請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98414完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐昱辰 | zh_TW |
| dc.contributor.advisor | Yu-Chen Ou | en |
| dc.contributor.author | 胡新廷 | zh_TW |
| dc.contributor.author | Hsin-Ting Hu | en |
| dc.date.accessioned | 2025-08-05T16:16:49Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | ACI. (2016). Guide to Nonlinear Modeling Parameters for Earthquake-Resistant Structures(ACI 374.3R-16), Reported by ACI Committee 374. American Concrete Institute.
ACI. (2018). Standard Requirements for Seismic Evaluation and Retrofit of Existing Concrete Buildings (ACI 369.1M-17) and Commentary, Reported by ACI Committee 369. American Concrete Institute. ACI. (2014). Building Code Requirements for Structural Concrete(ACI 318-14). American Concrete Institute. ACI. (2019). Building Code Requirements for Structural Concrete(ACI 318-19). American Concrete Institute. ASCE. (2005). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-05. American Society of Civil Engineers. ASCE. (2010). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-10. American Society of Civil Engineers. ASCE. (2013). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-13. American Society of Civil Engineers. ASCE. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-16. American Society of Civil Engineers. ASCE. (2017). Seismic Evaluation and Retrofit of Existing Buildings , ASCE Standard ASCE/SEI 41-17. American Society of Civil Engineers. ASCE. (2022). Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-22. American Society of Civil Engineers. ATC. (2010). Modeling and acceptance criteria for seismic design and analysis of tall buildings, PEER/ATC-72-1. Applied Technology Council. Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-Independent Measures of Ground Motion. Bulletin of the Seismological Society of America, 96(4A), 1502-1511. https://doi.org/10.1785/0120050209 Chopra, A. K. (2012). Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall. https://books.google.com.tw/books?id=3cctkgEACAAJ CSI. (2017). CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge (Vol. ISO# GEN062708M1 Rev.18). Computers and Structures, Inc. Dowell, O., Seible, F., & Wilson, E. L. (1998). Pivot hysteresis model for reinforced concrete members. ACI structural journal, 95, 607-617. Elwood, K. J., and Moehle, J. P.(2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, Vol. 21, No. 1, pp. 71-89, 2005. FEMA. (1988). Recommended Provisions for the Development of Seismic Regulations for New Buildings, Part 1: Provisions, FEMA 95. prepared by the Building Seismic Safety Council of the National Institute of Building Sciences, for the Federal Emergency Management Agency. FEMA. (2009). Quantification of Building Seismic Performance Factors, FEMA P-695. prepared by the Applied Technology Council for the Federal Emergency Management Agency. Haselton, C., & Baker, J. (2006). Ground motion intensity measures for collapse capacity prediction: Choice of optimal spectral period and effect of spectral shape. 8th National Conference on Earthquake Engineering, Huang, Y.-N., Whittaker, A. S., & Luco, N. (2008). Maximum Spectral Demands in the Near-Fault Region. Earthquake Spectra, 24(1), 319-341. https://doi.org/10.1193/1.2830435 Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P. (2017) Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions, ACI Structural Journal, Vol. 114, No. 5, 2017, pp. 1239-1248. IBC (2009). International Building Code, International Code Council, Washington, DC. LATBSDC. (2017). AN ALTERNATIVE PROCEDURE FOR SEISMIC ANALYSIS AND DESIGN OF TALL BUILDINGS, 2017 Edition with 2018 supplements. Los Angeles Tall Buildings Structural Design Council. LATBSDC. (2023). AN ALTERNATIVE PROCEDURE FOR SEISMIC ANALYSIS AND DESIGN OF TALL BUILDINGS, 2023 Edition. Los Angeles Tall Buildings Structural Design Council. Li, Y. A., Weng, P. W., and Hwang, S. J.,. (2019) Seismic Performance of RC Intermediate Short Columns Failed in Shear. ACI Structural Journal, Vol. 116, No. 3, May. 2019, pp. 195-206. Newmark, & M., N. (1959). A method of computation for structural dynamics. Journal of the engineering mechanics division, 85(3), 67-94. NIST. (2010). NEHRP Seismic Design Technical Brief No. 4: Nonlinear Structural Analysis for Seismic Design: A Guide for Practicing Engineers, NIST GCR 10-917-5. prepared by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium for Universities for Research in Earthquake Engineering, for the National Institute of Standards and Technology. NIST. (2017). Guidelines for Nonlinear Structural Analysis and Design of Buildings, Part I – General, NIST GCR 17-917-46v1. prepared by the Applied Technology Council for the National Institute of Standards and Technology. Nojavan, A., Schultz, A., Chao, S.-H., Haselton, C., Simasathien, S., Palacios, G., & Liu, X. (2014). Preliminary Results for NEESR Full-Scale RC Column Tests Under Collapse-Consistent Loading Protocols. https://doi.org/10.4231/D3C824F6F OES. (1995). Vision 2000:Performance Based Seismic Engineering of Buildings. California Office of Emergency Services, prepared by Structural Engineers Association of California. PEER. (2017). Guidelines for Performance-Based Seismic Design of Tall Buildings, as part of the Tall Buildings Initiative, Version 2.03. Pacific Earthquake Engineering Research Center. SEAOC. (1973). Recommended Lateral Force Requirements. Structural Engineers Association of California. Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). Reinforced Concrete Response to Simulated Earthquakes. Journal of the Structural Division, 96(12), 2557-2573. https://doi.org/doi:10.1061/JSDEAG.0002765 Weng, P. W., Li Y. A., Tu Y. S., and Hwang S. J. (2017). Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear. Journal of Structural Engineering. ASCE, Vol. 143, No. 10, DOI: 10.1061/(ASCE)ST.1943-541X.0001872 內政部國土管理署,(2024a)「建築物混凝土結構設計規範」,內政部國土管理署。 內政部國土管理署,(2024b)「建築物耐震設計規範及解說」,內政部國土管理署。 蔡綽芳、歐昱辰、吳振維、胡新廷、江晨瑜,(2024)「鋼筋混凝土建築使用非線性反應歷時分析之性能設計」,內政部建築研究所。 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,(2020)「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震工程研究中心。 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,(2020)「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震工程研究中心。 陳冠儒,(2024)「高強度大號鋼筋混凝土橋柱耐震行為」,國立臺灣大學。 劉勛仁、簡文郁、張毓文,(2020)「台灣泛域工址設計用實測地震歷時篩選研究」。 蔡益超、宋裕祺,(2023)「鋼筋混凝土建築物耐震能力詳細評估SERCB - 理論背景與系統操作 - (第二版)」,中國土木水利工程學會。 鄧崇任、柴駿甫、廖文義、翁元滔、簡文郁、邱世彬、林凡茹、周德光. (2009),「耐震性能設計規範改進先期研究(一&二)」,國家地震工程研究中心。 鄧崇任、柴駿甫、廖文義、蘇晴茂、簡文郁、周德光,(2004)「耐震與性能設計規範研究(一)」,國家地震工程研究中心。 蕭輔沛、蔡仁傑、翁樸文、沈文成、徐侑呈、周德光、翁元滔、簡文郁、林佳蓁、劉勛仁(2021)「臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊(TEASDA 1.0)」,國家地震工程研究中心。 蕭輔沛、鍾立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、涂耀賢、柴駿甫、黃世建,(2013)「校舍結構耐震評估與補強技術手冊第三版」,國家地震工程研究中心。 薛強(2005a)「建築物耐震性能設計規範之研擬—子計畫一:規範與解說」,內政部建築研究所。 薛強(2005b)「建築物耐震性能設計規範之研擬—子計畫二:範例研究」,內政部建築研究所。 李宏仁,黃世建,(2002)「鋼筋混凝土結構不連續區域之剪力強度評估—軟化壓拉桿模型簡算法之實例應用」,中華民國結構工程學會,結構工程,第17卷,第4期,第53-70頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98414 | - |
| dc.description.abstract | 非線性歷時分析是一種更高階且精確的結構分析方法,它不僅可以充分反映結構物的動態行為,亦能精確地洞察結構桿件的非線性行為,是最貼近真實的結構分析方法。傳統的等效側力法係將結構於地震中之動態反應,以施加於結構側向之靜態力取代,並以折減地震力之方式考慮構件之非線性行為。然而,若構件進入非線性行為,此時結構物的耐震性能,其實是取決於構件的非線性變形能力,而非構件的強度,因為構件進入非線性行為後,強度增長有限,整體結構主要係透過構件的非線性消能行為抵抗地震能量,因此結構在真實地震中的非線性位移,才是攸關結構耐震能力之關鍵,此即基於位移的性能設計法之核心概念。
本研究以一棟位於臺北一區的16層樓鋼筋混凝土建築物為研究對象,該建築業已依照建築物耐震設計規範及建築物混凝土結構設計規範設計完成。本研究輸入多筆最大考量地震之歷時及構件非線性行為參數於結構分析程式ETABS中,並依照國內外相關規範,檢核本建築是否滿足規範對於整體結構及局部構件之接受準則。 此外,本研究亦將非結構牆納入分析模型中,探討非結構牆於最大考量地震中,其破壞情況是否如同實務界常假設的全部破壞,亦或是僅有部分結構牆產生破壞,以及這些非結構牆是否會對結構物有不良的影響如短梁效應。分析結果顯示,在最大考量地震下,並非所有的非結構牆均完全失去強度而破壞,而且非結構牆破壞的順序及位置,亦未具統一的規則及形式。 非線性歷時分析之前後處理資料量極大,本次研究共開發了17個非線性歷時分析的工具程式,不僅可以大幅節省處理時間,亦可對分析結果有更深入的洞察。 在執行多次非線性歷時分析後,本研究發現結構物的反應,在真實地震下,具有高度變異性,即使是同一個結構物的同一個桿件,在不同的地震歷時下,常常會有截然不同的反應及破壞模式。透過非線性歷時分析,結構設計者可以更全面地掌握建築物於地震下的真實反應與性能,並加以改善或優化,以增進建築物之安全性與可靠度。 | zh_TW |
| dc.description.abstract | Nonlinear time history analysis (NLTHA) is an advanced and precise method for evaluating seismic performance, capable of capturing both the global dynamic response of structures and the localized inelastic behavior of structural components. In contrast to the widely adopted Equivalent Lateral Force (ELF) method—which substitutes dynamic effects with simplified static loads and considers inelasticity through strength-reduction factors—NLTHA directly reflects how structures dissipate seismic energy through nonlinear deformations. Once components yield, strength increases are limited, and seismic performance becomes largely governed by deformation capacity, making displacement demand a key indicator in performance-based seismic design.
This study investigates a 16-story reinforced concrete building located in Taipei, originally designed according to Taiwan’s Seismic Design Specifications and Concrete Structural Design Code. A series of Maximum Considered Earthquake (MCE) ground motion records were applied in ETABS, incorporating nonlinear behavioral models of structural components. Structural responses were then evaluated against the acceptance criteria outlined in several relevant codes, covering both global structural performance and individual member demands. Additionally, non-structural walls were modeled to assess their failure patterns under MCE conditions. The study questions the common assumption of total failure and explores whether partial damage occurs and if such walls induce negative effects like the Short Beam Phenomenon. Results indicate that non-structural wall failure is neither uniform nor fully predictable, and complete loss of strength is not always observed. Given the data-intensive nature of NLTHA, the study also developed 17 customized tools to automate preprocessing and postprocessing tasks, enabling significant time savings and deeper insight into structural behavior. Multiple analysis runs revealed a high degree of variability in structural responses—even for the same component under different ground motions—underscoring NLTHA’s essential role in realistic seismic performance assessment and in guiding the optimization of structural safety and reliability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:16:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:16:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 III Abstract V 目 次 VII 圖 次 XI 表 次 XV 第一章 緒論 1 1.1 研究緣起與背景 1 1.2 研究目的 2 1.3 研究方法及流程 3 第二章 文獻回顧 5 2.1 ACI 318-19 Appendix A(ACI, 2019) 5 2.2 Guidelines for Performance Based Seismic Design of Tall Buildings (PEER, 2017) 6 2.3 鋼筋混凝土建築使用非線性反應歷時分析之性能設計能設計(蔡綽芳、歐昱辰等人,2024) 7 第三章 建築物基本資訊 9 3.1 結構系統說明 9 3.2 樓層、樓高及用途 9 3.3 結構分析模型各樓層結構平面配置 10 3.4 混凝土抗壓強度說明 17 3.5 鋼筋降伏強度說明 17 第四章 地震歷時 19 4.1 目標反應譜 19 4.1.1 基地位置與水平譜加速度係數 19 4.2 地震歷時之挑選 20 4.2.1 地震歷時之挑選原則 20 4.2.2 地震挑選結果 21 4.3 地震歷時調整 22 4.4 輸入之地震歷時 24 第五章 非線性行為 31 5.1 構件行為分為(ACI, 2019) 31 5.1.1 位移控制行為 31 5.1.2 力量控制行為 32 5.2 鋼筋混凝土非線性行為之模擬 32 5.3 鋼筋混凝土柱之非線性行為 32 5.3.1 柱之非線性背骨曲線 32 5.3.2 柱之非線性行為(邱聰智等人,2020) 33 5.4 鋼筋混凝土梁非線性行為之模擬 34 5.4.1 梁之非線性背骨曲線 34 5.4.2 鋼筋混凝土梁之撓曲非線性行為(ASCE, 2017)(邱聰智等人,2020) 35 5.4.3 鋼筋混凝土梁之剪力非線性行為(邱聰智等人,2020) 36 5.5 鋼筋混凝土牆非線性行為之模擬 37 5.5.1 模擬方法 37 5.5.2 鋼筋混凝土牆之剪力非線性行為 37 5.5.3 鋼筋混凝土牆之撓曲非線性行為 38 5.6 遲滯行為 39 5.7 允許發生非線性行為的位置 39 第六章 資料處理程式開發成果 41 6.1 非線性歷時分析工具集程式(NLTH Tool launcher.py) 42 6.1.1 功能說明 42 6.1.2 程式架構 43 6.2 ETABS文字檔快速編輯器(e2k_editor.py) 45 6.2.1 功能說明 45 6.2.2 程式架構 47 6.3 塑鉸狀態讀取程式(hinge_state_reader.py) 49 6.3.1 功能說明 49 6.3.2 程式架構 50 6.4 地震歷時批次輸入程式(earthquake_e2k_converter.py) 53 6.4.1 功能說明 53 6.4.2 程式架構 54 6.5 背骨曲線線形調整工具(backbone_curve_editor.py) 57 6.5.1 功能說明 57 6.5.2 程式架構 58 第七章 非線性歷時分析結果 61 7.1 地震作用下之彎矩 61 7.2 地震作用下之剪力 66 7.3 整體結構行為—塑鉸發展情況 73 7.4 整體結構行為—層間位移角檢核 81 7.4.1 檢核標準與方法 81 7.4.2 層間位移角分析結果 82 7.5 局部構件非線性行為檢核 85 7.5.1 檢核標準與方法 85 7.5.2 各構件平均塑性變形量統計結果 86 7.6 最大變形量之構件在每筆地震下的塑性變形量 106 7.6.1 本建築物最大變形量之構件在每筆地震下的塑性變形量 106 7.7 最大變形量之構件在造成最大反應之地震下的遲滯迴圈 131 7.7.1 最大變形量之梁在造成最大反應之地震下的遲滯迴圈 131 7.7.2 最大變形量之柱在造成最大反應之地震下的遲滯迴圈 132 7.7.3 最大變形量之牆在造成最大反應之地震下的遲滯迴圈 133 第八章 結論與建議 135 8.1 結論 135 8.2 建議 137 參考文獻 139 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 性能設計 | zh_TW |
| dc.subject | 非線性歷時分析 | zh_TW |
| dc.subject | 非結構牆 | zh_TW |
| dc.subject | 鋼筋混凝土 | zh_TW |
| dc.subject | 耐震設計 | zh_TW |
| dc.subject | Seismic design | en |
| dc.subject | Reinforced concrete | en |
| dc.subject | Non-structural wall | en |
| dc.subject | Performance-based design | en |
| dc.subject | Nonlinear time history analysis | en |
| dc.title | 以非線性歷時分析驗證鋼筋混凝土建築之耐震性能 | zh_TW |
| dc.title | Verification of Seismic Performance of Reinforced Concrete Buildings Using Nonlinear Time History Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃尹男;蕭輔沛 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Nan Huang;Fu-Pei Hsiao | en |
| dc.subject.keyword | 非線性歷時分析,性能設計,耐震設計,鋼筋混凝土,非結構牆, | zh_TW |
| dc.subject.keyword | Nonlinear time history analysis,Performance-based design,Seismic design,Reinforced concrete,Non-structural wall, | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202502869 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 23.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
