Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author蔡沛琪zh_TW
dc.contributor.authorPei-Chi Tsaien
dc.date.accessioned2025-08-14T16:20:19Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-03-
dc.identifier.citation[1] M. Esmaily et al., "Fundamentals and advances in magnesium alloy corrosion," Progress in Materials Science, vol. 89, pp. 92-193, 2017.
[2] I. Polmear, "Magnesium alloys and applications," Materials science and technology, vol. 10, no. 1, pp. 1-16, 1994.
[3] B. Mordike and T. Ebert, "Magnesium: properties—applications—potential," Materials Science and Engineering: A, vol. 302, no. 1, pp. 37-45, 2001.
[4] G. L. Song and A. Atrens, "Corrosion mechanisms of magnesium alloys," Advanced engineering materials, vol. 1, no. 1, pp. 11-33, 1999.
[5] D. Persaud-Sharma and A. McGoron, "Biodegradable magnesium alloys: a review of material development and applications," Journal of Biomimetics, Biomaterials and Tissue Engineering, vol. 12, pp. 25-39, 2012.
[6] G. Makar and J. Kruger, "Corrosion of magnesium," International materials reviews, vol. 38, no. 3, pp. 138-153, 1993.
[7] J. Gray and B. Luan, "Protective coatings on magnesium and its alloys—a critical review," Journal of alloys and compounds, vol. 336, no. 1-2, pp. 88-113, 2002.
[8] M. M. Avedesian and H. Baker, ASM specialty handbook: magnesium and magnesium alloys. ASM international Materials Park, OH, 1999.
[9] S. Fleming, "An overview of magnesium based alloys for aerospace and automotive applications," Rensselaer Polytechnic Institute, Hartford, CT, 2012.
[10] A. P. Mouritz, Introduction to aerospace materials. Elsevier, 2012.
[11] C. Liu, S. Lu, Y. Fu, and H. Zhang, "Flammability and the oxidation kinetics of the magnesium alloys AZ31, WE43, and ZE10," Corrosion Science, vol. 100, pp. 177-185, 2015.
[12] F. Czerwinski, "Controlling the ignition and flammability of magnesium for aerospace applications," Corrosion Science, vol. 86, pp. 1-16, 2014.
[13] J. Xie et al., "Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying," Journal of Magnesium and Alloys, vol. 9, no. 1, pp. 41-56, 2021.
[14] R. McNulty and J. Hanawalt, "Some corrosion characteristics of high purity magnesium alloys," Transactions of The Electrochemical Society, vol. 81, no. 1, p. 423, 1942.
[15] T. Takenaka, T. Ono, Y. Narazaki, Y. Naka, and M. Kawakami, "Improvement of corrosion resistance of magnesium metal by rare earth elements," Electrochimica Acta, vol. 53, no. 1, pp. 117-121, 2007, doi: 10.1016/j.electacta.2007.03.027.
[16] H. Ardelean, A. Seyeux, S. Zanna, F. Prima, I. Frateur, and P. Marcus, "Corrosion processes of Mg–Y–Nd–Zr alloys in Na2SO4 electrolyte," Corrosion Science, vol. 73, pp. 196-207, 2013.
[17] H. Zengin, Y. Turen, H. Ahlatci, and Y. Sun, "Mechanical properties and corrosion behavior of As-Cast Mg-Zn-Zr-(La) magnesium alloys," Journal of Materials Engineering and Performance, vol. 27, pp. 389-397, 2018.
[18] L. Gao, R. Chen, and E. Han, "Solid solution strengthening behaviors in binary Mg–Y single phase alloys," Journal of Alloys and Compounds, vol. 472, no. 1-2, pp. 234-240, 2009.
[19] A. Kula, X. Jia, R. K. Mishra, and M. Niewczas, "Mechanical properties of Mg-Gd and Mg-Y solid solutions," Metallurgical and Materials Transactions B, vol. 47, pp. 3333-3342, 2016.
[20] A. R. Setiawan, H. Ardiyana, A. Basuki, and U. A. Wibowo, "The Influence of Yttrium Addition on The Corrosion Resistance and Tensile Strength of As-Cast Mg-Y Alloys," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 553, no. 1: IOP Publishing, p. 012006.
[21] H. Zengin and A. W. Hassel, "Magnesium alloys with rare earth elements–A review of the recent progress on the corrosion properties," Corrosion Science, p. 112827, 2025.
[22] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, "Hardening precipitation in a Mg–4Y–3RE alloy," Acta Materialia, vol. 51, no. 18, pp. 5335-5348, 2003.
[23] X. Zhang, Y.-j. Li, C.-s. WANG, H.-w. LI, and B.-d. ZHANG, "Corrosion and electrochemical behavior of Mg–Y alloys in 3.5% NaCl solution," Transactions of Nonferrous Metals Society of China, vol. 23, no. 5, pp. 1226-1236, 2013.
[24] Y. Huang, H. Dieringa, K. U. Kainer, and N. Hort, "Understanding effects of microstructural inhomogeneity on creep response–New approaches to improve the creep resistance in magnesium alloys," Journal of Magnesium and Alloys, vol. 2, no. 2, pp. 124-132, 2014.
[25] K. U. Kainer, Magnesium alloys and technology. John Wiley & Sons, 2003.
[26] I. Polmear, Light alloys: from traditional alloys to nanocrystals. Elsevier, 2005.
[27] A. R. Natarajan, E. L. Solomon, B. Puchala, E. A. Marquis, and A. Van der Ven, "On the early stages of precipitation in dilute Mg–Nd alloys," Acta Materialia, vol. 108, pp. 367-379, 2016.
[28] J.-F. NIE, Precipitation and Hardening in Magnesium Alloys (The Minerals, Metals & Materials Society and ASM International). 2012.
[29] E. B. Öcal, Z. Esen, K. Aydınol, and A. F. Dericioğlu, "Comparison of the short and long-term degradation behaviors of as-cast pure Mg, AZ91 and WE43 alloys," Materials Chemistry and Physics, vol. 241, p. 122350, 2020.
[30] Y. Zhang et al., "Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions," Acta biomaterialia, vol. 121, pp. 695-712, 2021.
[31] J. Kubásek and D. Vojtěch, "Structural and corrosion characterization of biodegradable Mg–RE (RE= Gd, Y, Nd) alloys," Transactions of Nonferrous Metals Society of China, vol. 23, no. 5, pp. 1215-1225, 2013.
[32] H. Okamoto, "Supplemental literature review of binary phase diagrams: Cs-in, cs-k, cs-rb, eu-in, ho-mn, k-rb, li-mg, mg-nd, mg-zn, mn-sm, o-sb, and si-sr," Journal of Phase Equilibria and Diffusion, vol. 34, no. 3, pp. 251-263, 2013.
[33] S.-M. Zhu, M. Gibson, M. Easton, and J.-F. Nie, "The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys," Scripta Materialia, vol. 63, no. 7, pp. 698-703, 2010.
[34] H. E. Friedrich and B. L. Mordike, Magnesium technology. Springer, 2006.
[35] D. StJohn, M. Easton, M. Qian, and J. Taylor, "Grain refinement of magnesium alloys: a review of recent research, theoretical developments, and their application," Metallurgical and materials transactions A, vol. 44, pp. 2935-2949, 2013.
[36] M. Qian, D. StJohn, and M. Frost, "Characteristic zirconium-rich coring structures in Mg–Zr alloys," Scripta Materialia, vol. 46, no. 9, pp. 649-654, 2002.
[37] A. Coy, F. Viejo, P. Skeldon, and G. Thompson, "Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion," Corrosion Science, vol. 52, no. 12, pp. 3896-3906, 2010.
[38] P.-W. Chu and E. A. Marquis, "Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior," Corrosion Science, vol. 101, pp. 94-104, 2015.
[39] G. Song and A. Atrens, "Understanding magnesium corrosion—a framework for improved alloy performance," Advanced engineering materials, vol. 5, no. 12, pp. 837-858, 2003.
[40] G. Song and D. StJohn, "The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ," Journal of Light Metals, vol. 2, no. 1, pp. 1-16, 2002.
[41] G. Song, A. Atrens, and M. Dargusch, "Influence of microstructure on the corrosion of diecast AZ91D," Corrosion science, vol. 41, no. 2, pp. 249-273, 1998.
[42] E. F. Emley, "Principles of magnesium technology," 1966.
[43] M. Taheri, M. Danaie, and J. Kish, "TEM examination of the film formed on corroding Mg prior to breakdown," Journal of the Electrochemical Society, vol. 161, no. 3, p. C89, 2013.
[44] J. H. Nordlien, S. Ono, N. Masuko, and K. Nisancioglu, "A TEM investigation of naturally formed oxide films on pure magnesium," Corrosion science, vol. 39, no. 8, pp. 1397-1414, 1997.
[45] C. Zhong et al., "Protective diffusion coatings on magnesium alloys: A review of recent developments," Journal of Alloys and Compounds, vol. 520, pp. 11-21, 2012.
[46] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," NACE, 1966.
[47] T. Wu and K. Zhang, "Corrosion and protection of magnesium alloys: recent advances and future perspectives," Coatings, vol. 13, no. 9, p. 1533, 2023.
[48] Y. Li, Y. Wei, and S. Yang, "De-alloying Behavior of Mg–Al alloy in Sulphuric Acid and Acetic Acid Aqueous Solutions," Materials, vol. 12, no. 13, p. 2046, 2019.
[49] E. Ghali, W. Dietzel, and K.-U. Kainer, "General and localized corrosion of magnesium alloys: a critical review," Journal of materials engineering and performance, vol. 13, pp. 7-23, 2004.
[50] R. Tunold, H. Holtan, M. B. Berge, A. Lasson, and R. Steen-Hansen, "Corrosion of magnesium in aqueous solution containing chloride ions," Corros. Sci.;(United Kingdom), vol. 17, no. 4, 1977.
[51] Z. Rong-chang, Z. Wangqiu, H. En-hou, and K. Wei, "Effect of pH value on corrosion of as-extruded AM60 magnesium alloy," Acta Metall Sinica, vol. 44, no. 3, pp. 307-11, 2005.
[52] R.-C. Zeng, Z.-Z. Yin, X.-B. Chen, and D.-K. Xu, "Corrosion types of magnesium alloys," Magnesium alloys-selected issue, pp. 29-53, 2018.
[53] Z. Chen, H. Li, X. Liang, M.-C. Zhao, K. Zhang, and A. Atrens, "In-situ observation on filiform corrosion propagation and its dependence on Zr distribution in Mg alloy WE43," Journal of Magnesium and Alloys, vol. 11, no. 11, pp. 4282-4300, 2023.
[54] A. Froats, T. Aune, D. Hawke, W. Unsworth, and J. Hillis, "Metals handbook," ASM International: The Materials Information Company, 1987.
[55] Y. Yang, F. Scenini, and M. Curioni, "A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution," Electrochimica Acta, vol. 198, pp. 174-184, 2016, doi: 10.1016/j.electacta.2016.03.043.
[56] S. Bender, J. Goellner, A. Heyn, and S. Schmigalla, "A new theory for the negative difference effect in magnesium corrosion," Materials and Corrosion, vol. 63, no. 8, pp. 707-712, 2011, doi: 10.1002/maco.201106225.
[57] R. L. Petty, A. W. Davidson, and J. Kleinberg, "The anodic oxidation of magnesium metal: evidence for the existence of unipositive magnesium1, 2," Journal of the American Chemical Society, vol. 76, no. 2, pp. 363-366, 1954.
[58] A. Samaniego, B. L. Hurley, and G. S. Frankel, "On the evidence for univalent Mg," Journal of Electroanalytical Chemistry, vol. 737, pp. 123-128, 2015/01/15/ 2015, doi: https://doi.org/10.1016/j.jelechem.2014.04.013.
[59] G. Williams and H. N. McMurray, "Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique," Journal of the electrochemical Society, vol. 155, no. 7, p. C340, 2008.
[60] M. Taheri, J. R. Kish, N. Birbilis, M. Danaie, E. A. McNally, and J. R. McDermid, "Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces," Electrochimica Acta, vol. 116, pp. 396-403, 2014, doi: 10.1016/j.electacta.2013.11.086.
[61] H. Yao, Y. Li, and A. Wee, "An XPS investigation of the oxidation/corrosion of melt-spun Mg," Applied Surface Science, vol. 158, no. 1-2, pp. 112-119, 2000.
[62] W. D. Müller, M. L. Nascimento, M. Zeddies, M. Córsico, L. M. Gassa, and M. A. F. L. d. Mele, "Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques," Materials Research, vol. 10, pp. 5-10, 2007.
[63] G. Song, A. Atrens, D. St John, X. Wu, and J. Nairn, "The anodic dissolution of magnesium in chloride and sulphate solutions," Corrosion science, vol. 39, no. 10-11, pp. 1981-2004, 1997.
[64] L. Wang, T. Shinohara, and B.-P. Zhang, "Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy," Journal of Alloys and Compounds, vol. 496, no. 1-2, pp. 500-507, 2010.
[65] J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, "AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution," Electrochimica Acta, vol. 52, no. 9, pp. 3299-3309, 2007.
[66] F. Cao, C. Zhao, J. You, J. Hu, D. Zheng, and G. L. Song, "The inhibitive effect of artificial seawater on magnesium corrosion," Advanced Engineering Materials, vol. 21, no. 8, p. 1900363, 2019.
[67] B. Feng et al., "Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution," Journal of Magnesium and Alloys, vol. 10, no. 6, pp. 1598-1608, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.jma.2020.12.013.
[68] C. Li et al., "Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions," Crystals, vol. 13, no. 3, p. 506, 2023.
[69] E. El Sawy, H. El-Sayed, and H. El Shayeb, "Corrosion of Mg, AS31 and AZ91 alloys in nitrate solutions," Journal of alloys and compounds, vol. 492, no. 1-2, pp. 69-76, 2010.
[70] Z. Cui et al., "Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate," Electrochimica Acta, vol. 278, pp. 421-437, 2018.
[71] F. Ge, J. Yin, Y. Liu, W. Leng, X. Wang, and Z. Cui, "Roles of pH in the NH4+-induced corrosion of AZ31 magnesium alloy in chloride environment," Journal of Magnesium and Alloys, vol. 10, no. 11, pp. 3167-3178, 2022.
[72] F. Cao, C. Zhao, G.-L. Song, and D. Zheng, "The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate," Corrosion Science, vol. 150, pp. 161-174, 2019.
[73] L. Prince, M. Rousseau, X. Noirfalise, L. Dangreau, L. Coelho, and M.-G. Olivier, "Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution," Corrosion Science, vol. 179, p. 109131, 2021.
[74] Y. Marcus and G. Hefter, "Ion pairing," Chemical reviews, vol. 106, no. 11, pp. 4585-4621, 2006.
[75] S. Friesen, G. Hefter, and R. Buchner, "Cation hydration and ion pairing in aqueous solutions of MgCl2 and CaCl2," The Journal of Physical Chemistry B, vol. 123, no. 4, pp. 891-900, 2019.
[76] S. Roy, A. Patra, S. Saha, D. K. Palit, and J. A. Mondal, "Restructuring of hydration shell water due to solvent-shared ion pairing (SSIP): A case study of aqueous MgCl2 and LaCl3 solutions," The Journal of Physical Chemistry B, vol. 124, no. 37, pp. 8141-8148, 2020.
[77] K. M. Callahan, N. N. Casillas-Ituarte, M. Roeselová, H. C. Allen, and D. J. Tobias, "Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions," The Journal of Physical Chemistry A, vol. 114, no. 15, pp. 5141-5148, 2010.
[78] A. Lejarazu-Larrañaga, J. M. Ortiz, S. Molina, Y. Zhao, and E. García-Calvo, "Nitrate-selective anion exchange membranes prepared using discarded reverse osmosis membranes as support," Membranes, vol. 10, no. 12, p. 377, 2020.
[79] F. Sebastiani, A. V. Verde, M. Heyden, G. Schwaab, and M. Havenith, "Cooperativity and ion pairing in magnesium sulfate aqueous solutions from the dilute regime to the solubility limit," Physical Chemistry Chemical Physics, vol. 22, no. 21, pp. 12140-12153, 2020.
[80] F. Penghuai, P. Liming, J. Haiyan, Z. Zhenyan, and Z. Chunquan, "Fracture behavior and mechanical properties of Mg–4Y–2Nd–1Gd–0.4 Zr (wt.%) alloy at room temperature," Materials Science and Engineering: A, vol. 486, no. 1-2, pp. 572-579, 2008.
[81] L. Zhou et al., "Microstructural, Mechanical, and Damping Properties of WE43 Alloy," JOM, pp. 1-13, 2025.
[82] C.-H. Shih, C.-Y. Huang, T.-H. Hsiao, and C.-S. Lin, "The effect of the secondary phases on the corrosion of AZ31B and WE43-T5 Mg alloys," Corrosion Science, vol. 211, p. 110920, 2023.
[83] G. Williams, N. Birbilis, and H. N. McMurray, "Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte," Faraday discussions, vol. 180, pp. 313-330, 2015.
[84] Y. Zhu, G. Wu, Y.-H. Zhang, and Q. Zhao, "Growth and characterization of Mg (OH) 2 film on magnesium alloy AZ31," Applied Surface Science, vol. 257, no. 14, pp. 6129-6137, 2011.
[85] S. Salleh, S. Thomas, J. Yuwono, K. Venkatesan, and N. Birbilis, "Enhanced hydrogen evolution on Mg (OH) 2 covered Mg surfaces," Electrochimica Acta, vol. 161, pp. 144-152, 2015.
[86] M.-C. Zhao, M. Liu, G.-L. Song, and A. Atrens, "Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41," Corrosion Science, vol. 50, no. 11, pp. 3168-3178, 2008.
[87] M. Ascencio, M. Pekguleryuz, and S. Omanovic, "An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time," Corrosion Science, vol. 87, pp. 489-503, 2014.
[88] H.-W. Chen, H. Lin, C.-Y. Huang, C.-H. Shi, and C.-S. Lin, "The Initial Corrosion Behavior of AZ31B Magnesium Alloy in Chloride and Sulfate Solutions," Journal of The Electrochemical Society, vol. 169, no. 8, p. 081504, 2022.
[89] A. De Robertis, C. Rigano, S. Sammartano, and O. Zerbinati, "Ion association of Cl− with Na+, K+, Mg2+ and Ca2+ in aqueous solution at 10⩽ T⩽ 45 C and 0⩽ I⩽ 1 mol l− 1: a literature data analysis," Thermochimica acta, vol. 115, pp. 241-248, 1987.
[90] J. Frantz, J. Dubessy, and B. Mysen, "Ion-pairing in aqueous MgSO4 solutions along an isochore to 500 C and 11 kbar using Raman spectroscopy in conjunction with the diamond-anvil cell," Chemical Geology, vol. 116, no. 3-4, pp. 181-188, 1994.
[91] F. Tavani, M. Busato, L. Braglia, S. Mauri, P. Torelli, and P. D’Angelo, "Caught while dissolving: Revealing the interfacial solvation of the Mg2+ ions on the MgO surface," ACS Applied Materials & Interfaces, vol. 14, no. 33, pp. 38370-38378, 2022.
[92] A. Guskov et al., "Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA," Proceedings of the National Academy of Sciences, vol. 109, no. 45, pp. 18459-18464, 2012.
[93] G. Balducci, L. B. Diaz, and D. H. Gregory, "Recent progress in the synthesis of nanostructured magnesium hydroxide," CrystEngComm, vol. 19, no. 41, pp. 6067-6084, 2017.
[94] A. A. Pilarska, Ł. Klapiszewski, and T. Jesionowski, "Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review," Powder Technology, vol. 319, pp. 373-407, 2017.
[95] X. Cao, H. Zhao, X. Liu, H.-H. Luo, and R. Liu, "Preparation of petal-like magnesium hydroxide particles by adding sulfate ions," Journal of Crystal Growth, vol. 550, p. 125841, 2020.
[96] C. Henrist, J.-P. Mathieu, C. Vogels, A. Rulmont, and R. Cloots, "Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution," Journal of crystal growth, vol. 249, no. 1-2, pp. 321-330, 2003.
[97] X. Song, S. Sun, D. Zhang, J. Wang, and J. Yu, "Synthesis and characterization of magnesium hydroxide by batch reaction crystallization," Frontiers of Chemical Science and Engineering, vol. 5, pp. 416-421, 2011.
[98] X. Wang et al., "The activation of mg powder promoted by chloride and activation mechanism," Metals, vol. 11, no. 9, p. 1435, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98495-
dc.description.abstract鎂合金因具低密度和高比強度,為理想的高強度輕量化材料,且具有生物相容性,能夠被廣泛應用在航太、生醫、汽車等領域。由於鎂活性高,於製程中增加稀土元素可有效提升其強度、抗蝕性與高溫抗潛變能力。為促進鎂合金在產業中的進一步應用,了解其腐蝕機制和抗蝕行為相當重要。
本研究使用含有富Y與富Zr微米級二次相的WE43-T5鎂合金,分別浸泡於0.5 M NaCl和0.5 M Na2SO4水溶液中24小時,探討不同陰離子對其基地與二次相所產生之腐蝕行為。
根據即時攝影,發現WE43在兩種溶液浸泡24小時內並未觀察到腐蝕產物有breakdown的現象,且從析氫測試、重量損失測試、光學顯微鏡與電子顯微鏡的結果可知,兩種二次相皆會導致伽凡尼腐蝕發生,另試片於0.5 M NaCl水溶液中較多局部腐蝕,而浸泡在0.5 M Na2SO4的試片則局部腐蝕的數量較少、尺寸較大,主要以基地的大範圍腐蝕為主,且整體的腐蝕程度更為嚴重,有違一般所認為之氯離子較具有攻擊性以致腐蝕行為較強的印象。透過電化學測試,亦印證在0.5 M Na2SO4中生成之腐蝕產物層其保護性較差。
為探討硫酸根離子所造成之影響,本研究提出了離子對形成以及陰離子吸附改變Mg(OH)2排列方式的可能機制。研究結果有助於了解氯離子和硫酸根離子對於WE43-T5合金的腐蝕產物結構與保護性差異,並可作為未來防蝕設計之參考依據。
zh_TW
dc.description.abstractIn this study, WE43-T5 magnesium alloy containing Y-rich and Zr-rich secondary phases was immersed in 0.5 M NaCl and 0.5 M Na2SO4 solutions for 24 h to investigate the corrosion behavior of the matrix and secondary phases.
Real-time imaging revealed no obvious breakdown during 24 h immersion in either solution. Results from hydrogen evolution, weight loss measurements, OM, and SEM indicated that both types of secondary phases induced galvanic corrosion. More localized corrosion sites were observed in NaCl solution, whereas fewer but larger localized corrosion spots, along with widespread matrix corrosion, were found in Na2SO4 solution. The overall corrosion severity was greater in the sulfate solution. Electrochemical tests further confirmed that the corrosion product layer formed in Na2SO4 provided inferior protection compared to that in NaCl.
To explore the underlying mechanisms, this study proposes that the presence of sulfate ions influences corrosion behavior through ion-pair formation and anion adsorption, which alter the crystallographic orientation of Mg(OH)2. These findings contribute to a better understanding of how chloride and sulfate ions affect the structure and protectiveness of corrosion products on WE43-T5 alloy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:20:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:20:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents碩士學位論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Content v
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Paper Review 2
2.1 Introduction of magnesium alloy 2
2.1.1 Properties of magnesium alloys 2
2.1.2 Classification of magnesium alloys 3
2.1.3 Magnesium with RE elements 4
2.1.4 Magnesium with zirconium 10
2.1.5 Magnesium with trace elements 13
2.2 Corrosion behavior of magnesium 14
2.2.1 Corrosion of pure magnesium 14
2.2.2 Corrosion types 17
2.2.3 Negative difference effect 21
2.3 Effects of different anions on magnesium corrosion 27
2.3.1 Effects of chloride 27
2.3.2 Effects of sulfate 28
2.3.3 Effects of nitrate ion 30
2.3.4 Effects of ammonium 32
2.3.5 Effects of carbonate 33
2.4 Ion pairing between Mg2+ and different ions 34
2.4.1 Chloride ion pairing 35
2.4.2 Sulfate ion pairing 36
Chapter 3 Experiments 37
3.1 Sample preparation 37
3.2 Hydrogen evolution test and real-time imaging 37
3.3 Weight loss measurements 39
3.4 Microstructure characterization 39
3.4.1 Optical microscopy 39
3.4.2 Scanning electron microscopy 40
3.4.3 X-ray diffraction analysis 40
3.5 Electrochemical measurements 40
3.5.1 Open circuit potential 41
3.5.2 Polarization curve measurement 41
3.5.3 EIS analysis 42
Chapter 4 Results and Discussion 43
4.1 Microstructure of as-polished WE43 43
4.1.1 XRD of as-polished WE43 44
4.2 Microstructure of corrosion products 45
4.2.1 Hydrogen evolution and real-time imaging 45
4.2.2 Weight loss measurement 47
4.2.3 OM observation 48
4.2.4 SEM observation 51
4.2.5 XRD of WE43 after immersion 65
4.3 Electrochemical analysis 66
4.3.1 Open circuit potential 66
4.3.2 Polarization curve measurement 68
4.3.3 EIS analysis of the corrosion products 70
4.4 Mechanism of corrosion behaviors 76
4.4.1 Ion pairing 78
4.4.2 Rearrangement of anion adsorption within the hydroxide layer 80
4.4.3 The influence of the alloying elements on the corrosion 81
Chapter 5 Conclusions 83
Chapter 6 Future work 84
References 85
-
dc.language.isoen-
dc.subjectWE43鎂合金zh_TW
dc.subject稀土元素zh_TW
dc.subject抗蝕性zh_TW
dc.subject電化學分析zh_TW
dc.subjectElectrochemical analysisen
dc.subjectWE43 magnesium alloyen
dc.subjectRare earth elementsen
dc.subjectCorrosion resistanceen
dc.titleWE43-T5鎂合金在氯化鈉和硫酸鈉水溶液之腐蝕行為zh_TW
dc.titleCorrosion behaviors of WE43-T5 magnesium alloys in sodium chloride and sodium sulfate solutionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林景崎;朱鵬維;蔡文達;汪俊延zh_TW
dc.contributor.oralexamcommitteeJing-Chie Lin;Peng-Wei Chu;Wen-Ta Tsai;Jun-Yen Uanen
dc.subject.keywordWE43鎂合金,稀土元素,抗蝕性,電化學分析,zh_TW
dc.subject.keywordWE43 magnesium alloy,Rare earth elements,Corrosion resistance,Electrochemical analysis,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202502895-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-08-15-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
36.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved