請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游文岳 | zh_TW |
| dc.contributor.advisor | Wen-Yueh Yu | en |
| dc.contributor.author | 陳韋丞 | zh_TW |
| dc.contributor.author | Wei-Cheng CHEN | en |
| dc.date.accessioned | 2025-08-05T16:18:51Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Y.-K. Park, B.-S. Kim, Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies, Chemical Engineering Journal, 461 (2023). https://doi.org/10.1016/j.cej.2023.141958
T. Selleri, A.D. Melas, A. Joshi, D. Manara, A. Perujo, R. Suarez-Bertoa, An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union, Catalysts, 11 (2021). https://doi.org/10.3390/catal11030404 Z. Zhu, B. Xu, Purification Technologies for NOx Removal from Flue Gas: A Review, Separations, 9 (2022). https://doi.org/10.3390/separations9100307 L. Han, S. Cai, M. Gao, J.Y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects, Chem Rev, 119 (2019) 10916-10976. https://doi.org/10.1021/acs.chemrev.9b00202 Z. Hu, R.T. Yang, 110th Anniversary: Recent Progress and Future Challenges in Selective Catalytic Reduction of NO by H2 in the Presence of O2, Industrial & Engineering Chemistry Research, 58 (2019) 10140-10153. https://doi.org/10.1021/acs.iecr.9b01843 Y. Zhang, G. Cao, X. Yang, Advances in De-NOx Methods and Catalysts for Direct Catalytic Decomposition of NO: A Review, Energy & Fuels, 35 (2021) 6443-6464. https://doi.org/10.1021/acs.energyfuels.1c00330 M. Ito, M. Tozaki, SNCR deNOx process by urea decomposition system and evaluation of CO2 reduction, Journal of Material Cycles and Waste Management, 26 (2023) 435-443. https://doi.org/10.1007/s10163-023-01840-3 G. Liu, P.-X. Gao, A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies, Catalysis Science & Technology, 1 (2011). https://doi.org/10.1039/c1cy00007a A.B. Sounak Roy NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance, Chemical Reviews, 109 (2009) 4054-4091. https://doi.org/10.1021/cr800496f P. Forzatti, L. Lietti, L. Castoldi, Storage and Reduction of NOx Over LNT Catalysts, Catalysis Letters, 145 (2014) 483-504. https://doi.org/10.1007/s10562-014-1343-0 B. Pereda-Ayo, D. Duraiswami, J.R. González-Velasco, Control of NO storage and reduction in NSR bed for designing combined NSR–SCR systems, Catalysis Today, 172 (2011) 66-72. https://doi.org/10.1016/j.cattod.2011.01.043 M. Cortés-Reyes, S. Molina-Ramírez, J.A. Onrubia-Calvo, C. Herrera, M.Á. Larrubia, J.R. González-Velasco, L.J. Alemany, Structured NSR-SCR hybrid catalytic technology: Influence of operational parameters on deNOx activity, Catalysis Today, 383 (2022) 287-298. https://doi.org/10.1016/j.cattod.2021.09.013 F. Can, X. Courtois, S. Royer, G. Blanchard, S. Rousseau, D. Duprez, An overview of the production and use of ammonia in NSR+SCR coupled system for NOx reduction from lean exhaust gas, Catalysis Today, 197 (2012) 144-154. https://doi.org/10.1016/j.cattod.2012.07.032 H. Abdulhamid, E. Fridell, M. Skoglundh, The reduction phase in NOx storage catalysis: Effect of type of precious metal and reducing agent, Applied Catalysis B: Environmental, 62 (2006) 319-328. https://doi.org/10.1016/j.apcatb.2005.08.014 M.S. Sophie Salasc, Erik Fridell, A comparison between Pt and Pd in NOx storage catalysts, Applied Catalysis B: Environmental, 36 (2002) 145-160. https://doi.org/10.1016/S0926-3373(01)00300-9 C. Verrier, J.H. Kwak, D.H. Kim, C.H.F. Peden, J. Szanyi, NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3, Catalysis Today, 136 (2008) 121-127. https://doi.org/10.1016/j.cattod.2007.12.138 F. Van Steenweghen, L. Hollevoet, G. Vanbutsele, J.A. Martens, Lean NOx trap catalyst formulation for selective ammonia synthesis from captured NOx, Catalysis Today, 429 (2024). https://doi.org/10.1016/j.cattod.2023.114499 X. Auvray, L. Olsson, Stability and activity of Pd-, Pt- and Pd–Pt catalysts supported on alumina for NO oxidation, Applied Catalysis B: Environmental, 168-169 (2015) 342-352. https://doi.org/10.1016/j.apcatb.2014.12.035 J. Szanyi, J. H. Kwak, D. H. Kim, S. D. Burton, C. H. F. Peden, NO2 Adsorption on BaO/Al2O3: The Nature of Nitrate Species, The Journal of Physical Chemistry B, 109 (2004) 27-29. https://doi.org/10.1021/jp044993p G.G. C Pazé, SO Giacone, G Spoto, FX Llabrés i Xamena, A Zecchina, An XRD, FTIR and TPD investigation of NO2 surface adsorption sites of δ, γ Al2O3 and barium supported δ, γ Al2O3 Topics in Catalysis 30 (2004) 169-175. https://doi.org/10.1023/B:TOCA.0000029746.65404.55 H. Kim, H. Jung, J.W. Han, K.B. Lee, Experimental and density functional theory studies on Cu/Ba-coimpregnated γ-Al2O3 for low-temperature NO storage and adsorbent regeneration, Chemical Engineering Journal, 429 (2022). https://doi.org/10.1016/j.cej.2021.132112 T. Szailer, J.H. Kwak, D.H. Kim, J. Szanyi, C. Wang, C.H.F. Peden, Effects of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al2O3 NOx storage and reduction catalysts, Catalysis Today, 114 (2006) 86-93. https://doi.org/10.1016/j.cattod.2006.02.016 L. Olsson, P. Jozsa, M. Nilsson, E. Jobson, Fundamental studies of NOx storage at low temperatures, Topics in Catalysis, 42-43 (2007) 95-98. https://doi.org/10.1007/s11244-007-0158-2 W.-Z. Li, K.-Q. Sun, Z. Hu, B.-Q. Xu, Characteristics of low platinum Pt–BaO catalysts for NOx storage and reduction, Catalysis Today, 153 (2010) 103-110. https://doi.org/10.1016/j.cattod.2010.02.056 X. Chen, J. Schwank, J. Li, W.F. Schneider, C.T. Goralski, P.J. Schmitz, Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials, Applied Catalysis B: Environmental, 61 (2005) 164-175. https://doi.org/10.1016/j.apcatb.2005.05.002 J. Szanyi, J. H. Kwak, D. H. Kim, X. Wang, R. Chimentao, J. Hanson, W. S. Epling, C. H. F. Peden, Water-Induced Morphology Changes in BaO/γ-Al2O3 NOx Storage Materials: an FTIR, TPD, and Time-Resolved Synchrotron XRD Study, The Journal of Physical Chemistry C, 111 (2007) 4678-7687. https://doi.org/10.1021/jp067932v Y. Li, X. Zhang, X. Li, Z. Cui, H. Xiao, Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS), Appl Spectrosc, 72 (2018) 1244-1251. https://doi.org/10.1177/0003702818773091 R. Ramamoorthy, P. K. Dutta, S. A. Akbar, Oxygen sensors: Materials, methods, designs and applications, Journal of Materials Science, 38 (2003) 4271-4282. https://doi.org/10.1023/A:1026370729205 E.C. Corbos, X. Courtois, N. Bion, P. Marecot, D. Duprez, Impact of support oxide and Ba loading on the NOx storage properties of Pt/Ba/support catalysts, Applied Catalysis B: Environmental, 76 (2007) 357-367. https://doi.org/10.1016/j.apcatb.2007.06.009 E.C. Corbos, X. Courtois, F. Can, P. Marécot, D. Duprez, NOx storage properties of Pt/Ba/Al model catalysts prepared by different methods, Applied Catalysis B: Environmental, 84 (2008) 514-523. https://doi.org/10.1016/j.apcatb.2008.05.003 M. Sasaki, K. Suzuki, A. Sultana, M. Haneda, H. Hamada, Effect of Acid–Base Properties on the Catalytic Activity of Pt/Al2O3 Based Catalysts for Diesel NO Oxidation, Topics in Catalysis, 56 (2013) 205-209. https://doi.org/10.1007/s11244-013-9953-0 L. Wu, S. Tong, M. Ge, Heterogeneous reaction of NO2 on Al2O3: the effect of temperature on the nitrite and nitrate formation, J Phys Chem A, 117 (2013) 4937-4944. https://doi.org/10.1021/jp402773c S.S. Mulla, N. Chen, W.N. Delgass, W.S. Epling, F.H. Ribeiro, NO2 inhibits the catalytic reaction of NO and O2 over Pt, Catalysis Letters, 100 (2005) 267-270. https://doi.org/10.1007/s10562-004-3466-1 B. Shen, X. Lin, Y. Zhao, Catalytic oxidation of NO with O2 over Pt/γ-Al2O3 and La0.8Sr0.2MnO3, Chemical Engineering Journal, 222 (2013) 9-15. https://doi.org/10.1016/j.cej.2013.02.050 L. Lietti, M. Daturi, V. Blasin‐Aubé, G. Ghiotti, F. Prinetto, P. Forzatti, Relevance of the Nitrite Route in the NOx Adsorption Mechanism over Pt–Ba/Al2O3 NOx Storage Reduction Catalysts Investigated by using Operando FTIR Spectroscopy, ChemCatChem, 4 (2011) 55-58. https://doi.org/10.1002/cctc.201100304 L. Castoldi, R. Matarrese, S. Morandi, L. Righini, L. Lietti, New insights on the adsorption, thermal decomposition and reduction of NOx over Pt- and Ba-based catalysts, Applied Catalysis B: Environmental, 224 (2018) 249-263. https://doi.org/10.1016/j.apcatb.2017.10.019 I. Nova, NOx adsorption study over Pt–Ba/alumina catalysts: FT-IR and pulse experiments, Journal of Catalysis, 222 (2004) 377-388. https://doi.org/10.1016/j.jcat.2003.11.013 Y. Zhang, A. Tomita, R. Wakabayashi, T. Kimura, Low-temperature synthesis of NH3 via an alternate gas-switching NOx storage-reduction process using a BaO/Pt@mTiO2 nanocomposite catalyst, Journal of Materials Chemistry A, 12 (2024) 8262-8271. https://doi.org/10.1039/d3ta07052b F. Prinetto, G. Ghiotti, I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, In situ FT-IR and reactivity study of NOxstorage over Pt–Ba/Al2O3 catalysts, Phys. Chem. Chem. Phys., 5 (2003) 4428-4434. https://doi.org/10.1039/b305815h S.S. Chaugule, V.F. Kispersky, J.L. Ratts, A. Yezerets, N.W. Currier, F.H. Ribeiro, W.N. Delgass, Formation and removal of Ba-carbonates or carboxylates on Pt/BaO/γ-Al2O3 lean NOx traps, Applied Catalysis B: Environmental, 107 (2011) 26-33. https://doi.org/10.1016/j.apcatb.2011.06.029 J. Kwak, D. Mei, C. Yi, D. Kim, C. Peden, L. Allard, J. Szanyi, Understanding the nature of surface nitrates in BaO/γ-Al2O3 NOx storage materials: A combined experimental and theoretical study, Journal of Catalysis, 261 (2009) 17-22. https://doi.org/10.1016/j.jcat.2008.10.016 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98422 | - |
| dc.description.abstract | 氮氧化物(NOx)對人體健康與環境皆具有危害,因此將其還原為無害的氮氣以降低排放,已成為當前迫切且必要的課題。氮氧化物儲存及還原(NOx storage/reduction, NSR)是經常使用在稀薄燃燒引擎的技術,稀薄燃燒引擎雖然提高了燃油效率,但造成了大量的氮氧化物排放,而NSR技術就是在氮氧化物豐富的稀燃階段進行氮氧化物的儲存,並在富燃階段將儲存的氮氧化物還原,而氮氧化物的儲存及升溫釋放對於NSR來說是很重要的步驟。過去對氮氧化物的吸脫附行為的研究,多集中於低溫吸附後再升溫脫附,因此本研究希望利用程序升溫脫附(temperature-programmed desorption, TPD)研究在高溫下的吸脫附行為,以符合多數處理氮氧化物的溫度環境,並透過原位擴散反射式紅外光光譜儀(in-situ DRIFTS)來了解在高溫時氮氧化物的儲存機制。
本研究中選用氧化鋁(Al2O3)為擔體,以含浸法(impregnation method)擔載1%的鉑(Pt)及20%的鋇(Ba)製備1Pt/20BaO/Al2O3、20BaO/Al2O3、1Pt/Al2O3及Al2O3等觸媒,探討一氧化氮、一氧化氮及氧氣和二氧化氮等氣體在觸媒上的吸脫附行為及儲存機制。NO-TPD結果顯示,NO氣體可於350 oC下在Al2O3表面及Ba金屬上形成表面硝酸鹽,其中,在Al2O3表面上的硝酸鹽脫附行為以NO2與O2共脫附的形式進行,而Ba金屬表面的硝酸鹽則是單獨以NO₂形式脫附。此外,NO亦可與Ba生成體相硝酸鹽Ba(NO3)2,其脫附產物為NO與O2,且脫附溫度較高,顯示其具有較佳熱穩定性。NO/O2-TPD的結果顯示O2的加入有助於硝酸鹽吸附量提升,但不顯著改變脫附行為。NO2-TPD的結果說明,NO2進氣則能大幅增加儲存量,並促進體相硝酸鹽生成,尤以含Pt與Ba之觸媒最為顯著。低溫50 °C的環境下,NOx吸附量雖有提高,但會使熱穩定性較差之表面硝酸鹽生成比例大幅增加。 本研究以原位紅外光光譜探討儲存機制,結果顯示NO可快速與Al2O3表面形成bidentate nitrate,並於無O2下於Ba中生成ionic nitrite,並進一步形成ionic nitrate。Al2O3表面的bidentate nitrate隨著吸附時間的增加,也會遷移至Ba表面,Pt則可以幫助NO的氧化與NO2解離,兩者共同增加NOx儲存效率。 | zh_TW |
| dc.description.abstract | Nitrogen oxides (NOx) pose serious threats to human health and the environment. Therefore, reducing NOx emissions by converting them into harmless nitrogen gas is essential. NOx storage and reduction (NSR) is a key technology used in lean-burn engines, which, while improving fuel efficiency, emit higher levels of NOx. NSR stores NOx during the lean phase and reduces it during the rich phase. In this study, high-temperature NOx adsorption–desorption behavior was investigated using temperature-programmed desorption (TPD) to better reflect practical engine conditions. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was also employed to clarify storage mechanisms.
In this study, alumina (Al2O3) was used as the catalyst support, and catalysts were prepared by the impregnation method: 1Pt/20BaO/Al2O3, 20BaO/Al2O3, 1Pt/Al2O3, and Al2O3. The adsorption–desorption behavior and storage mechanisms of various gases , including NO, NO/O2, and NO2, were investigated. NO-TPD results showed that NO could form surface nitrates on both Al₂O₃ and Ba sites at 350 °C. The desorption products were NO2 and O2 from Al2O3, and only NO2 from Ba. Additionally, NO reacted with Ba to form bulk nitrate (Ba(NO3) 2), which desorbed as NO and O2 at higher temperatures, indicating greater thermal stability. NO/O2-TPD results revealed that the addition of O2 increased the total storage capacity without significantly altering desorption behavior. NO2-TPD results showed that NO2 greatly enhanced the formation of bulk nitrates, especially on catalysts containing both Pt and Ba. Although storage at 50 °C increased the adsorbed amount of NOx, it mainly led to the formation of thermally unstable surface nitrates. The storage mechanisms were further analyzed using in situ DRIFTS. The results demonstrated that NO rapidly formed bidentate nitrates on the Al2O3 surface and could also generate ionic nitrite on Ba even in the absence of O2, which subsequently transformed into ionic nitrate. Over time, bidentate nitrates migrated from Al2O3 to Ba surfaces. Pt facilitated both NO oxidation and NO2 dissociation, synergistically enhancing NOx storage efficiency alongside Ba. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:18:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:18:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv Abstract v 目次 vi 圖次 ix 表次 xi Chapter 1 緒論 1 1.1 研究背景 1 1.1.1 氮氧化物排放及危害 1 1.1.2 氮氧化物去除之技術 2 1.2 氮氧化物儲存及還原之研究 4 1.3 氮氧化物吸脫附行為 6 1.4 研究目的 7 Chapter 2 實驗方法 8 2.1 實驗藥品與氣體鋼瓶 8 2.2 觸媒製備 9 2.3 催化反應系統 10 2.3.1 反應系統架設 10 2.3.2 溫度對一氧化氮濃度的影響 13 2.3.3 氮氧化物程序升溫脫附 14 2.3.4 活性測試-煙道氣體分析儀 15 2.3.5 產物鑑定-質譜儀 17 2.4 觸媒鑑定 21 2.4.1 X光繞射儀 (XRD) 21 2.4.2 比表面積及孔隙分布測定儀(ASAP) 22 2.4.3 掃描電子顯微鏡(SEM) 23 2.4.4 氧氣程溫脫附分析(O2-TPD) 24 2.4.5 二氧化碳程溫脫附分析(CO2-TPD) 25 2.4.6 傅立葉紅外光光譜儀(FT-IR) 27 Chapter 3 結果與討論 29 3.1 觸媒鑑定 29 3.1.1 物理性質及晶體結構分析 29 3.1.2 表面形貌分析 31 3.1.3 脫附性質分析 33 3.2 溫度對一氧化氮濃度的影響 36 3.3 表面現象討論 38 3.3.1 氮氧化物吸脫附行為 38 3.3.1-1 NO-TPD 38 3.3.1-2 NO/O2-TPD 41 3.3.1-3 NO2-TPD 44 3.3.1-4 氮氧化物吸脫附行為之討論 49 3.3.2 原位紅外光光譜之鑑定 53 3.3.2-1 NO吸附及變溫脫附 53 3.3.2-2 NO/O2吸附及變溫脫附 58 3.3.2-3 NO2吸附及變溫脫附 62 3.3.2-4 表面物種的生成-以時間尺度的探討 66 3.3.2-5 氮氧化物儲存之反應機制 70 Chapter 4 結論 72 Chapter 5 未來展望 73 REFERENCE 74 APPENDIX 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋇 | zh_TW |
| dc.subject | 鉑 | zh_TW |
| dc.subject | 吸脫附行為 | zh_TW |
| dc.subject | 程序升溫脫附 | zh_TW |
| dc.subject | 擴散式反射紅外光光譜 | zh_TW |
| dc.subject | 氮氧化物儲存 | zh_TW |
| dc.subject | Temperature-Programmed Desorption | en |
| dc.subject | Diffuse Reflectance Infrared Spectroscopy | en |
| dc.subject | Adsorption–Desorption Behavior | en |
| dc.subject | Barium | en |
| dc.subject | Platinum | en |
| dc.subject | NOx Storage | en |
| dc.title | 氮氧化物在鉑/氧化鋇/氧化鋁觸媒上的吸脫附行為及反應機制 | zh_TW |
| dc.title | Sorption Behavior and Reaction Mechanism of Nitrogen Oxide over Pt/BaO/Al2O3 Catalyst | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 尚進;林亮毅;杜遠朋 | zh_TW |
| dc.contributor.oralexamcommittee | Jin Shang;Liang-Yi Lin;Yuan-Peng Du | en |
| dc.subject.keyword | 氮氧化物儲存,鉑,鋇,吸脫附行為,程序升溫脫附,擴散式反射紅外光光譜, | zh_TW |
| dc.subject.keyword | NOx Storage,Platinum,Barium,Adsorption–Desorption Behavior,Temperature-Programmed Desorption,Diffuse Reflectance Infrared Spectroscopy, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202502751 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
