Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98455
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道zh_TW
dc.contributor.advisorYuh-Dauh Lyuuen
dc.contributor.author陳子濬zh_TW
dc.contributor.authorTzu-Chun Chenen
dc.date.accessioned2025-08-14T16:11:09Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation[1] 何怡滿、劉玉珍 (1997)。臺灣股市隔夜報酬影響因素之實證研究。管理學報,14:1 1997.03[民86.03],39–64。https://jom.management.org.tw/upload/alistfs1602052633154958.pdf
[2] Ayala, J., García-Torres, M., Noguera, J. L. V., Gómez-Vela, F., & Divina, F. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119. https://doi.org/10.1016/j.knosys.2021.107119
[3] Bengio, Y., Frasconi, P., & Simard, P. (1993, March). The problem of learning long-term dependencies in recurrent networks. In IEEE International Conference on Neural Networks (pp. 1183–1188). IEEE. https://doi.org/10.1109/ICNN.1993.298725
[4] Cao, K., & You, H. (2024). Fundamental analysis via machine learning. Financial Analysts Journal, 80(2), 74–98. https://doi.org/10.1080/0015198X.2024.2313692
[5] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. https://doi.org/10.48550/arXiv.1406.1078
[6] Dash, R., & Dash, P. K. (2016). A hybrid stock trading framework integrating technical analysis with machine learning techniques. Journal of Finance and Data Science, 2(1), 42–57. https://doi.org/10.1016/j.jfds.2016.03.002
[7] Elahi, A., & Taghvaei, F. (2024). Combining financial data and news articles for stock price movement prediction using large language models. In 2024 IEEE International Conference on Big Data (BigData) (pp. 4875–4883). IEEE. https://doi.org/10.1109/BigData62323.2024.10825449
[8] Fama, E. (2017). Efficient capital markets: A review of theory and empirical work. In J. Cochrane & T. Moskowitz (Ed.), The Fama Portfolio: Selected Papers of Eugene F. Fama (pp. 76–121). Chicago: University of Chicago Press. https://doi.org/10.2307/2325486
[9] Hagenau, M., Liebmann, M., & Neumann, D. (2013). Automated news reading: Stock price prediction based on financial news using context-capturing features. Decision Support Systems, 55(3), 685–697. https://doi.org/10.1016/j.dss.2013.02.006
[10] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[11] Huang, Y., Capretz, L. F., & Ho, D. (2021). Machine learning for stock prediction based on fundamental analysis. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1–10). IEEE. https://doi.org/10.1109/SSCI50451.2021.9660134
[12] Kaya, M., & Karsligil, M. (2010). Stock price prediction using financial news articles. In 2010 IEEE International Conference on Information and Financial Engineering (pp. 478–482). https://doi.org/10.1109/ICIFE.2010.5609404
[13] Larsen, J. I. (2010). Predicting stock prices using technical analysis and machine learning (Master’s thesis, Institutt for Datateknikk og Informasjonsvitenskap). http://hdl.handle.net/11250/252181
[14] LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R. (1998). Efficient BackProp. In Neural Networks: Tricks of the Trade (pp. 9–50). Springer. https://doi.org/10.1007/3-540-49430-8_2
[15] Lu, Y., Zhang, H., & Guo, Q. (2023). Stock and market index prediction using Informer network. https://doi.org/10.48550/arXiv.2305.14382
[16] Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59–82. https://www.aeaweb.org/articles?id=10.1257/089533003321164958
[17] Maqbool, J., Aggarwal, P., Kaur, R., Mittal, A., & Ganaie, I. A. (2023). Stock prediction by integrating sentiment scores of financial news and MLP-regressor: A machine learning approach. Procedia Computer Science, 218, 1067–1078. https://doi.org/10.1016/j.procs.2023.01.086
[18] Mohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. (2019). Stock price prediction using news sentiment analysis. In 2019 IEEE International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 205–208). https://doi.org/10.1109/BigDataService.2019.00035
[19] Prechelt, L. (1998). Early stopping–but when? In Neural Networks: Tricks of the Trade (pp. 55–69). Springer. https://doi.org/10.1007/3-540-49430-8_3
[20] Taiwan Stock Exchange. (n.d.). Every 5-second index. Retrieved February 24, 2025, from https://www.twse.com.tw/en/indices/taiex/mi-5min-indices.html
[21] Taiwan Stock Exchange. (n.d.). Statistics of order book and trade per 5 seconds. Retrieved February 26, 2025, from https://www.twse.com.tw/en/trading/historical/mi-5mins.html
[22] Tang, J., & Chen, X. (2018). Stock market prediction based on historic prices and news titles. In 2018 International Conference on Machine Learning Technologies (pp. 29–34). https://doi.org/10.1145/3231884.3231887
[23] Tumarkin, R., & Whitelaw, R. F. (2001). News or noise? Internet postings and stock prices. Financial Analysts Journal, 57(3), 41–51. https://doi.org/10.2469/faj.v57.n3.2449
[24] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998–6008). https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[25] Wang, C., Chen, Y., Zhang, S., & Zhang, Q. (2022). Stock market index prediction using deep transformer model. Expert Systems with Applications, 208, 118128. https://doi.org/10.1016/j.eswa.2022.118128
[26] You, K., Long, M., Wang, J., & Jordan, M. I. (2019). How does learning rate decay help modern neural networks? https://doi.org/10.48550/arXiv.1908.01878
[27] Yu, Y. (2024). Research on news sentiment analysis and stock price prediction. (Master’s thesis, Kun Shan University, Graduate School of Information Management). https://hdl.handle.net/11296/jg4dy7
[28] Zhang, Q., Qin, C., Zhang, Y., Bao, F., Zhang, C., & Liu, P. (2022). Transformer-based attention network for stock movement prediction. Expert Systems with Applications, 202, 117239. https://doi.org/10.1016/j.eswa.2022.117239
[29] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2021). Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI Conference on Artificial Intelligence (pp. 11106–11115). https://doi.org/10.1609/aaai.v35i12.17325
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98455-
dc.description.abstract因為大盤指數為反映整體市場的指標,預測其走勢是投資大眾感興趣的議題。而網路新聞由於方便取得,經常被用來搭配大盤歷史數據以預測其未來走勢。本論文利用經過時間與空間優化的Informer模型和自由時報財經新聞與聯合新聞網股市新聞的新聞標題來驗證網路新聞標題是否能夠幫助預測臺股大盤走勢。實驗以過去45個30分鐘的資料來預測下個30分鐘的收盤價,而測試資料為2024年的交易日,並以平均絕對百分比誤差(MAPE)做為評估指標。
實驗結果顯示,使用單一來源的新聞標題來協助預測30分鐘後的大盤走勢能夠幫助MAPE平均降低0.162 % ~ 0.474 %,說明網路新聞標題確實包含額外的資訊。由於本論文從自由時報與聯合新聞網挑選的新聞類別不同,且每日各自隨機選取10則新聞標題,造成兩種來源選取到的新聞標題存在議題上的差異,因此使用兩個來源新聞標題來協助預測30分鐘後的大盤走勢即使是最佳結果也僅使MAPE平均降低0.125 %。
zh_TW
dc.description.abstractThe stock index is a proxy of the whole market so predicting its trend attracts many investors. Easily accessible online news is often utilized along with historical market data to help predict the trend of stock index. This thesis utilizes the Informer model, which is time‐ and space‐optimized, and online news headlines from Liberty Times’ financial news and United Daily News’ stock market news to assess whether online news headlines help predict the trend of the Taiwan stock index (TAIEX). The experiments use 45 preceding 30-minute data to predict the closing price 30 minutes from now. The test data covers all trading days in 2024. Performance is measured by the mean absolute percentage error (MAPE).
The experimental results show that utilizing headlines from a single source to help predict the stock index can reduce MAPE by 0.162% ~ 0.474% on average, demonstrating that online news headlines do contain additional information. Since this thesis selects different categories from Liberty Times and United Daily News and then randomly chooses 10 headlines from each source every day, the headlines chosen from the two sources differ in topics. Therefore, even the best result from the combination of two sources reduces MAPE by a mere 0.125% on average.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:11:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:11:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 v
表次 vi
第一章 緒論 1
1.1 簡介 1
1.2 論文架構 2
第二章 背景 3
2.1 文獻回顧 3
2.2 Transformer 5
2.2.1 自注意力機制 5
2.2.2 多頭自注意力機制 8
2.2.3 編碼器—解碼器架構 9
2.3 Informer 11
2.3.1 機率稀疏自注意力機制 11
2.3.2 注意力蒸餾編碼器 12
2.3.3 生成式風格解碼器 13
第三章 實驗方法 15
3.1 資料來源與處理 15
3.2 實驗設計 17
3.3 位置編碼與時間向量 18
3.4 訓練與驗證 19
3.4.1 資料處理與驗證 19
3.4.2 標準化 19
3.4.3 學習率衰減 20
3.4.4 提前停止法 20
3.5 模型架構 21
第四章 實驗結果 23
4.1 評估指標 23
4.2 實驗結果 23
4.2.1 單一來源新聞標題實驗 23
4.2.2 綜合來源新聞標題實驗 24
4.2.3 模式交互實驗 25
4.2.4 結合不同來源新聞標題的探討 27
第五章 結論與展望 28
參考文獻 29
-
dc.language.isozh_TW-
dc.subject大盤預測zh_TW
dc.subject時間序列分析zh_TW
dc.subject網路新聞zh_TW
dc.subjectInformerzh_TW
dc.subject機器學習zh_TW
dc.subjectOnline Newsen
dc.subjectStock Index Predictionen
dc.subjectTime Series Analysisen
dc.subjectMachine Learningen
dc.subjectInformeren
dc.title基於 Informer 模型驗證網路新聞標題對於大盤預測的有效性zh_TW
dc.titleVerification of the Effectiveness of Online News Headlines for Market Prediction with Informer Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陸裕豪;張經略zh_TW
dc.contributor.oralexamcommitteeU-Hou Lok;Ching-Lueh Changen
dc.subject.keyword大盤預測,時間序列分析,網路新聞,Informer,機器學習,zh_TW
dc.subject.keywordStock Index Prediction,Time Series Analysis,Online News,Informer,Machine Learning,en
dc.relation.page32-
dc.identifier.doi10.6342/NTU202502072-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved