Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉俊麟zh_TW
dc.contributor.advisorChun-Lin Liuen
dc.contributor.author林邑恆zh_TW
dc.contributor.authorYi-Heng Linen
dc.date.accessioned2025-08-14T16:22:35Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation[1] Y.-H. Xiao, L. Huang, D. Ramírez, C. Qian, and H. C. So, “Covariance matrix recovery from one-bit data with non-zero quantization thresholds: Algorithm and performance analysis,” IEEE Transactions on Signal Processing, vol. 71, pp. 4060–4076, 2023.
[2] X. Guo, Q. Wan, Y. Zhang, and J. Liang, “Teaching notes of MVDR in digital signal processing (DSP),” in Proceedings of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012, 2012, pp. H3A–5–H3A–8.
[3] H. Van Trees, Optimum Array Processing. Wiley-Interscience, 2001. [Online]. Available: https://books.google.com.tw/books?id=BYPkswEACAAJ
[4] I. Jolliffe, Principal Component Analysis, ser. Springer Series in Statistics. Springer, 2002. [Online]. Available: https://books.google.com.tw/books?id=TtVF-ao4fI8C
[5] C. Wang, X. Cui, G. Liu, and M. Lu, “Two-stage spatial whitening and normalized MUSIC for robust DOA estimation of GNSS signals under jamming,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–16, 2024.
[6] A. Aubry, A. De Maio, and L. Pallotta, “A geometric approach to covariance matrix estimation and its applications to radar problems,” IEEE Transactions on Signal Processing, vol. 66, no. 4, pp. 907–922, 2018.
[7] L. Dong, J. Zhou, and T. Dai, “Color image noise covariance estimation with crosschannel image noise modeling,” in 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1–6.
[8] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics for Signal Processing. Cambridge University Press, 2018.
[9] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically symmetric distributions: Survey, new results and applications,” IEEE Transactions on Signal Processing, vol. 60, no. 11, pp. 5597–5625, 2012.
[10] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts,” IEEE Signal Processing Magazine, vol. 29, no. 4, pp. 61–80, 2012.
[11] R. Maronna, D. Martin, and V. Yohai, Robust Statistics: Theory and Methods, ser. Wiley Series in Probability and Statistics. Wiley, 2006.
[12] T. Blankenship, D. Kriztman, and T. Rappaport, “Measurements and simulation of radio frequency impulsive noise in hospitals and clinics,” in 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, vol. 3, 1997, pp. 1942–1946 vol.3.
[13] Z. Gülgün and E. G. Larsson, “Channel estimation in massive MIMO with heavytailed noise: Gaussian-mixture versus Cauchy models,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–4.
[14] H. Wu, H. Guo, Z. Wang, and Z. He, “Adaptive nonzero-mean detection algorithm in compound Gaussian sea clutter with generalized inverse Gaussian texture,” in IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 2024, pp. 9853–9857.
[15] K. Kumar, H. K. Boddapati, and A. K. Reddy Chavva, “A robust adaptive DOA estimation technique for non-Gaussian interferences based on Blake-Zisserman function,” in 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), 2024, pp. 1–5.
[16] X. Du, Q. Liu, Z. Li, Z. Qin, and J. Tang, “Cauchy matrix factorization for tag-based social image retrieval,” IEEE Access, vol. 7, pp. 132 302–132 310, 2019.
[17] G. Frahm and U. Jaekel, “Tyler’s M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance,” Econometrics: Econometric & Statistical Methods - General eJournal, 2008.
[18] P. Huber, Robust Statistics, ser. Wiley Series in Probability and Statistics - Applied Probability and Statistics Section Series. Wiley, 2004. [Online]. Available: https://books.google.com.tw/books?id=e62RhdqIdMkC
[19] D. E. Tyler, “A distribution-free M-estimator of multivariate scatter,” The Annals of Statistics, vol. 15, no. 1, pp. 234–251, 1987.
[20] E. Raninen and E. Ollila, “Bias adjusted sign covariance matrix,” IEEE Signal Processing Letters, vol. 29, pp. 339–343, 2022.
[21] C.-L. Liu and P. P. Vaidyanathan, “One-bit normalized scatter matrix estimation for complex elliptically symmetric distributions,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 9130–9134.
[22] T. Laurain, J. Lauber, and R. M. Palhares, “Avoiding matrix inversion in Takagi–Sugeno-based advanced controllers and observers,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 1, pp. 216–225, 2018.
[23] J. Fan, N. Locantore, J. Marron, D. Simpson, N. Tripoli, J.-T. Zhang, K. Cohen, G. Boente, R. Fraiman, B. Brumback, C. Croux, A. Kneip, J. Marden, D. Peña, J. Prieto, J. Ramsay, M. Valderrama, and A. Aguilera, “Robust principal component analysis for functional data,” TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, vol. 8, pp. 1–73, 02 1999.
[24] J. Van Vleck and D. Middleton, “The spectrum of clipped noise,” Proceedings of the IEEE, vol. 54, no. 1, pp. 2–19, 1966.
[25] C.-L. Liu and Z.-M. Lin, “One-bit autocorrelation estimation with non-zero thresholds,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4520–4524.
[26] A. Eamaz, F. Yeganegi, and M. Soltanalian, “Covariance recovery for one-bit sampled non-stationary signals with time-varying sampling thresholds,” IEEE Transactions on Signal Processing, vol. 70, pp. 5222–5236, 2022.
[27] P. P. Vaidyanathan, S.-M. Phoong, and Y.-P. Lin, Signal Processing and Optimization for Transceiver Systems. Cambridge University Press, 2010.
[28] E. Ollila and V. Koivunen, “Generalized complex elliptical distributions,” in Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, 2004, pp. 460–464.
[29] R. Yates and D. Goodman, Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, ser. Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers. Wiley, 2014. [Online]. Available: https://books.google.com.tw/books?id=6gKJAgAAQBAJ
[30] Åke Björck and S. Hammarling, “A Schur method for the square root of a matrix,” vol. 52-53, 1983, pp. 127–140. [Online]. Available: https://www.sciencedirect.com/science/article/pii/002437958380010X
[31] M. Abramowitz, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables,. USA: Dover Publications, Inc., 1974.
[32] C.-L. Liu and Y.-H. Chou, “Approximation and analysis of the one-bit Hermite law,”in ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025, pp. 1–5.
[33] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems, 2nd ed. USA: Prentice-Hall, Inc., 1996.
[34] R. F. Fischer, Precoding and Signal Shaping for Digital Transmission. USA: John Wiley & Sons, Inc., 2002.
[35] R. Price, “A useful theorem for nonlinear devices having Gaussian inputs,” IRE Transactions on Information Theory, vol. 4, no. 2, pp. 69–72, 1958.
[36] E. McMahon, “An extension of Price’s theorem (corresp.),” IEEE Transactions on Information Theory, vol. 10, no. 2, pp. 168–168, 1964.
[37] A. van den Bos, “Price’s theorem for complex variates,” IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 286–287, 1996.
[38] “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/, Release 1.2.4 of 2025-03-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. [Online]. Available: https://dlmf.nist.gov/
[39] J. F. Epperson, An Introduction to Numerical Methods and Analysis, 2nd ed. Wiley Publishing, 2013.
[40] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[41] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
[42] R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis, ser. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007. [Online]. Available: https://books.google.com.tw/books?id=gFWcQgAACAAJ
[43] C. Croux, E. Ollila, and H. Oja, “Sign and rank covariance matrices: Statistical properties and application to principal components analysis,” in Statistical Data Analysis Based on the L1-Norm and Related Methods, Y. Dodge, Ed. Basel: Birkhäuser Basel, 2002, pp. 257–269.
[44] R. Mallik, “On multivariate Rayleigh and exponential distributions,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1499–1515, 2003.
[45] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering: A Comprehensive Guide, 3rd ed. Cambridge University Press, 2006.
[46] E. Raninen and E. Ollila, “Bias adjusted sign covariance matrix (BASIC),” https://github.com/EliasRaninen/BASIC, 2021, gitHub repository.
[47] Q. Lin, H. Shen, W. Xu, C. Zhao, and X. You, “Joint transceiver design for MIMO radar with one-bit DACs and ADCs,” in ICC 2024 - IEEE International Conference on Communications, 2024, pp. 563–568.
[48] J. Choi, J. Mo, and R. W. Heath, “Near maximum-likelihood detector and channel estimator for uplink multiuser massive MIMO systems with one-bit ADCs,” IEEE Transactions on Communications, vol. 64, no. 5, pp. 2005–2018, 2016.
[49] W. F. Kibble, “An extension of a theorem of Mehler’s on Hermite polynomials,”Mathematical Proceedings of the Cambridge Philosophical Society, vol. 41, no. 1, pp. 12–15, 1945.
[50] L. Rizo, D. Torres, J. Dehesa, and D. Muñoz, “Cauchy distribution for jitter in IP networks,” in 18th International Conference on Electronics, Communications and Computers (conielecomp 2008), 2008, pp. 35–40.
[51] S. Kotz and S. Nadarajah, Multivariate T-Distributions and Their Applications. Cambridge University Press, 2004. [Online]. Available: https://books.google.com.tw/books?id=dmxtU-TxTi4C
[52] Y.-H.Chou, “One-bit power and autocorrelation estimation: Cramér-Rao bounds and adaptive methods,” Master’s thesis, Graduate Institute of Communication Engineering, National Taiwan University, 2023.
[53] S. Nadarajah and S. Kotz, “Estimation methods for the multivariate t-distribution,” Acta Applicandae Mathematicae, vol. 102, no. 1, pp. 99–118, 5 2008. [Online]. Available: https://doi.org/10.1007/s10440-008-9212-8
[54] Y. Khazaei and A. M. Sodagar, “Multi-channel ADC with improved bit rate and power consumption for electrocorticography systems,” in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2019, pp. 1–4.
[55] K. Oldham, J. Myland, and J. Spanier, An Atlas of Functions: with Equator, the Atlas Function Calculator. Springer New York, 2008. [Online]. Available: https://books.google.com.tw/books?id=8jv2PgAACAAJ
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98505-
dc.description.abstract在真實世界中,信號會受到脈衝式雜訊和離群值的影響,導致其分布呈現重尾 (heavy-tailed) 分布,使得極端值和常態分布比起具有較高的出現機率。重尾分布可以使用橢圓對稱分布 (elliptically symmetric distribution) 來模擬。橢圓對稱分布為常態分布的推廣版本,能涵蓋尾部機率較大或較小的情形。

在統計訊號處理中,如果資料屬於重尾分布,此時估計散布矩陣 (scatter matrix) 比估計傳統的共變異數矩陣 (covariance matrix) 更為適合。散布矩陣可視為共變異數矩陣的推廣版本,兩者之間只有一個倍數的差異。在資料為重尾分布時,散布矩陣比起共變異數矩陣能提供更穩建且正確的資訊,尤其是在如柯西分布 (Cauchy distribution) 這類無法定義共變異數矩陣的分布下。

現有的文獻中已提出許多估計散布矩陣的方法,如 M 估計量 (M-estimator) 及泰勒估計量 (Tyler’s estimator)。然而,M 估計量通常無法以封閉型式 (closed-form)表示,因此在實作上較為困難。為了解決此問題,這篇論文基於前人的研究,整合出一個估計散布矩陣的統計架構。在此架構中,我們先將資料通過一個非線性函數,接著再基於轉換後的資料計算共變異數矩陣。基於估計的共變異數矩陣,我們提出從此估計值推算散布矩陣的方法。此架構相對於 M 估計量在計算複雜度上有顯著的下降。

在本論文中,我們選擇了兩種不同的非線性函數來設計估計量。第一種函數為空間符號函數 (spatial sign function) 。此類函數會將空間上的點投影到單位球面。第二種函數為單位量化函數 (one-bit quantization function)。此種函數會將輸入值量化成 1 或 -1。這兩種函數能有效的壓抑離群值。透過上述兩種函數,我們成功設計出兩種能夠估計重尾分布資料的散布矩陣估計量。這些估計量能以封閉形式表示。模擬實驗顯示我們所提出的估計量在運算時間上優於 M 估計量,並且使用單位量化函數的估計量在估計散布矩陣時,其均方誤差(mean-squared error)優於泰勒估計量。此外,在固定取樣位元率的情況下,我們的估計器在估計散布矩陣時, 其均方誤差優於基於柯西分布的最大概似估計(maximum likelihoodestimation)方法。
zh_TW
dc.description.abstractReal-world measurements may be affected by impulsive noise or outliers, resulting in heavy-tailed distributions where extreme values have larger densities than normal distributions. A heavy-tailed distribution is usually modeled by an elliptically symmetric (ES) distribution, a generalized version of the normal distribution with heavier or lighter tail characteristics.

In statistical signal processing for heavy-tailed data, we estimate the scatter matrix rather than the covariance matrix. The scatter matrix is a generalized version of the covariance matrix, differing only in scaling. For heavy-tailed data, the scatter matrix provides more robust and accurate information than the covariance matrix, especially when the covariance matrix is undefined, such as the Cauchy distribution.

In the literature, researchers have proposed several estimation methods for the scatter matrix, such as the M or Tyler's estimator. However, the M-type estimators cannot be expressed in closed-form equations, increasing the difficulty of implementation. To tackle this challenge, we summarize existing estimation methods into an estimation scheme in this thesis. In the scheme, we first adjust the data with a nonlinear function and then calculate the sample covariance matrix (SCM) based on the adjusted data. From the estimated SCM, we propose a method for recovering the scatter matrix. The scheme reduces the computation load compared to the M-type estimators.

In this thesis, we select two nonlinear functions for estimator design. One is the spatial sign function, which projects the point onto the unit sphere. Another one is the one-bit quantization function, which quantizes the input signal into 1 or -1. These two functions are efficient in suppressing the outliers. With the two functions, we successfully design two estimators that can estimate the scatter matrix for some heavy-tailed distributed data. Those estimators are expressed in a closed-form expression. In the numerical results, we find that the computation time of our proposed estimators is faster than the M-type estimators. The estimator with the one-bit quantization function has a lower mean-squared error than Tyler's estimators in the estimation of the scatter matrix. Moreover, we find that the estimator with the one-bit quantization function performs better than the maximum likelihood estimation (MLE) method of Cauchy distribution in the estimation of the scatter matrix under a fixed bit rate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:22:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:22:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Chapter 1 Introduction 1
1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Preliminaries 7
2.1 Complex Random Vectors . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Complex Vector Space Isomorphism . . . . . . . . . . . . . . . . . 8
2.1.2 Complex Distributions . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Circularly Symmetric Distributions . . . . . . . . . . . . . . . . . . 11
2.2 Elliptically Symmetric Distributions . . . . . . . . . . . . . . . . . . 14
2.2.1 Real Elliptically Symmetric Distributions . . . . . . . . . . . . . . 14
2.2.2 CES Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Some Examples of ES Distributions . . . . . . . . . . . . . . . . . 24
2.2.4 Generation of Real Value t-distributed Data . . . . . . . . . . . . . 27
2.3 Parameter Estimators for ES Distributed Data . . . . . . . . . . . . . 28
2.3.1 Maximum Likelihood Estimator of ES Distributed Data . . . . . . . 29
2.3.2 M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Tyler’s Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 One-Bit Quantization Function . . . . . . . . . . . . . . . . . . . . . 33
2.5 Wirtinger Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Price Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 An Extension of Price Theorem . . . . . . . . . . . . . . . . . . . . 39
2.8 Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 Bisection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 3 An Estimation Scheme on Multivariate Elliptically Symmetric Distributed Data 45
3.1 Sample Covariance Matrix Estimator . . . . . . . . . . . . . . . . . 46
3.2 Substitutes of Sample Covariance Matrix . . . . . . . . . . . . . . . 47
3.2.1 M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Bias Adjusted Sign Covariance Matrix (BASIC) . . . . . . . . . . . 50
3.2.3 Scatter Matrix Estimation with Zero-Threshold One-Bit Quantization Functions 52
3.3 Estimation Scheme for Heavy-tailed Data . . . . . . . . . . . . . . . 53
3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Chapter 4 Scatter Matrix Recovery with Spatial Sign Function 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Complex Angular Central Gaussian Distribution . . . . . . . . . . . 58
4.3 Autocorrelation of CACG and ES Data . . . . . . . . . . . . . . . . 61
4.4 The solution to (4.27) . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Estimating the Correlation from Data Modified by Spatial Sign Function 76
4.6 Comparison with Bias Adjusted Sign Covariance Matrix . . . . . . . 78
4.7 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.1 Numerical Examination on Theorem 4.4.0.1 . . . . . . . . . . . . . 80
4.7.2 Numerical Result on Performance of MSE . . . . . . . . . . . . . . 84
Chapter 5 Scatter Matrix Recovery with One-Bit Quantization Function 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 One-Bit Quantization System Model . . . . . . . . . . . . . . . . . . 90
5.3 One-bit Methods with Non-zero Thresholds . . . . . . . . . . . . . . 91
5.3.1 Scatter Matrix Estimation Using One-bit Quantization System with Constant Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Scatter Matrix Estimation Using One-bit Quantization System with Time-Varying Deterministic Thresholds . . . . . . . . . . . . . . . 96
5.3.3 Scatter Matrix Estimation Using One-bit Quantization System with Random Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 One-bit Statistic Analysis on Bivariate Centered ES Distribution . . . 104
5.4.1 Centered Bivariate RES Distributions . . . . . . . . . . . . . . . . 104
5.4.2 One-bit First-order Statistic . . . . . . . . . . . . . . . . . . . . . . 107
5.4.3 One-bit Joint Statistic . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 One-bit statistics with Centered Bivariate Cauchy Distribution . . . . 116
5.6 Estimators Design with One-bit Quantization Function . . . . . . . . 117
5.6.1 Block Diagram of Scatter Matrix Recovery on Centered Bivariate RES Distributed Data . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.2 Scatter Matrix Recovery on Cauchy Distributed Data . . . . . . . . 120
5.6.3 Extension to Multivariate Cauchy Distributed Data . . . . . . . . . 125
5.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.1 One-bit Estimators under Bivariate Cauchy Distributed Data . . . . 127
5.7.2 MSE Examination Against Robust Estimators . . . . . . . . . . . . 129
5.7.2.1 Comparison of Mean Squared Errors with Existing Cauchy Estimator under Fixed Numbers of Snapshots . . . . . 131
5.7.2.2 Comparison of Mean Squared Errors with Existing Cauchy Estimator under a Fixed Bit-Rate . . . . . . . . . . . . 134
5.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Chapter 6 Conclusion 141
References 143
Appendix A — Mathematical Details 151
A.1 Integration with Cauchy PDF . . . . . . . . . . . . . . . . . . . . . 151
A.2 Calculation of (A.3) . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 Integration of Rayleigh PDF . . . . . . . . . . . . . . . . . . . . . . 156
A.4 Reformulation of Equation (11) and Equation (59) in [1] . . . . . . . 159
A.5 Derivation of the Range of r of the Three Subsets . . . . . . . . . . . 160
-
dc.language.isoen-
dc.subject統計信號處理zh_TW
dc.subject散布矩陣zh_TW
dc.subject柯西分布zh_TW
dc.subject橢圓對稱分布zh_TW
dc.subject單位量化函數zh_TW
dc.subjectone-bit quantization functionen
dc.subjectelliptically symmetric distributionsen
dc.subjectCauchy distributionen
dc.subjectstatistical signal processingen
dc.subjectscatter matrixen
dc.title應用非線性轉換於雙變量橢圓對稱分布資料之散布矩陣估計zh_TW
dc.titleScatter Matrix Estimation on Bivariate Elliptically Symmetric Distributed Data with Nonlinear Transformationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏志;林源倍zh_TW
dc.contributor.oralexamcommitteePo-Chih Chen;Yuan-Pei Linen
dc.subject.keyword散布矩陣,統計信號處理,單位量化函數,橢圓對稱分布,柯西分布,zh_TW
dc.subject.keywordscatter matrix,statistical signal processing,one-bit quantization function,elliptically symmetric distributions,Cauchy distribution,en
dc.relation.page164-
dc.identifier.doi10.6342/NTU202502515-
dc.rights.note未授權-
dc.date.accepted2025-08-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved