請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98436完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林茂昭 | zh_TW |
| dc.contributor.advisor | Mao-Chao Lin | en |
| dc.contributor.author | 許騰元 | zh_TW |
| dc.contributor.author | Teng-Yuan Syu | en |
| dc.date.accessioned | 2025-08-14T16:06:40Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | [1] H.-S. Shih, C.-S. Wang, C.-C. Chen, and M.-C. Lin, “Tree-search decoding using reduced size stacks,” 2018 International Symposium on Information Theory and Its Applications (ISITA), pp. 511–515, 2018.
[2] S. L. W. E. Ryan, “Channel codes classical and modern,” 2009. [3] A. G. C. Berrou and P. Thitimajshima, “Tree-search decoding using reduced-size stacks,” Proceedings of ICC’93 - IEEE International Conference on Communications, vol. 2, pp. 1064–1070, 1993. [4] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21–28, 1962. [5] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic, “Short block-length codes for ultra-reliable low latency communications,” IEEE Communications Magazine, vol. 57, no. 2, pp. 130–137, 2019. [6] M. Fossorier and S. Lin, “Soft decision decoding of linear block codes based on ordered statistics,” Proceedings of 1994 IEEE International Symposium on Information Theory, pp. 395–, 1994. [7] Y. Han, C. Hartmann, and C.-C. Chen, “Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes,” IEEE Transactions on Information Theory, vol. 39, pp. 1514–1523, Sep. 1993. [8] L. Ekroot and S. Dolinar, “A* decoding of block codes,” IEEE Transactions on Communications, vol. 44, no. 9, pp. 1052–1056, 1996. [9] P. Lin, “Further study on decoding for short linear block codes,” 2022. [10] C.-C. Lin, “Designs of coding and decoding for short linear block codes,” 2024. [11] M. Fossorier, T. Koumoto, T. Takata, T. Kasami, and S. Lin, “The least stringent sufficient condition on the optimality of a suboptimally decoded codeword using the most reliable basis,” Proceedings of IEEE International Symposium on Information Theory, p. 430, 1997. [12] S. Lin, “Error control coding: Fundamentals and applications,” 1994. [13] H. Zhu, Z. Cao, Y. Zhao, D. Li, and Y. Yang, “Fast list decoders for polarization- adjusted convolutional (pac) codes,” IET Communications, vol. 17, pp. 842–851, 2023. [14] Y. Wu and C. N. Hadjicostis, “Soft-decision decoding of linear block codes using pre- processing and diversification,” IEEE Transactions on Information Theory, vol. 53, no. 1, pp. 378–393, 2007. [15] Consultative Committee for Space Data Systems (CCSDS), “Short block length ldpc codes for tc synchronization and channel coding,” Consultative Committee for Space Data Systems, Washington, DC, USA, CCSDS Experimental Specification (Orange Book) CCSDS 231.1-O-1, Apr. 2015. [16] IEEE Standards Association, “Ieee standard for information technology—telecom- munications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: Wireless lan medium access con-trol (mac) and physical layer (phy) specifications,” Piscataway, NJ, USA, Standard IEEE Std 802.11-2020, Feb. 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98436 | - |
| dc.description.abstract | 二元短線性區塊碼的軟式解碼(soft decoding)一直是個很有挑戰性的研究課題。一般而言,ordered statistic decoding (OSD) 以及 A* 解碼演算法(A* decoding)為對短線性區塊碼進行軟式解碼的兩大主流。這兩個主流解碼方法都有利用到最可靠基底(most reliable basis, MRB)或是又稱為最可靠及獨立位置(most reliable and independent positions, MRIP)的觀念,並且假設在MRIP內發生的錯誤不超過λ個位元。傳統的作法是利用接收信號的絕對值大小來決定MRIP。我們實驗室先前以串接碼的架構設計了一些二元短線性區塊碼,使用里德-所羅門碼(Reed-Solomon code)作為外碼,並以二進位碼作為內碼,此內碼必須具備soft-in soft out (SISO) decoding的能力。對短串接碼做解碼時需要先對內碼的SISO解碼器進行解碼,取得解碼的軟輸出對數似然比(log likelihood ratio,LLR)值,然後以這些LLR的絕對值大小來決定MRIP。以此方式獲得的MRIP會比傳統方式所獲得的MRIP更可靠。這樣所建構的短串接碼在利用使用改良後的MRIP時與使用傳統MRIP的binary extended BCH code相比可以用較小的λ值取得類似或更低的解碼錯誤率。在此論文中我們設計更多的串接碼來進一步驗證使用短串接碼的優越性。特別是我們指出在比較使用各種內碼LLR所得的MRIP的可靠性時不能單單以LLR的variance的大小來決定。我們將LLR乘以正確的data然後取其平均值,以此計量可以更正確的評估各種內碼的優劣,對不同類型之串接碼進行效能比較與分析。 | zh_TW |
| dc.description.abstract | Soft decoding of binary short linear block codes has long been a challenging research topic. At present, the two mainstream approaches—ordered-statistic decoding (OSD) and A* decoding—both exploit the concept of the most reliable basis, also known as the most reliable and independent positions (MRIP), under the assumption that at most λ bit errors occur within the MRIP. Traditionally, the MRIP is determined by the magnitudes of the received signal.Our laboratory previously designed several binary short concatenated codes that employ a Reed–Solomon outer code and a binary inner code capable of soft-input soft-output (SISO) decoding. During decoding, the SISO decoder for the inner code is executed first, producing log-likelihood ratios (LLRs); the absolute values of these LLRs are then used to select the MRIP. The MRIP obtained in this way is more reliable than that derived by the conventional method. Consequently, the proposed short concatenated codes can achieve similar or lower decoding error rates with a smaller λ compared with binary extended BCH codes that use the traditional MRIP.In this thesis we construct additional concatenated codes to further verify the superiority of the short-code approach. We point out in particular that the reliability of MRIPs derived from different inner-code LLRs cannot be judged solely by the variance of the LLRs. By multiplying each LLR by the correct data bit and then averaging, we obtain a metric that more accurately evaluates inner-code quality and facilitates meaningful performance comparisons across concatenated code types. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:06:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:06:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目次 vi 圖次 ix 表次 xii 第一章 緒論 1 第二章 基本A*解碼演算法 5 2.1 系統說明 5 2.1.1 系統模型 5 2.1.2 判決準則 7 2.2 A* 解碼演算法 9 2.2.1 二元區塊碼的樹狀結構 9 2.2.2 A* 解碼演算法的流程 11 2.2.3 堆疊限制與效能權衡 17 2.3 A* 解碼演算法的複雜度評估 18 2.3.1 搜尋樹邊的平均數量 19 2.3.2 堆疊比較數的平均數量 20 2.4 模擬結果 21 第三章 已知降低 A* 解碼複雜度方法之回顧 24 3.1 有序統計解碼 (OSD) 演算法 24 3.2 路徑限制演算法 26 3.2.1 PC-λ 演算法 27 3.2.2 PC-out-λ 演算法 28 3.2.3 模擬結果 30 3.3 停止準則 32 3.3.1 基於通道觀測停止準則 33 3.3.2 MT H,ˆc 停止準則 34 3.4 無比較插入堆疊法 35 3.5 停止準則與無比較插入堆疊法的模擬結果 39 第四章 應用串接編碼提升 A* 解碼效能 42 4.1 里德–所羅門串接碼 42 4.1.1 里德-所羅門串接二進位碼 43 4.1.2 里德-所羅門串接卷積碼 45 4.2 優化 MRIP 和 z 向量 48 4.2.1 SISO 解碼器 48 4.2.2 BCJR 解碼器 49 4.2.3 優化後整體 A* 解碼演算法 52 4.3 碼字長度為 128 串接碼的模擬結果 53 4.3.1 (128,36) 串接碼之比較 54 4.3.2 (128,64) 和 (130,65) 串接碼之比較 59 4.3.3 (128,22) 和 (128,24) 串接碼之比較 61 4.3.4 (128,32) 串接碼之比較 62 4.3.5 不同碼率的卷積串接碼之比較 63 4.4 碼字長度為 192、190,碼率 1/2 的串接碼 66 4.4.1 解碼額外訊息位元 67 4.4.2 模擬結果 68 第五章 低密度同位檢查碼作為內碼的串接碼 71 5.1 里德-所羅門串接低密度同位檢查碼 71 5.1.1 sum-product 解碼器 73 5.1.2 模擬結果 76 5.2 分析錯誤率結果 80 5.3 對數似然比乘原始數據平均值 82 第六章 結論與未來研究方向 84 參考文獻 86 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 通道編碼 | zh_TW |
| dc.subject | A* 解碼演算法 | zh_TW |
| dc.subject | 樹狀搜索解碼演算法 | zh_TW |
| dc.subject | 短線性區段碼 | zh_TW |
| dc.subject | 串接碼 | zh_TW |
| dc.subject | Concatenated Code | en |
| dc.subject | Short Linear Block Code | en |
| dc.subject | Tree-Search Decoding Algorithm | en |
| dc.subject | Channel Coding | en |
| dc.subject | A* Decoding Algorithm | en |
| dc.title | 以串接碼建構短線性區塊碼的編解碼的進一步研究 | zh_TW |
| dc.title | Further Study on Encoding and Decoding for Short Linear Block Codes Based on Concatenated Codes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王新博;呂忠津;趙啟超;蘇育德 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Po Wang;Chung-Chin Lu;Chi-Chao Chao;Yu-Ted Su | en |
| dc.subject.keyword | A* 解碼演算法,通道編碼,串接碼,短線性區段碼,樹狀搜索解碼演算法, | zh_TW |
| dc.subject.keyword | A* Decoding Algorithm,Channel Coding,Concatenated Code,Short Linear Block Code,Tree-Search Decoding Algorithm, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202502905 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
