請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98430完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊杉 | zh_TW |
| dc.contributor.advisor | Chuin-Shan Chen | en |
| dc.contributor.author | 賴凱泰 | zh_TW |
| dc.contributor.author | Krittachai Lapevisuthisaroj | en |
| dc.date.accessioned | 2025-08-14T16:04:58Z | - |
| dc.date.available | 2025-08-15 | - |
| dc.date.copyright | 2025-08-14 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] Alex Neoh, Maximum Wilder‑Smith, Harrison Chen, and Connor Chase. An evaluation of the traveling salesman problem. Undergraduate project, California State Polytechnic University, Pomona, Pomona, CA, 2020. Advisor: Tannaz Rezaei Damavandi.
[2] OpenCV Contributors. Camera Calibration and 3D Reconstruction. OpenCV, 2024. https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html. [3] Zhefan Xu, Baihan Chen, Xiaoyang Zhan, Yumeng Xiu, Christopher Suzuki, and Kenji Shimada. A vision-based autonomous uav inspection framework for unknown tunnel construction sites with dynamic obstacles. IEEE Robotics and Automation Letters, PP:1–8, 08 2023. [4] Sevdanur Rende et al. Advances in micro-cartography: A two-dimensional photo mosaicing technique for seagrass monitoring. Estuarine, Coastal and Shelf Science, 167:475–486, 2015. [5] Weiping Wen, Tingfei Xu, Jie Hu, Duofa Ji, Yanan Yue, and Changhai Zhai. Seismic damage recognition of structural and non-structural components based on convolutional neural networks. Journal of Building Engineering, 102:112012, 02 2025. [6] Euiseok Jeong, Junwon Seo, and James P. Wacker. Uav-aided bridge inspection protocol through machine learning with improved visibility images. Expert Systems with Applications, 197:116791, 2022 [7] Nasser Gyagenda, Jasper Hatilima, H. Roth, and Vadim Zhmud. A review of gnss-independent uav navigation techniques. Robotics and Autonomous Systems, 152:104069, 02 2022. [8] Min-Yuan Cheng, Riqi Khasani, and Richard Citra. Image-based preliminary emergency assessment of damaged buildings after earthquake: Taiwan case studies. Engineering Applications of Artificial Intelligence, 126:107164, 11 2023. [9] Min-Yuan Cheng, Moh Sholeh, and Alvin Kwek. Computer vision-based postearthquake inspections for building safety assessment. Journal of Building Engineering, 94:109909, 06 2024. [10] Billie Spencer, Vedhus Hoskere, and Yasutaka Narazaki. Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering, 5, 03 2019. [11] Raza Ali, Joon Huang Chuah, Mohamad Talip, Norrima Mokhtar, and Muhammad Shoaib. Structural crack detection using deep convolutional neural networks. Automation in Construction, 133:103989, 01 2022. [12] Vedhus Hoskere, Yasutaka Narazaki, Tu Hoang, and Jr Spencer. Vision-based structural inspection using multiscale deep convolutional neural networks, 05 2018. [13] Sina Tavasoli, Xiao Pan, and Tony Yang. Real-time autonomous indoor navigation and vision-based damage assessment of reinforced concrete structures using low-cost nano aerial vehicles. Journal of Building Engineering, 68:106193, 03 2023. [14] Minh-Tu Cao, Ngoc-Mai Nguyen, Kuan-Tsung Chang, Xuan-Linh Tran, and NhatDuc Hoang. Automatic recognition of concrete spall using image processing and metaheuristic optimized logitboost classification tree. Advances in Engineering Software, 159:103031, 2021. [15] Isaac Agyemang, Xiaoling Zhang, Isaac Adjei-Mensah, Daniel Acheampong, Linda Fiasam, Collins Sey, Sophyani Yussif, and Derrick Effah. Automated vision-based structural health inspection and assessment for post-construction civil infrastructure. Automation in Construction, 156:105153, 12 2023. [16] L. Minh Dang, Hanxiang Wang, Yanfen Li, Le Quan Nguyen, Tan Nguyen, HyoungKyu Song, and Hyeonjoon Moon. Deep learning-based masonry crack segmentation and real-life crack length measurement. Construction and Building Materials, 359:129438, 10 2022. [17] Chen Lyu, Shaoqian Lin, Angus Lynch, Yang Zou, and Minas Liarokapis. Uavbased deep learning applications for automated inspection of civil infrastructure. Automation in Construction, 177:106285, 2025. [18] Shengyang Chen, Weifeng Zhou, An-Shik Yang, Han Chen, Boyang Li, and ChihYung Wen. An end-to-end uav simulation platform for visual slam and navigation. Aerospace, 9:48, 01 2022. [19] Vedhus Hoskere, Yasutaka Narazaki, and Billie Spencer. Physics-based graphics models in 3d synthetic environments as autonomous vision-based inspection testbeds. Sensors, 22:532, 01 2022. [20] Tzutalin. Labelimg. Free Software: MIT License, 2015. [21] Open Robotics. Mavros: Mavlink extendable communication node for ros. https: //github.com/mavlink/mavros, 2023. Accessed: 2025-07-15. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98430 | - |
| dc.description.abstract | 在地震等天災發生後,城市基礎設施經常遭受嚴重破壞,並導致生活基本服務中斷。災後能否快速且可靠地完成結構檢測,關係到公共安全、建築物完整性評估與復原作業的效率。然而,傳統檢測方式不僅費時費力,還常伴隨人員進入危險現場的風險。雖然過去已有不少研究探討無人機(UAV)在導航與定位上的應用,然而針對災後結構檢測的完整作業流程仍相對缺乏。為了解決上述問題,本研究提出一套基於視覺的無人機自主結構檢測框架,專為 GPS 訊號缺乏的環境而設計。此系統採用端到端整合架構,從飛行前的路徑規劃,到飛行中利用「最佳視角搜尋(Find Best View, FBV)」演算法進行動態決策,再到飛行後的結構元件識別與損傷分類,全程自動化。我們以自組無人機為實驗載具,搭載 IntelRealSense T265 視覺慣性測程(VIO)相機,實現無 GPS 環境下的即時定位。系統在 Xu 等人所提出的導航架構基礎上,加入基於規則的 FBV 演算法,以便在飛行過程中根據結構特徵動態調整拍攝角度。影像採集後,先透過 You Only LookOnce (YOLO) 物件偵測模型辨識結構元件,再結合本研究團隊改良自國立臺灣大學張家銘教授團隊研究的情境感知分類模型,對影像進行損傷程度評估。實驗結果顯示,FBV 演算法可提升無人機在影像採集階段的自主判斷能力,使拍攝視角更具針對性;此外,將 DataCenterHub 資料集中之領域特定影像納入訓練,令模型在 IoU 0.5 條件下的平均精準度(mAP@0.5)達到 69.0%,最佳視角識別成功率(FBV-SS)為 68.05%,結構損壞指標識別成功率(SDI-SS)為 83.33%。本研究所提出之 UAV 自主檢測框架,不僅具備高效率與擴展性,更能自動蒐集視覺資料、辨識結構元件並分類損傷,於災後複雜的都市環境中,協助進行即時且具依據的決策。 | zh_TW |
| dc.description.abstract | Natural disasters such as earthquakes pose significant threats to urban infrastructure, often resulting in widespread damage and the disruption of essential services. In the aftermath of such events, rapid and reliable structural inspection is vital to ensure public safety, assess building integrity, and facilitate effective recovery operations. However, conventional inspection methods are typically labor-intensive, time-consuming, and pose risks to human inspectors. While previous research has explored UAV-based navigation and localization, comprehensive solutions for autonomous structural inspection remain limited.
To address these challenges, this study proposes a vision-based framework utilizing Unmanned Aerial Vehicles (UAV) for autonomous structural inspection in Global Positioning System (GPS)-denied environments. The proposed system constitutes a fully integrated, end-to-end solution encompassing the entire inspection workflow—from pre-flight path planning and mid-flight decision-making using a Find Best View (FBV) algorithm, to post-flight analysis involving structural component recognition and damage classification. The framework is implemented on a custom-built UAV platform equipped with an Intel RealSense T265 visual-inertial odometry (VIO) camera to enable real-time localization in GPS-denied settings. Building upon the navigation framework introduced by Xu et al., this research incorporates a rule-based FBV algorithm to guide image acquisition porcess dynamically during flight. A You Only Look Once (YOLO)-based object detection model is employed to identify structural elements, followed by a context-aware classification model—adapted from work at National Taiwan University (Professor ChiaMing Chang), for post-flight damage assessment. Experimental results demonstrate that the integration of the FBV algorithm enhances autonomous decision-making during image acquisition by adjusting the UAV’s viewpoint based on contextual structural cues. Additionally, augmenting the training dataset with domain-specific imagery from the DataCenterHub dataset significantly improved detection performance, achieving a mean Average Precision at IoU 0.5 (mAP@0.5) of 69.0%, Find-Best-View Success Score (FBV-SS) of 68.05%, and Structural Damage Index Success Score (SDI-SS) of 83.33%. This research advances the field of post-disaster structural assessment by introducing a robust, efficient, and scalable UAV inspection framework capable of autonomous visual data collection, structural recognition, and damage classification, thereby supporting timely and informed decision-making in complex urban environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:04:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-14T16:04:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee .................. i
Acknowledgements .................................................................................... iii 摘要 .............................................................................................................. v Abstract ......................................................................................................... vii Contents ........................................................................................................ xi List of Illustrations ...................................................................................... xv List of Tables ............................................................................................... xvii Chapter 1 Introduction .......................................................................... 1 1.1 Background and Motivation ............................................................ 1 1.2 Research Objectives .......................................................................... 2 1.3 Organization of Thesis ...................................................................... 3 Chapter 2 Literature Review ............................................................... 5 2.1 Structural Inspection Methods in Civil Engineering:A Post-Disaster Perspective ............................................................... 5 2.2 Vision-Based Structure Inspection Techniques in Civil Engineering .. 6 2.3 Research on Unmanned Aerial Vehicles (UAV) in Civil Engineering ... 8 2.4 UAV Implementation Challenges and Opportunities ....................... 10 Chapter 3 Methodology ....................................................................... 13 3.1 Research Overview ............................................................................ 13 3.2 Study Domain ..................................................................................... 13 3.3 UAV Hardware and Software Configuration .................................. 14 3.3.1 UAV and Onboard Computing Configuration ......................... 14 3.3.2 Software Environment ............................................................ 15 3.4 System Overview ............................................................................... 17 3.4.1 Pre-Flight Phase ....................................................................... 17 3.4.2 Mid-Flight Phase ...................................................................... 18 3.4.3 Post-Flight Phase ...................................................................... 18 3.5 Proposed Methods ............................................................................ 19 3.5.1 Travelling Salesman Problem .................................................. 19 3.5.2 Structure Recognition via YOLOv11 ....................................... 22 3.5.2.1 Data Collection .............................................................. 24 3.5.2.2 Dataset Refinement ..................................................... 25 3.5.2.3 Hyperparameter Configuration .................................... 26 3.5.2.4 Model Evaluation .......................................................... 27 3.5.3 Structure Damage Classification via YOLOv8 ....................... 27 3.5.4 Find Best View (FBV) Algorithm ............................................ 30 3.5.4.1 Find-Best-View Success Score (FBV-SS) Algorithm Performance ... 33 3.5.5 Real-Time Decision Making with Autonomous Framework .. 34 3.5.5.1 Visual Perception & Dynamic Map Module ............... 38 3.5.5.2 Hierarchical Planning Module ..................................... 39 3.5.6 Structural Analysis and Reporting .......................................... 41 3.5.6.1 Structural Damage Index (SDI) ................................... 43 Chapter 4 Framework Calibration and Testing ............................... 47 4.1 Find Best View Translation Parameter ............................................ 47 4.1.1 Depth Estimation and Its Impact on the FBV Algorithm ....... 48 4.2 Selection of Localization Algorithm ................................................. 51 4.3 Result and Discussion ......................................................................... 55 4.3.1 YOLOv11 Accuracy Evaluation ............................................... 55 4.3.2 Find Best View (FBV) Algorithm Testing Result ................................................ 58 4.3.3 Structural Damage Index (SDI) Evaluation ............................ 60 Chapter 5 Conclusion and Future Studies ........................................ 67 5.1 Conclusion ........................................................................................... 67 5.2 Limitations .......................................................................................... 68 5.3 Future Work ....................................................................................... 70 References ............................................................................................. 71 | - |
| dc.language.iso | en | - |
| dc.subject | 結構損傷分類 | zh_TW |
| dc.subject | 自主無人機 | zh_TW |
| dc.subject | 災後 | zh_TW |
| dc.subject | 結構識別 | zh_TW |
| dc.subject | 結構損傷評估 | zh_TW |
| dc.subject | Structure Recognition | en |
| dc.subject | Autonomous UAV | en |
| dc.subject | Structure damage assessmet | en |
| dc.subject | Post-Disaster | en |
| dc.subject | Structure Damage Classification | en |
| dc.title | 基於視覺的端對端自主無人機系統架構:應用於無 GPS 環境下之結構檢測 | zh_TW |
| dc.title | End-to-End Vision-Based RC Structural Inspection Framework for Post-Disaster with UAV in GPS-Denied Environments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張家銘;邱聰智 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Ming Chang;Tsung-Chih Chiou | en |
| dc.subject.keyword | 自主無人機,結構損傷分類,結構損傷評估,結構識別,災後, | zh_TW |
| dc.subject.keyword | Autonomous UAV,Structure Damage Classification,Structure damage assessmet,Structure Recognition,Post-Disaster, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202502812 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-15 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 25.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
