimeter-wave imaging based on sparsity estimated compressed sensing and calibrated point spread function,” IEEE Antennas Wireless Propag. Lett., vol. 23, no. 6, pp. 1680-1684, June 2024. [6] 林庭揚 應用於三維微波成像中之重建過疏採樣的插值方法 國立臺灣大學碩士論文,2022 年。 doi: 10.6342/NTU202203619. [7] C.-H. Tsai, J. Chang, L.-Y. Ou Yang, and S.-Y. Chen, “Three-Dimensional Microwave Holographic Imaging with Probe and Phase Compensations,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 1, pp. 368-380, Jan. 2018. [8] Y. Álvarez et al., "Fourier-Based Imaging for Multistatic Radar Systems," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 8, pp. 1798-1810, Aug. 2014, doi: 10.1109/TMTT.2014.2332307. [9] X. Zhuge and A. G. Yarovoy, "Three-Dimensional Near-Field MIMO Array Imaging Using Range Migration Techniques," IEEE Transactions on Image Processing, vol. 21, no. 6, pp. 3026-3033, June 2012, doi: 10.1109/TIP.2012.2188036. [10] R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, "Frequency-Domain Imaging Algorithm for Single-Input–Multiple-Output Array," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 12, pp. 1747-1751, Dec. 2016, doi: 10.1109/LGRS.2016.2602442. [11] Sherif Sayed Ahmed, Electronic microwave imaging with planar multistatic arrays, Logos Verlag Berlin GmbH, 2014. [12] R. C. Hansen, "Fundamental limitations in antennas," Proceedings of the IEEE, vol. 69, no. 2, pp. 170-182, Feb. 1981, doi: 10.1109/PROC.1981.11950 [13] The MathWorks, Inc. “interp2” mathworks.com. Accessed: November 10, 2024. [Online]. Available: https://www.mathworks.com/help/matlab/ref/interp2.html [14] Three-sigma-rule of thumb. Available: https://zh.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7%E6%B3%95%E5%89%87 [15] Interquartile range. Available: https://en.wikipedia.org/wiki/Interquartile_range [16] FEKO – EM Simulation Software. Available: https://altair.com/feko [17] OML – Millimeter Wave VNA Module User Manual. Available: https://www.omlinc.com/images/pdf/VxxVNA2/OML-V06VNA2_Datasheet.pdf [18] Agilent PNA Help. Available: https://www.keysight.com/tw/zh/product/E8361C/pna-microwave-network-analyzer.html [19] Eravant Pyramidal Horn antenna Datasheet. Available: https://sftp.eravant.com/content/datasheets/SAR-2013-06-S2.pdf [20] Two-Axis Stage, SGSP26-150 & SGSP26-100 Datasheet. Available: https://www.molenaar-optics.nl/OptoSigma%20Webcatalog/os05motorizedpositioners_bestanden/02%20Linear%20Stages/05%20SGSP%20Series%20Motorized%20Linear%20Stages.pdf [21] Two-Axis Stage Controller, SHOT-602 User Manual. Available: https://static.optosigma.com/en_jp/software/motorize/manual_en/SHOT-602.pdf [22] L. Zhang and D. Wei, “Dual DCT-DWT-SVD digital watermarking algorithm based on particle swarm optimization,” Multimedia Tools and Applications, vol. 78, no. 19, pp. 28003–28023, Jul. 2019. [23] R. Dosselmann and X. D. Yang, “A comprehensive assessment of the structural similarity index,” Signal, Image and Video Processing, vol. 5, no. 1, pp. 81–91, Nov. 2009. [24] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98511 | - |
| dc.description.abstract | 本研究針對D頻段(110–170 GHz)單輸入多輸出成像系統,探討在均勻稀疏採樣條件下的散射場及影像重建技術,並評估不同插值方法的成像品質與適用範圍。在高頻成像應用中,由於天線製造及系統硬體限制,滿足最小奈奎斯特取樣標準(四分之一波長)的全採樣條件往往難以實現,因此適當的數值重建方法對於恢復影像品質至關重要。
本研究比較團隊先前開發的有理薄板樣條(Rational Thin-Plate Spline, RTPS)插值方法與廣泛應用之雙立方(Bicubic)插值方法,評估其在不同均勻稀疏取樣條件下的成像效果。我們首先透過數值模擬驗證這兩種方法在不同測試物配置(單球體、雙球體、五球體陣列)下的表現,並分析不同取樣間隔對影像品質的影響。此外,我們進一步探討當系統採用外插來補足未取樣數據時,兩種插值方法在重建結果上的差異,發現 RTPS 在須採用外插時能維持較佳的空間連續性,而 Bicubic 因無法外插,必須使用零填充(Zero-padding),導致邊界影像品質下降。 此外,本研究架設了一套150-GHz量測系統,並透過該系統的量測數據進行重建與分析,以驗證先前的模擬結果。經過比較,評估兩種插值方法的抗噪性,並總結其優缺點及適用場景。最終的結果證實,本研究架設之150-GHz量測系統之成像品質與模擬大致吻合,進一步確立了 RTPS 與 Bicubic 插值方法在不同稀疏取樣條件下的成像特性。 | zh_TW |
| dc.description.abstract | This study focuses on the image reconstruction techniques for a D-band (110–170 GHz) single-input multiple-output (SIMO) imaging system under uniform sparse sampling conditions. It evaluates the imaging quality and applicability of different interpolation methods. In high-frequency imaging applications, achieving fully sampled data that meets the minimum Nyquist sampling standard (λc/4) is often infeasible due to limitations in antenna fabrication and system hardware. Therefore, appropriate numerical reconstruction methods are essential for restoring image quality.
This study compares the Rational Thin-Plate Spline (RTPS) interpolation method, previously developed by our research team, with the widely used bicubic interpolation method, assessing their performance under different uniform sparse sampling conditions. Numerical simulations were first conducted to evaluate both methods across various target object configurations (single sphere, dual spheres, and five-sphere arrays) and to analyze the impact of different sampling intervals on image quality. Additionally, we investigated the differences between these interpolation methods when extrapolation is required to compensate for missing sampled data. The results indicate that RTPS maintains better spatial continuity in extrapolation scenarios, whereas bicubic, which lacks extrapolation capability and relies on zero-padding, suffers from reduced image quality at the boundaries. Furthermore, a 150-GHz experimental measurement system was established in this study, and the acquired measurement data were reconstructed and analyzed to validate the earlier simulation results. A comparative evaluation was conducted to assess the noise resistance of both interpolation methods, summarizing their advantages, limitations, and applicable scenarios. The final results confirm that the image quality of the 150-GHz measurement system closely aligns with the simulation, further establishing the interpolation characteristics of RTPS and bicubic under different sparse sampling conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:23:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:23:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 #
致謝……….. i 中文摘要….. iii ABSTRACT… iv CONTENTS.. vi LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Terahertz and Millimeter Waves: Characteristics and Applications 1 1.1.2 Working Principle of Imaging System 5 1.2 Motivation 8 1.3 Contribution 10 1.4 Chapter Outline 11 Chapter 2 Sub-Terahertz SIMO Imaging Based on Interpolation Techniques 12 2.1 Theory of Single Input Multiple Output (SIMO) Migration 12 2.1.1 SIMO imaging equation 12 2.2 Sampling Criteria and Image Resolution 16 2.2.1 Nyquist Theorem and Spatial Sampling 16 2.2.2 Spatial Resolution and 2k Circle Limitations 17 2.3 Interpolation Method Selection and Comparison (RTPS v.s. Bicubic) 20 2.3.1 Limitations of Fixed Sampling Interpolation 20 2.3.2 Rational Thin-plate Spline (RTPS) Interpolation Method 22 2.3.3 Refinement of RTPS Method 25 2.3.4 Bicubic Interpolation Method 30 2.3.5 Pros and Cons 31 Chapter 3 Imaging Results Based on Simulation Aperture Data 34 3.1 Simulation setup 34 3.1.1 Imaging Setup in Simulation 34 3.1.2 System parameters and targets 38 3.2 L/D ratio 41 3.3 Imaging using RTPS & Bicubic Interpolation Methods 44 3.4 Imaging of different targets 49 3.4.1 One PEC sphere placed in the center 49 3.4.2 Two PEC spheres aligned along the x-axis 57 3.4.3 Two PEC spheres aligned along the y-axis 62 3.4.4 Five PEC spheres placed as a cross shape and X shape 66 3.5 Imaging based on aperture data with different SNR 72 Chapter 4 Imaging Results Based on Measurement Aperture Data 78 4.1 Measurement System and Setup 78 4.2 Targets for Imaging 83 4.3 Imaging Results of Strong Scatterers 87 4.4 Imaging Results of Weak Scatterers 95 4.5 Discussion on Measurement Errors and Preliminary Measurements 100 4.5.1 Preliminary Discussion on Square-Cut Weak Scatterers 100 4.5.2 Evaluation of Improved Background Fixation for Target Objects 102 Chapter 5 Conclusion 107 5.1 Summary 107 5.2 Future Work 109 Appendix A Metrics for Imaging 110 References…. 113 | - |
| dc.language.iso | en | - |
| dc.subject | 單輸入多輸出架構 | zh_TW |
| dc.subject | 內插法 | zh_TW |
| dc.subject | 次太赫茲成像 | zh_TW |
| dc.subject | 稀疏採樣 | zh_TW |
| dc.subject | sparse sampling | en |
| dc.subject | sub-THz imaging | en |
| dc.subject | SIMO | en |
| dc.subject | interpolation methods | en |
| dc.title | 基於均勻稀疏採樣散射場資料及插值方法之D頻段單輸入多輸出電磁成像技術 | zh_TW |
| dc.title | D-Band Single-Input-Multiple-Output Electromagnetic Imaging Based on Uniformly Undersampled Scattering Data and Interpolation Techniques | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳念偉;蔡作敏;歐陽良昱 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Wei Chen;Zuo-Min Tsai;Liang-Yu Ou Yang | en |
| dc.subject.keyword | 內插法,單輸入多輸出架構,稀疏採樣,次太赫茲成像, | zh_TW |
| dc.subject.keyword | interpolation methods,SIMO,sparse sampling,sub-THz imaging, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU202502411 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
