請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峯輝 | zh_TW |
| dc.contributor.advisor | Feng-Huei Lin | en |
| dc.contributor.author | 陳沛華 | zh_TW |
| dc.contributor.author | Pei-Hua Chen | en |
| dc.date.accessioned | 2025-08-14T16:19:11Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | 參考文獻
[1] Liu, A.P.; Appel, E.A.; Ashby, P.D.; Baker, B.M.; Franco, E.; Gu, L.; Haynes, K.; Joshi, N.S.; Kloxin, A.M.; Kouwer, P.H.J.; et al. The living interface between synthetic biology and biomaterial design. Nat. Mater. 2022, 21, 390–397. (https://doi.org/10.1038/s41563-022-01231-3) [2] Eldeeb, A.E.; Salah, S.; Elkasabgy, N.A. Biomaterials for tissue engineering applications and current updates in the field: A comprehensive review. AAPS PharmSciTech 2022, 23, 267. (https://doi.org/10.1208/s12249-022-02419-1) [3] Esmaeili, Y.; Bidram, E.; Bigham, A.; Atari, M.; Azadani, R. N.; Tavakoli, M.; Salehi, S.; Mirhaj, M.; Basiri, A.; Mirzavandi, Z.; Boshtam, M.; Rafienia, M.; Kharazi, A. Z.; Karbasi, S.; Shariati, L.; Zarrabi, A. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix, Alex. Eng. J., 2023, 81, 137-169. (https://doi.org/10.1016/j.aej.2023.08.080) [4] Al-Shalawi, F. D.; Ariff, A. H. M.; Jung, D.-W.; Ariffin, M. K. A. M.; Kim, C. L. S.; Brabazon, D.; Al-Osaimi, M. O. Biomaterials as implants in the orthopedic field for regenerative medicine: metal versus synthetic polymers. Polymers 2023, 15, No. 2601. (https://doi.org/10.3390/polym15122601) [5] Ajmal, S.; Hashmi, F. A.; Imran, I. Recent progress in development and applications of biomaterials. Mater. Today: Proc., 2022, 62, 385-391. (https://doi.org/10.1016/j.matpr.2022.04.233) [6] Paternoster, J. L.; Vranckx, J. J. State of the art of clinical applications of tissue engineering in 2022, Tissue Eng. Part B Rev., 2022, 28, 592-612. (https://doi.org/10.1089/ten.teb.2021.0017) [7] Jang, J.-W.; Min, K.-E.; Kim, C.; Shin, J.; Lee, J.; Yi, S. Review: scaffold characteristics, fabrication methods, and biomaterials for the bone tissue engineering, Int. J. Precis. Eng. Manuf., 2023, 24, 511-529. (https://doi.org/10.1007/s12541-022-00755-7) [8] Pollock, J.R.; Moore, M.L.; Hogan, J.S.; Haglin, J.M.; Brinkman, J.C.; Doan, M.K.; Chhabra, A. Orthopaedic group practice size is increasing. Arthrosc. Sports Med. Rehabil. 2021, 3, e1937–e1944. (https://doi.org/10.1016/j.asmr.2021.09.015) [9] Szpalski, C.; Wetterau, M.; Barr, J.; Warren, S.M. Bone tissue engineering: Current strategies and techniques—Part I: Scaffolds. Tissue Eng. Part B Rev. 2012, 18, 246–257. (https://doi.org/10.1089/ten.teb.2011.0427) [10] Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. (https://doi.org/10.1166/jnn.2014.9127) [11] Lee, S.S.; Du, X.; Kim, I.; Ferguson, S.J. Scaffolds for bone-tissue engineering. Matter 2022, 5, 2722–2759. (https://doi.org/10.1016/j.matt.2022.06.003) [12] Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone grafts: Which is the ideal biomaterial? J. Clin. Periodontol. 2019, 46 (Suppl. S21), 92–102. (https://doi.org/10.1111/jcpe.13058) [13] Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019, 9, 26252–26262. (https://doi.org/10.1039/C9RA05214C) [14] Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone–tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603. (https://doi.org/10.1038/s41578-020-0204-2) [15] Ravoor, J.; Thangavel, M.; Elsen, R.S. Comprehensive review on design and manufacturing of bioscaffolds for bone reconstruction. ACS Appl. Bio Mater. 2021, 4, 8129–8158. (https://doi.org/10.1021/acsabm.1c00949) [16] Bahraminasab, M.; Janmohammadi, M.; Arab, S.; Talebi, A.; Nooshabadi, V.T.; Koohsarian, P.; Nourbakhsh, M.S. Bone scaffolds: An incorporation of biomaterials, cells, and biofactors. ACS Biomater. Sci. Eng. 2021, 7, 5397–5431. (https://doi.org/10.1021/acsbiomaterials.1c00920) [17] Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2010609. (https://doi.org/10.1002/adfm.202010609) [18] Szczesny, G.; Kopec, M.; Politis, D.J.; Kowalewski, Z.L.; Łazarski, A.; Szolc, T. A review on biomaterials for orthopaedic surgery and traumatology: From past to present. Materials 2022, 15, 3622. (https://doi.org/10.3390/ma15103622) [19] Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015, 8, 5744–5794. (https://doi.org/10.3390/ma8095273) [20] Wei, S.; Ma, J.-X.; Xu, L.; Gu, X.-S.; Ma, X.-L. Biodegradable materials for bone defect repair. Mil. Med. Res. 2020, 7, 54. (https://doi.org/10.1186/s40779-020-00280-6) [21] Modrák, M.; Trebunová, M.; Balogová, A.F.; Hudák, R.; Živčák, J. Biodegradable materials for tissue engineering: Development, classification and current applications. J. Funct. Biomater. 2023, 14, 159. (https://doi.org/10.3390/jfb14030159) [22] Chen, H.; Song, G.; Xu, T.; Meng, C.; Zhang, Y.; Xin, T.; Yu, T.; Lin, Y.; Han, B. Biomaterial scaffolds for periodontal tissue engineering. Funct. Biomater., 2024, 15, No. 233. (https://doi.org/10.3390/jfb15080233) [23] Williams, D. F.; Challenges with the development of biomaterials for sustainable tissue engineering. Front. Bioeng. Biotechnol., 2019, 7, No. 127. (https://doi.org/10.3389/fbioe.2019.00127) [24] Donnaloja, F.; Jacchetti, E.; Soncini, M.; Raimondi, M. T. Natural and synthetic polymers for bone scaffolds optimization, Polymers, 2020, 12, No. 905. (https://doi.org/10.3390/polym12040905) [25] Xu, C.; Liu, Z.; Chen, X.; Gao, Y.; Wang, W.; Zhuang, X.; Zhang, H.; Dong, X. Bone tissue engineering scaffold materials: Fundamentals, advances, and challenges. Chin. Chem. Lett., 2024, 35, No. 109197. (https://doi.org/10.1016/j.cclet.2023.109197) [26] Di Maioa, E.; Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges, J. Supercrit. Fluids, 2018, 134, 157–166. (https://doi.org/10.1016/j.supflu.2017.11.013) [27] Sarver, J. A.; Kiran, E. Foaming of polymers with carbon dioxide - The year-in-review-2019, J. Supercrit. Fluids, 2021, 173, No.105166. (https://doi.org/10.1016/j.supflu.2021.105166) [28] Yu, H.; Liu, H.; Shen, Y.; Ao, Q. Synthetic biodegradable polymer materials in the repair of tumor-associated bone defects. Front. Bioeng. Biotechnol. 2023, 11, 1096525. (https://doi.org/10.3389/fbioe.2023.1096525) [29] Bernardo, M.P.; da Silva, B.C.R.; Hamouda, A.E.I.; de Toledo, M.A.S.; Schalla, C.; Rütten, S.; Goetzke, R.; Mattoso, L.H.C.; Zenke, M.; Sechi, A. PLA/hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci. Rep. 2022, 12, 2333. (https://doi.org/10.1038/s41598-022-05207-w) [30] Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316–13368. (https://doi.org/10.1039/D0RA01801E) [31] Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.-C. Poly(lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–360. (https://doi.org/10.1016/j.ijbiomac.2018.12.115) [32] Sun, Z.; Wang, L.; Zhou, J.; Fan, X.; Xie, H.; Zhang, H.; Zhang, G.; Shi, X. Influence of polylactide (PLA) stereocomplexation on the microstructure of PLA/PBS blends and the cell morphology of their microcellular foams. Polymers, 2020, 12, No. 2362. (https://doi.org/10.3390/polym12102362) [33] Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers, 2019, 11, No. 1193. (https://doi.org/10.3390/polym11071193) [34] Zhang, X.; Liu, Q.; Shi, J.; Ye, H.; Zhou, Q. Distinctive tensile properties of the blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS). J. Polym. Environ., 2018, 26, 1737-1744. (https://doi.org/10.1007/s10924-017-1064-8) [35] Ou-Yang, Q.; Guo, B.; Xu, J. Preparation and characterization of poly(butylene succinate)/polylactide blends for fused deposition modeling 3D printing. ACS Omega, 2018, 3, 14309-14317. (http://pubs.acs.org/journal/acsodf) [36] Yu, P.; Mi, H.-Y.; Huang, A.; Geng, L.-H.; Chen, B.-Y.; Kuang, T.-R.; Mou, W.-J.; Peng, X.-F. Effect of poly(butylenes succinate) on poly(lactic acid) foaming behavior: formation of open cell structure. Ind. Eng. Chem. Res., 2015, 54, 6199−6207. (https://doi.org/10.1021/acs.iecr.5b00477) [37] Zhao, H.; Liu, H.; Liu, Y.; Yang, Y. Blends of poly(butylene adipate-co-terephthalate) (PBAT) and stereocomplex polylactide with improved rheological and mechanical properties. RSC Adv., 2020, 10, 10482-10490. (https://doi.org/10.1039/c9ra10827k) [38] Kang, Y.; Chen, P.; Shi, X.; Zhang, G.; Wang, C. Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility. RSC Adv., 2018, 8, 12933-12943. (https://doi.org/10.1039/c8ra01305e) [39] De Matos Costa, A.R.; Crocitti, A.; de Carvalho, L.H.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers 2020, 12, 2317. (https://doi.org/10.3390/polym12102317) [40] Hu, D.; Xue, K.; Liu, Z.; Xu, Z.; Zhao, L. The essential role of PBS on PBAT foaming under supercritical CO₂ toward green engineering. J. CO₂ Util. 2022, 60, 101965. (https://doi.org/10.1016/j.jcou.2022.101965) [41] Kaliva, M.; Georgopoulou, A.; Dragatogiannis, D.A.; Charitidis, C.A.; Chatzinikolaidou, M.; Vamvakaki, M. Biodegradable chitosan-graft-poly(L-lactide) copolymers for bone tissue engineering. Polymers 2020, 12, 316. (https://doi.org/10.3390/polym12020316) [42] Dos Santos Silva, A.; Rodrigues, B.V.M.; Oliveira, F.C.; Carvalho, J.O.; de Vasconcellos, L.M.R.; de Araújo, J.C.R.; Marciano, F.R.; Lobo, A.O. Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J. Polym. Res. 2019, 26, 53. (https://doi.org/10.1007/s10965-019-1726-4) [43] Santana-Melo, G.F.; Rodrigues, B.V.M.; da Silva, E.; Ricci, R.; Marciano, F.R.; Webster, T.J.; Vasconcellos, L.M.R.; Lobo, A.O. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf. B 2017, 155, 544–552. (https://doi.org/10.1016/j.colsurfb.2017.04.030) [44] Zhang, J.; Li, J.; Jia, G.; Jiang, Y.; Liu, Q.; Yang, X.; Pan, S. Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating. RSC Adv. 2017, 7, 56732–56742. (https://doi.org/10.1039/C7RA12062A) [45] Khan, M.A.; Hussain, Z.; Liaqat, U.; Liaqat, M.A.; Zahoor, M. Preparation of PBS/PLLA/HAP composites by the solution casting method: Mechanical properties and biocompatibility. Nanomaterials 2020, 10, 1778. (https://doi.org/10.3390/nano10091778) [46] Gui, X.; Peng, W.; Xu, X.; Su, Z.; Liu, G.; Zhou, Z.; Liu, M.; Li, Z.; Song, G.; Zhou, C.; et al. Synthesis and application of nanometer hydroxyapatite in biomedicine. Nanotechnol. Rev. 2022, 11, 2154–2168. (https://doi.org/10.1515/ntrev-2022-0127) [47] Wang, W.; Zhang, B.; Li, M.; Li, J.; Zhang, C.; Han, Y.; Wang, L.; Wang, K.; Zhou, C.; Liu, L.; et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos. B Eng. 2021, 224, 109192. (https://doi.org/10.1016/j.compositesb.2021.109192) [48] Yan, D.; Wang, Z.; Guo, Z.; Ma, Y.; Wang, C.; Tan, H.; Zhang, Y. Study on the properties of PLA/PBAT composite modified by nanohydroxyapatite. J. Mater. Res. Technol. 2020, 9, 11895–11904. (https://doi.org/10.1016/j.jmrt.2020.08.051) [49] Kiran, E. Supercritical fluids and polymers -The year in review - 2014, J. Supercrit. Fluids, 2016, 110, 126–153. (http://dx.doi.org/10.1016/j.supflu.2015.11.011) [50] Zhou, Y.; Tian, Y.; Peng, X. Applications and challenges of supercritical foaming technology, Polymers 2023, 15, No. 402. (https://doi.org/10.3390/polym15020402) [51] Peng, K.; Mubarak, S.; Diao, X.; Cai, Z.; Zhang, C.; Wang, J.; Wu, L. Progress in the preparation, properties, and applications of PLA and Its composite microporous materials by supercritical CO2: a review from 2020 to 2022, Polymers, 2022, 14, No. 4320. (https://doi.org/ 10.3390/polym14204320) [52] Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Super high-expansion poly(lactic acid) foams with excellent oil-adsorption and thermal-insulation properties fabricated by supercritical CO2 foaming, Adv. Sustainable Syst., 2021, No. 2000295. (https://doi.org/10.1002/adsu.202000295) [53] Yang, Y.; Li, X.; Zhang, Q.; Xia, C.; Chen, C.; Chen, X.; Yu, P. Foaming of poly(lactic acid) with supercritical CO2: the combined effect of crystallinity and crystalline morphology on cellular structure. J. Supercrit. Fluids, 2019, 145, 122–132. (https://doi.org/10.1016/j.supflu.2018.12.006) [54] Chen, J.; Yang, L.; Mai, Q.; Li, M.; Wu, L.; Kong, P. Foaming behavior of poly(lactic acid) with different D-isomer content based on supercritical CO2-induced crystallization, J. Cell. Plast., 2021, 57, 675–694. (https://doi.org/10.1177/0021955X20950242) [55] Huang, J.-N.; Jing, X.; Geng, L.-H.; Chen, B.-Y.; Mi, H.-Y.; Peng, X.-F. A novel multiple soaking temperature (MST) method to prepare polylactic acid foams with bi-modal open-pore structure and their potential in tissue engineering applications. J. Supercrit. Fluids, 2015, 103, 28–37. (http://dx.doi.org/10.1016/j.supflu.2015.04.019) [56] Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption, Sep. Purif. Technol., 2021, 257, No. 117949. (https://doi.org/10.1016/j.seppur.2020.117949) [57] Wang, S.; Yang, W.; Li, X.; Hu, Z.; Wang, B.; Li, M.; Dong, W. Preparation of high-expansion open-cell polylactic acid foam with superior oil-water separation performance, Int. J. Biol. Macromol., 2021, 193, 1059–1067. (https://doi.org/10.1016/j.ijbiomac.2021.11.033) [58] Wang, Z.; Zhao, J.; Wang, G.; Xu, Z.; Zhang, A.; Dong, G.; Zhao, G. Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents, J. CO2 Util., 2022, 64, No. 102149. (https://doi.org/10.1016/j.jcou.2022.102149) [59] Salerno, A.; Di Maio, E.; Iannace, S.; Netti, P. A. Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: Effect of composition, thermal history and foaming process on foam pore structure, J. Supercrit. Fluids, 2011, 58, 158-167. (https://doi.org/10.1016/j.supflu.2011.05.009) [60] Chen, C.-X.; Peng, H.-H.; Guan, Y.-X.; Yao, S.-J. Morphological study on the pore growth profile of poly(ε-caprolactone) bi-modal porous foams using a modified supercritical CO2 foaming process, J. Supercrit. Fluids, 2019, 143, 72-81. (https://doi.org/10.1016/j.supflu.2018.07.029) [61] Ju, J.; Gu, Z.; Liu, X.; Zhang, S.; Peng, X.; Kuang, T. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application, Int. J. Biol. Macromol., 2020, 147, 1164-1173. (https://doi.org/10.1016/j.ijbiomac.2019.10.085) [62] Park, J.-W.; Hwang, J.-U.; Back, J.-H.; Jang, S.-W.; Kim, H.-J.; Kim, P.-S.; Shin, S.; Kim, T. High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos. B Eng. 2019, 178, 107449. (https://doi.org/10.1016/j.compositesb.2019.107449) [63] Lowe, B.; Hardy, J.G.; Walsh, L.J. Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega 2020, 5, 1–9. (https://doi.org/10.1021/acsomega.9b02917) [64] Yin, D.; Mi, J.; Zhou, H.; Wang, X.; Fu, H. Microcellular foaming behaviors of chain extended poly (butylene succinate)/polyhedral oligomeric silsesquioxane composite induced by isothermal crystallization. Polym. Degrad. Stab., 2019, 167, No. 228e240. (https://doi.org/10.1016/j.polymdegradstab.2019.07.010) [65] Sato, Y.; Takikawa, T.; Sorakubo, A.; Takishima, S.; Masuoka, H.; Imaizumi, M. Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind. Eng. Chem. Res. 2000, 39, 4813-4819. (https://doi.org/ 10.1021/ie0001220) [66] Goncalves, L. F. F. F.; Reis, R. L.; Fernandes, E. M. Forefront research of foaming strategies on biodegradable polymers and their composites by thermal or melt-based processing technologies: advances and perspectives. Polymers, 2024, 16, No. 1286. (https://doi.org/10.3390/polym16091286) [67] Velasco, M.A.; Narváez-Tovar, C.A.; Garzón-Alvarado, D.A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res. Int. 2015, 729076. (https://doi.org/10.1155/2015/729076) [68] Shelton, T.J.; Delman, C.; McNary, S.; Taylor, J.R.; Marder, R.A. Aging decreases the ultimate tensile strength of bone–patellar tendon–bone allografts. Arthroscopy 2021, 37, 2173–2180. (https://doi.org/10.1016/j.arthro.2021.02.041) [69] Rodrigues, S.C.S.; de Mesquita, F.A.S.; de Carvalho, L.H.; Alves, T.S.; Folkersma, R.; Araújo, R.S.d.R.M.; Oliveira, A.D.; Barbosa, R. Preparation and characterization of polymeric films based on PLA, PBAT and corn starch and babassu mesocarp starch by flat extrusion. Mater. Res. Express 2021, 8, 035305. (https://doi.org/10.1088/2053-1591/abeaca) [70] Gheisari, H.; Karamian, E.; Abdellahi, M. A novel hydroxyapatite–Hardystonite nanocomposite ceramic. Ceram. Int. 2015, 41, 5967–5975. (https://doi.org/10.1016/j.ceramint.2014.12.125) [71] Rasheed, M.; Jawaid, M.; Parveez, B.; Bhat, A.H.; Alamery, S. Morphology, structural, thermal, and tensile properties of bamboo microcrystalline cellulose/poly(lactic acid)/poly(butylene succinate) composites. Polymers 2021, 13, 465. (https://doi.org/10.3390/polym13030465) [72] Solechan, S.; Suprihanto, A.; Widyanto, S.A.; Triyono, J.; Fitriyana, D.F.; Siregar, J.P.; Cionita, T. Characterization of PLA/PCL/Nano-Hydroxyapatite (nHA) Biocomposites Prepared via Cold Isostatic Pressing. Polymers 2023, 15, 559. (https://doi.org/10.3390/polym15030559) [73] Qiu, T.Y.; Song, M.; Zhao, L.G. Testing, Characterization and Modelling of Mechanical Behaviour of Poly(Lactic-Acid) and Poly(Butylene Succinate) Blends. Mech. Adv. Mater. Mod. Process. 2016, 2, 7. (https://doi.org/10.1186/s40759-016-0014-9) [74] Qahtani, M.; Wu, F.; Misra, M.; Gregori, S.; Mielewski, D.F.; Mohanty, A.K. Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling. ACS Sustain. Chem. Eng. 2019, 7, 14460–14470. (https://doi.org/10.1021/acssuschemeng.9b01830) [75] Righetti, M.C.; Di Lorenzo, M.L.; Cinelli, P.; Gazzano, M. Temperature Dependence of the Rigid Amorphous Fraction of Poly(Butylene Succinate). RSC Adv. 2021, 11, 25731–25737. (https://doi.org/10.1039/D1RA03775G) [76] Bai, J.; Pei, H.; Zhou, X.; Xie, X. Reactive Compatibilization and Properties of Low-Cost and High-Performance PBAT/Thermoplastic Starch Blends. Eur. Polym. J. 2021, 143, 110198. (https://doi.org/10.1016/j.eurpolymj.2020.110198) [77] Zhao, X.; Zhang, D.; Yu, S.; Zhou, H.; Peng, S. Recent Advances in Compatibility and Toughness of Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. e-Polymers 2021, 21, 793–810. (https://doi.org/10.1515/epoly-2021-0079) [78] Wang, B.; Jin, Y.; Kang, K.; Yang, N.; Weng, Y.; Huang, Z.; Men, S. Investigation on Compatibility of PLA/PBAT Blends Modified by Epoxy-Terminated Branched Polymers through Chemical Micro-Crosslinking. e-Polymers 2020, 20, 39–54. (https://doi.org/10.1515/epoly-2020-0005) [79] Zhou, Y.; Qiu, S.; Waterhouse, G.I.N.; Zhang, K.; Xu, J. Enhancing the Properties of PBAT/PLA Composites with Novel Phosphorus-Based Ionic Liquid Compatibilizers. Mater. Today Commun. 2021, 27, 102407. (https://doi.org/10.1016/j.mtcomm.2021.102407) [80] De Luna, M.S.; Filippone, G. Effects of Nanoparticles on the Morphology of Immiscible Polymer Blends—Challenges and Opportunities. Eur. Polym. J. 2016, 79, 198–218. (https://doi.org/10.1016/j.eurpolymj.2016.04.003) [81] Zhao, Q.; Wang, B.; Qin, C.; Li, Q.; Liu, C.; Shen, C.; Wang, Y. Nonisothermal Melt and Cold Crystallization Behaviors of Biodegradable Poly(Lactic Acid)/Ti₃C₂Tₓ MXene Nanocomposites. J. Therm. Anal. Calorim. 2022, 147, 2239–2251. (https://doi.org/10.1177/0021998313502064) [82] Mata-Padilla, J.M.; Avila-Orta, C.A.; Almendarez-Camarillo, A.; Martinez-Colunga, J.G.; Hernandez-Hernandez, E.; Cruz-Delgado, V.J.; Gonzalez-Morones, P.; Solis-Rosales, S.G.; Gonzalez-Calderon, J.A. Non-Isothermal Crystallization Behavior of Isotactic Polypropylene/Copper Nanocomposites. J. Therm. Anal. Calorim. 2021, 143, 2919–2932. (https://doi.org/10.1007/s10973-020-09512-2) [83] Gao, H.; Qiang, T. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites. Materials 2017, 10, 624. (https://doi.org/10.3390/ma10060624) [84] Pivsa-Art, W.; Pivsa-Art, S. Effect of Talc on Mechanical Characteristics and Fracture Toughness of Poly(Lactic Acid)/Poly(Butylene Succinate) Blend. J. Polym. Environ. 2019, 27, 1821–1827. (https://doi.org/10.1007/s10924-019-01478-z) [85] Mao, H.-I.; Hsu, T.-S.; Chen, C.-W.; Huang, K.-W.; Rwei, S.-P. Synthesis and Characteristics of Poly(Ethylene Terephthalate) with EO-PO-EO Triblock Copolymers: A Thermal and Mechanical Property Study. J. Appl. Polym. Sci. 2022, 139, e51065. (https://doi.org/10.1002/app.51605) [86] Ecker, J.V.; Haider, A.; Burzic, I.; Huber, A.; Eder, G.; Hild, S. Mechanical Properties and Water Absorption Behaviour of PLA and PLA/Wood Composites Prepared by 3D Printing and Injection Moulding. Rapid Prototyp. J. 2019, 25, 672–678. (https://doi.org/10.1108/RPJ-03-2018-0064) [87] Avci, A.; Eker, A.A.; Bodur, M.S.; Candan, Z. Water Absorption Characterization of Boron Compounds-Reinforced PLA/Flax Fiber Sustainable Composite. Int. J. Biol. Macromol. 2023, 233, 123546. (https://doi.org/10.1016/j.ijbiomac.2023.123546) [88] Tammaro, D.; Lombardi, L.; Maffettone, P. L. Bimodal cell distributions in foaming of olefin block copolymers using high-throughput experimentation. Chem. Eng. Sci., 2025, 304, No. 121067. (http://creativecommons.org/licenses/by/4.0/) [89] Xu, L. Q.; Huang, H.-X. Formation mechanism and tuning for bi-modal cell structure in polystyrene foams by synergistic effect of temperature rising and depressurization with supercritical CO2. J. Supercrit. Fluids, 2016, 109, 177-185. (https://dx.doi.org/10.1016/j.supflu.2015.07.020) [90] Liao, X., Nawaby, A. V., Whitfield, P. S., Carbon dioxide-induced crystallization in poly(L-lactic acid) and its effect on foam morphology. Polm. Int., 2010, 59, 1709-1718. (https://doi.org/10.1002/pi.2901) [91] Zhou, H.; Hu, D.; Zhu, M.; Xue, K.; Wei, X.; Park, C. B.; Wang, X.; Zhao, L., Review on poly (butylene succinate) foam: Modification, foaming behavior and applications. SM&T, 2023, 38, No. e00720. (https://doi.org/10.1016/j.susmat.2023.e00720) [92] Li, G.; Li., H.; Turng, L. S.; Gong, S.; Zhang, C.; Measurement of gas solubility and diffusivity in polylactide. Fluid Phase Equilib., 2006, 246, 158-166. (https://doi.org/10.1016/j.fluid.2006.05.030) [93] Lin, S.; Yang, J.; Yan, J.; Zhao, Y.; Yang, B. Sorption and diffusion of supercritical carbon dioxide in a biodegradable polymer. J. Macromol. Sci. Phys., 2010, 49, 286-300. (https://doi.org/10.1080/01495930903352308) [94] Li, B.; Zhao, G.; Wang, G.; Zhang. L.; Gong, J. Fabrication of high-expansion PLA foams based on pre-isothermal cold crystallization and supercritical CO2 foaming. Polym. Degrad. Stab., 2018, 156, 75-88. (https://doi.org/10.1016/j.polymdegradstab.2018.08.009) [95] Zhou, H.; Song, J.; Ding, X.; Qu, Z.; Wang, X.; Mi, J.; Wang, J. Cellular morphology evolution of chain extended poly(butylene succinate)/organic montmorillonite nanocomposite foam. J. Appl. Polym. Sci. 2019, No. 47107. (https://doi.org/10.1002/APP.47107) [96] Jacobs, L. J. M.; Kemmere, M. F.; Keurentjes, J. T. F. Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem., 2008, 10, 731–738. (https://doi.org/ 0.1039/b801895b) [97] Yang, J.; Jiang, T.; Liu, B.; Zhang, C.; Zeng, X.; He, L.; Gong, W. Experimental and numerical analysis of bubble nucleation in foaming polymer. Mater. Des. 2021, 203, No. 109577. (https://doi.org/10.1016/j.matdes.2021.109577) [98] Mukasheva, F.; Adilova, L.; Dyussenbinov, A.; Yernaimanova, B.; Abilev, M.; Akilbekova, D. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front. Bioeng. Biotechnol. 2024, 12, No. 1444986. (https://doi.org/ 10.3389/fbioe.2024.1444986) [99] Abbasi, N.; Stephen Hamlet, S.; Love, R. M.; Nguyen, N.-T. Porous scaffolds for bone regeneration. J. Sci.: Adv. Mater. Devices, 2020, 5, 1-9. (https://doi.org/10.1016/j.jsamd.2020.01.007) [100] Huang, L.; Wang A.; · Xu R.; Lei C. PBS melt strength improving for supercritical CO2 Foaming molding by physical adsorption and crystallization. Polym. Bull. 2024, 81, 11629–11643. (https://doi.org/10.1007/s00289-024-05251-8) [101] Hernandez, J. L.; Woodrow, K. A. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthc Mater., 2022, 11, No. e2102087. (https://doi.org/10.1002/adhm.202102087) | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98490 | - |
| dc.description.abstract | 本研究之宗旨在於開發一種具備良好物理、機械特性,同時具備良好生物可相容性的新型生物可分解性、高分子共混材料,期望能應用於人體組織工程的領域。本研究計畫以聚乳酸(polylactic acid, PLA)、聚丁二酸丁二酯(poly(butylene succinate), PBS)與聚己二酸/對苯二甲酸丁二酯(poly(butylene adipate-co-terephthalate), PBAT)為基礎,在其中添加不同比例含量之奈米羥基磷灰石(nanohydroxyapatite, nHA),以作為功能性填料,製備PLA/PBS/PBAT/nHA共混材料,並系統性探討其物理性質、熱力學性質、力學性質與材料發泡後相關之變化。
本研究將此共混材料依照混和比例分為兩實驗組,分別為A實驗組(PLA含量70 wt%)與B實驗組(PLA含量80 wt%),各系列製備四種不同nHA添加量之樣品,均以雙螺桿擠出機,應用特殊的混練條件溫度,進行熔融混煉製程。共混材料,後續透過傅立葉轉換紅外光譜(FTIR)、X光繞射分析(XRD)確認各組成物的存在與相容性;並以示差掃描量熱儀(DSC)分析其結晶行為。後續進行拉伸與衝擊強度測試,測試的結果顯示,當適量nHA添加其中,可顯著提升共混材料所表現的機械性質。其後透過掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)進一步觀察材料表面的特性,與nHA在基材中的分散性,SEM與TEM結果均顯示nHA可作為有效成核劑,有助於在共混材料中提高結晶度與整體結構均勻性。熱重分析(TGA)驗證了,共混後的材料具備良好的熱性質與穩定性;吸水率實驗則指出,材料擁有良好的親水性,有利後續之生物應用。 本研究亦利用了超臨界二氧化碳(supercritical carbon dioxide, SC-CO₂)作為發泡的製程選項,進行PLA/PBS/PBAT/nHA共混材料之發泡處理,製作出有利細胞組織生長的多孔隙結構。本研究亦探討了不同操作策略,對孔洞結構的影響。過程中,本實驗共設計八種發泡程序,包括基本高溫高壓飽和後快速釋壓(1T-1P),以及引入中間溫度與壓力調控之策略,如中間溫度冷卻(2T-1P)、中間溫度冷卻並快速釋壓(2T-2P)與階梯式釋壓(2T-2P,stepwise ΔP)。SEM觀察發現,(2T-2P,階梯式ΔP)策略可產生雙峰孔洞的結構,其中小型泡孔尺寸為105–164 μm,大型泡孔尺寸為476–889 μm,顯示可透過操作條件有效控制泡孔分布。該結果可由經典成核理論、氣體溶解度原理與高分子熔體強度變化加以解釋。本研究最後亦評估各發泡後樣品之各項特性,包括泡孔平均尺寸、泡孔密度、膨脹比、孔隙率與開孔率等指標,並以水接觸角評估其親水性。利用動態力學分析儀(DMA)進行壓縮測試,實驗結果之應力–應變曲線顯示,發泡產品剛性與發泡策略密切相關。 綜合以上各實驗所述,本研究成功建立了製備PLA/PBS/PBAT/nHA共混材料之流程,與建立了發泡技術的加工條件。本研究亦製造了具有組織支架潛力應用的材料,並提供了不同孔洞大小之製備發泡參數,為未來生醫材料的開發,提供一定的數值參考依據。 | zh_TW |
| dc.description.abstract | This research aims to develop an innovative biodegradable polymer blend with excellent physical, mechanical, and biocompatible properties for potential utilization in tissue engineering. The study aimed at the fabrication of PLA/PBS/PBAT/nHA composites, using polylactic acid (PLA), poly(butylene succinate) (PBS), and poly(butylene adipate-co-terephthalate) (PBAT) as the polymer matrix, and nanohydroxyapatite (nHA) as a functional filler. The influence of nHA content on the physical, thermal, mechanical, and foaming behaviors of the blends were comprehensively analyzed.
Two groups of blend formulations were designed based on PLA content: Group A with 70 wt% PLA and Group B with 80 wt% PLA. Each group consisted of four variations with different nHA concentrations. All samples were prepared using a twin-screw extruder method through a melting process. The presence and compatibility of the components were verified using FTIR and XRD, while DSC was employed to evaluate crystallization behavior. Results from tensile and impact strength tests indicated that appropriate nHA loading markedly improved the mechanical performance of the blends. SEM and TEM analyses revealed that nHA served as an effective nucleating agent, improving the crystallinity and overall structural uniformity of the composites. TGA confirmed the thermal stability of the composites, and water absorption and contact angle experiment demonstrated that nHA addition enhanced hydrophilicity, making the material suitable for biomedical applications. Furthermore, the foaming characteristics of PLA/PBS/PBAT/nHA blends were studied using supercritical carbon dioxide (SC-CO₂) as a physical foaming agent, aimed at generating porous scaffolds conducive to cell growth. Different foaming fabrication techniques were investigated, including a primary process involving saturation under conditions of saturation temperature and pressure, succeeded by rapid pressure release (1T-1P), and second strategies including intermediate steps of temperature and pressure regulation, such as cooling at an intermediate temperature (2T-1P), cooling at an intermediate temperature combined with rapid decompression (2T-2P), and stepwise decompression (2T-2P, stepwise ΔP). SEM observations revealed that the (2T-2P, stepwise ΔP) generated a bimodal cellular architecture with small cells sized between 105–164 μm and large cells from 476–889 μm, indicating that foam morphology can be precisely regulated through the adjustment of processing parameters.Key foaming characteristics such as average cell size, expansion ratio, cell density, porosity, and open-cell content were evaluated. Hydrophilicity was assessed through water contact angle measurements. Compression tests conducted using DMA revealed that foam stiffness was closely related to the foaming strategy, reflecting changes in mechanical performance. In summary, this study successfully established the processing techniques for PLA/PBS/PBAT/nHA composites and their foaming behavior, proposing material formulations and processing parameters with strong potential for tissue scaffold applications. These findings offer important insights and constitute a key reference for advancing future biomedical materials development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:19:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:19:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
序言與謝辭 I 摘要 II Abstract IV 目次 VI 圖次 VIII 表次 XI 第一章 緒論 1 1-1 生物醫用材料在組織工程中的角色與發展趨勢 1 1-2 可降解高分子材料的潛力與PLA之應用限制 2 1-3 超臨界二氧化碳(SC-CO₂)發泡技術於組織支架製造之優勢 5 1-4 本研究之創新性與研究目標 7 第二章 實驗裝置與方法 9 2-1 實驗材料 9 2-2 複合材料共混物的製備 9 2-3 分析與測試方法 11 2-3-1 傅立葉轉換紅外光譜分析(Fourier-transform infrared spectroscopy, FTIR) 11 2-3-2 X光繞射分析(X-ray diffraction analysis, XRD) 11 2-3-3示差掃描量熱儀分析(Differential scanning calorimetry, DSC) 11 2-3-4 機械性質測試 12 2-3-5 掃描式電子顯微鏡(Scanning electron microscope, SEM) 12 2-3-6 穿透式電子顯微鏡觀察(Transmission electron microscope, TEM) 12 2-3-7 熱重分析(Thermo-gravimetric analysis, TGA) 12 2-3-8 吸水率測試 13 2-4 飽和與發泡步驟 13 2-5 發泡高分子複合材料之結構與特性分析 14 2-6 接觸角與壓縮機械性質測試 15 第三章 實驗結果與討論 16 3-1 PLA/PBS/PBAT 複合材料之拉伸強度測試結果 16 3-2 PLA/PBS/PBAT/nHA 複合材料之 FTIR 量測結果 17 3-3 PLA/PBS/PBAT/nHA 複合材料之 XRD 量測結果 17 3-4 PLA/PBS/PBAT/nHA 複合材料之 DSC 與結晶分析結果 18 3-5 PLA/PBS/PBAT/nHA 複合材料之非等溫結晶行為 19 3-6 PLA/PBS/PBAT/nHA 複合材料之拉伸與衝擊強度測試結果 20 3-7 PLA/PBS/PBAT/nHA 複合材料之 SEM 分析結果 21 3-8 PLA/PBS/PBAT/nHA 複合材料的 TEM 測量結果 22 3-9 PLA/PBS/PBAT/nHA 複合材料的熱重分析 (TGA) 23 3-10 PLA/PBS/PBAT/nHA 複合材料的水吸收測試結果 23 3-11 使用 (1T-1P)、(2T-1P) 及 (2T-2P) 操作策略之發泡結果 24 3-12 使用 (2T-2P,階梯式 ΔP) 操作條件之發泡結果:壓力效應 27 3-13 使用(2T-2P,階梯式 ΔP)操作條件之發泡結果:溫度效應 29 3-14 各操作策略發泡結果之比較分析 30 3-15 各操作策略發泡結果之親水性分析 31 3-16 各操作策略發泡結果之動態機械分析(DMA)分析 32 第四章 結論 34 圖示 37 表格 60 參考文獻 64 附錄 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聚乳酸(PLA) | zh_TW |
| dc.subject | 聚丁二酸丁二酯(PBS) | zh_TW |
| dc.subject | 聚己二酸/對苯二甲酸丁二酯(PBAT) | zh_TW |
| dc.subject | 奈米羥基磷灰石(nHA) | zh_TW |
| dc.subject | 超臨界二氧化碳發泡 | zh_TW |
| dc.subject | 雙峰泡孔結構 | zh_TW |
| dc.subject | 發泡策略 | zh_TW |
| dc.subject | poly(butylene succinate) | en |
| dc.subject | bimodal cell structure | en |
| dc.subject | supercritical carbon dioxide foaming | en |
| dc.subject | polymer blends tissue scaffold | en |
| dc.subject | nanohydroxyapatite | en |
| dc.subject | poly(butylene adipate-co-terephthalate) | en |
| dc.subject | polylactic acid | en |
| dc.title | 應用超臨界流體技術製備基於PLA/PBAT/PBS/nHA之生物可降解支架於組織之應用 | zh_TW |
| dc.title | Investigation of the PLA/PBAT/PBS/nHA-Based Biodegradable Scaffold Using Supercritical Fluid Technology for Tissue Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳致宇;張至宏;黃錦前;蘇至善;陳立仁;劉華昌 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Yu Chen;Chih-Hung Chang;Chin-Chean Wong;Chie-Shaan Su;Li-Jen Chen;Hwa-Chang Liu | en |
| dc.subject.keyword | 聚乳酸(PLA),聚丁二酸丁二酯(PBS),聚己二酸/對苯二甲酸丁二酯(PBAT),奈米羥基磷灰石(nHA),超臨界二氧化碳發泡,雙峰泡孔結構,發泡策略, | zh_TW |
| dc.subject.keyword | polylactic acid,poly(butylene succinate),poly(butylene adipate-co-terephthalate),nanohydroxyapatite,polymer blends tissue scaffold,supercritical carbon dioxide foaming,bimodal cell structure, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202502722 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 21.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
