Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98413
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌zh_TW
dc.contributor.advisorShih-Huang Tungen
dc.contributor.author張閔捷zh_TW
dc.contributor.authorMin-Jie Changen
dc.date.accessioned2025-08-05T16:16:34Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-27-
dc.identifier.citation(1) Dods, M. N.; Kim, E. J.; Long, J. R.; Weston, S. C. Deep CCS: Moving Beyond 90% Carbon Dioxide Capture. Environmental Science & Technology 2021, 55 (13), 8524-8534.
(2) Smit, B. Carbon Capture and Storage: introductory lecture. Faraday discussions 2016, 192, 9-25.
(3) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 724-781.
(4) Oschatz, M.; Antonietti, M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science 2018, 11 (1), 57-70.
(5) Zanco, S. E.; Pérez-Calvo, J.-F.; Gasós, A.; Cordiano, B.; Becattini, V.; Mazzotti, M. Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Engineering Au 2021, 1 (1), 50-72.
(6) Yoon, T.; Shin, H.; Park, W.; Kim, Y.; Na, S. Biochemical mechanism involved in the enhancement of the Young's modulus of silk by the SpiCE protein. Journal of the Mechanical Behavior of Biomedical Materials 2023, 143, 105878.
(7) Arakawa, K.; Kono, N.; Malay, A. D.; Tateishi, A.; Ifuku, N.; Masunaga, H.; Sato, R.; Tsuchiya, K.; Ohtoshi, R.; Pedrazzoli, D. 1000 spider silkomes: Linking sequences to silk physical properties. Science advances 2022, 8 (41).
(8) Lin, H.; Freeman, B. D. Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure 2005, 739 (1), 57-74
(9) Yave, W.; Szymczyk, A.; Yave, N.; Roslaniec, Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: A new membrane material for CO2 separation. Journal of Membrane Science 2010, 362 (1), 407-416.
(10) Car, A.; Stropnik, C.; Yave, W.; Peinemann, K.-V. Tailor-made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation. Advanced Functional Materials 2008, 18 (18), 2815-2823.
(11) Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization 2022, 66, 102260.
(12) Bains, P.; Psarras, P.; Wilcox, J. CO2 capture from the industry sector. Progress in Energy and Combustion Science 2017, 63, 146-172.
(13) Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P. C.; Singh, L. P. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. Journal of CO2 Utilization 2023, 67, 102292.
(14) Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15 (3), 887.
(15) Osman, A. I.; Hefny, M.; Abdel Maksoud, M.; Elgarahy, A. M.; Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters 2021, 19 (2), 797-849.
(16) Zhang, Z.; Borhani, T. N.; Olabi, A. G. Status and perspective of CO2 absorption process. Energy 2020, 205, 118057.
(17) Sifat, N. S.; Haseli, Y. A critical review of CO2 capture technologies and prospects for clean power generation. Energies 2019, 12 (21), 4143.
(18) Im, D.; Roh, K.; Kim, J.; Eom, Y.; Lee, J. H. Economic assessment and optimization of the Selexol process with novel additives. International Journal of Greenhouse Gas Control 2015, 42, 109-116.
(19) Zhang, X.; Song, Z.; Gani, R.; Zhou, T. Comparative Economic Analysis of Physical, Chemical, and Hybrid Absorption Processes for Carbon Capture. Industrial & Engineering Chemistry Research 2020, 59 (5), 2005-2012.
(20) Yang, S.; Zhang, L.; Song, D. Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol. Energy 2022, 244, 122566.
(21) Chai, S. Y. W.; Ngu, L. H.; How, B. S. Review of carbon capture absorbents for CO2 utilization. Greenhouse Gases: Science and Technology 2022, 12 (3), 394-427.
(22) Vega, F.; Baena-Moreno, F. M.; Gallego Fernández, L. M.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Applied Energy 2020, 260, 114313.
(23) Meng, F.; Meng, Y.; Ju, T.; Han, S.; Lin, L.; Jiang, J. Research progress of aqueous amine solution for CO2 capture: A review. Renewable and Sustainable Energy Reviews 2022, 168, 112902.
(24) Aghel, B.; Janati, S.; Wongwises, S.; Shadloo, M. S. Review on CO2 capture by blended amine solutions. International Journal of Greenhouse Gas Control 2022, 119, 103715.
(25) Akeeb, O.; Wang, L.; Xie, W.; Davis, R.; Alkasrawi, M.; Toan, S. Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. Journal of Environmental Management 2022, 313, 115026.
(26) Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy & Fuels 2021, 35 (16), 12845-12868.
(27) Patel, H. A.; Byun, J.; Yavuz, C. T. Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 2017, 10 (7), 1303-1317.
(28) Soo, X. Y. D.; Lee, J. J. C.; Wu, W.-Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 capture by absorption and adsorption: A comprehensive review. Journal of CO2 Utilization 2024, 81, 102727.
(29) Liu, R. S.; Shi, X. D.; Wang, C. T.; Gao, Y. Z.; Xu, S.; Hao, G. P.; Chen, S.; Lu, A. H. Advances in post‐combustion CO2 capture by physical adsorption: from materials innovation to separation practice. ChemSusChem 2021, 14 (6), 1428-1471.
(30) Kusumastuti, R.; Pancoko, M.; Butar-Butar, S.; Putra, G. E.; Tjahjono, H. Study on the mechanism of CO2 adsorption process on zeolite 5A as a molecular sieve in RDE system: An infrared investigation. In Journal of Physics: Conference Series, 2019; IOP Publishing: Vol. 1198, p 032009.
(31) Sreenivasulu, B.; Gayatri, D. V.; Sreedhar, I.; Raghavan, K. V. A journey into the process and engineering aspects of carbon capture technologies. Renewable and Sustainable Energy Reviews 2015, 41, 1324-1350.
(32) Knapik, E.; Kosowski, P.; Stopa, J. Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy. Chemical Engineering Research and Design 2018, 131, 66-79.
(33) Song, C.; Liu, Q.; Deng, S.; Li, H.; Kitamura, Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renewable and Sustainable Energy Reviews 2019, 101, 265-278.
(34) Han, Y.; Ho, W. S. W. Polymeric membranes for CO2 separation and capture. Journal of Membrane Science 2021, 628, 119244.
(35) Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology 2020, 206, 106464.
(36) Xie, K.; Fu, Q.; Qiao, G. G.; Webley, P. A. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science 2019, 572, 38-60.
(37) Favvas, E. P.; Katsaros, F. K.; Papageorgiou, S. K.; Sapalidis, A. A.; Mitropoulos, A. C. A review of the latest development of polyimide based membranes for CO2 separations. Reactive and Functional Polymers 2017, 120, 104-130.
(38) Kenarsari, S. D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Russell, A. G.; Wei, Q.; Fan, M. Review of recent advances in carbon dioxide separation and capture. Rsc Advances 2013, 3 (45), 22739-22773.
(39) Freeman, B. D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules 1999, 32 (2), 375-380.
(40) Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M. M.; Ismail, A. F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science 2014, 39 (5), 817-861.
(41) Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 1991, 62 (2), 165-185.
(42) Robeson, L. M. The upper bound revisited. Journal of Membrane Science 2008, 320 (1), 390-400.
(43) Norahim, N.; Yaisanga, P.; Faungnawakij, K.; Charinpanitkul, T.; Klaysom, C. Recent membrane developments for CO2 separation and capture. Chemical Engineering & Technology 2018, 41 (2), 211-223.
(44) Kamble, A. R.; Patel, C. M.; Murthy, Z. V. P. A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews 2021, 145, 111062.
(45) Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control 2013, 12, 84-107.
(46) Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science 2016, 9 (6), 1863-1890.
(47) Dai, Z.; Deng, L. Membranes for CO2 capture and separation: Progress in research and development for industrial applications. Separation and Purification Technology 2024, 335, 126022.
(48) Zou, X.; Zhu, G. Microporous organic materials for membrane‐based gas separation. Advanced Materials 2018, 30 (3), 1700750.
(49) Zhang, J.; Schott, J. A.; Mahurin, S. M.; Dai, S. Porous structure design of polymeric membranes for gas separation. Small Methods 2017, 1 (5), 1600051.
(50) Sridhar, S.; Bee, S.; Bhargava, S. Membrane-based gas separation: Principle, applications and future potential. Chem. Eng. Dig 2014, 1 (1), 1-25.
(51) De Vos, R. M.; Verweij, H. Improved performance of silica membranes for gas separation. Journal of Membrane Science 1998, 143 (1-2), 37-51.
(52) Jang, K.-S.; Kim, H.-J.; Johnson, J. R.; Kim, W.-g.; Koros, W. J.; Jones, C. W.; Nair, S. Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers. Chemistry of Materials 2011, 23 (12), 3025-3028.
(53) Vu, D. Q.; Koros, W. J.; Miller, S. J. Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior. Journal of Membrane Science 2003, 211 (2), 335-348.
(54) Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews 2011, 255 (15), 1791-1823.
(55) Yue, B.; Liu, S.; Chai, Y.; Wu, G.; Guan, N.; Li, L. Zeolites for separation: Fundamental and application. Journal of Energy Chemistry 2022, 71, 288-303.
(56) Jeong, Y.; Lee, M.; Lee, G.; Hong, S.; Jang, E.; Choi, N.; Choi, J. Unavoidable but minimizable microdefects in a polycrystalline zeolite membrane: its remarkable performance for wet CO2/CH4 separation. Journal of Materials Chemistry A 2021, 9 (21), 12593-12605.
(57) Embaye, A. S.; Martínez-Izquierdo, L.; Malankowska, M.; Téllez, C.; Coronas, J. Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications. Energy & Fuels 2021, 35 (21), 17085-17102.
(58) Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A 2013, 1 (15), 4610-4630.
(59) Yampolskii, Y. Polymeric Gas Separation Membranes. Macromolecules 2012, 45 (8), 3298-3311.
(60) Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers 2016, 3 (7), 896-909.
(61) Guan, W.; Dai, Y.; Dong, C.; Yang, X.; Xi, Y. Zeolite imidazolate framework (ZIF)‐based mixed matrix membranes for CO2 separation: a review. Journal of Applied Polymer Science 2020, 137 (33), 48968.
(62) Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M. I.; Farooq, M. Z.; Saeed, M. Membranes for CO2/CH4 and CO2/N2 gas separation. Chemical Engineering & Technology 2020, 43 (2), 184-199.
(63) Pérez-Miana, M.; Luque-Alled, J. M.; Yahia, M.; Mayoral, Á.; Coronas, J. ZIF-8 modified with 2-undecylimidazolate as filler for mixed matrix membranes for CO2 separation. Journal of Materials Chemistry A 2024, 12 (17), 10316-10328.
(64) Ji, Y.; Liu, X.; Li, H.; Jiao, X.; Yu, X.; Zhang, Y. Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. Journal of Industrial and Engineering Chemistry 2023, 121, 331-337.
(65) Nguyen, T.-M. T.; Chen, J.-W.; Pham, M.-T.; Bui, H. M.; Hu, C.-C.; You, S.-J.; Wang, Y.-F. A high-performance ZIF-8 membrane for gas separation applications: Synthesis and characterization. Environmental Technology & Innovation 2023, 31, 103169.
(66) Jue, M. L.; McKay, C. S.; McCool, B. A.; Finn, M. G.; Lively, R. P. Effect of Nonsolvent Treatments on the Microstructure of PIM-1. Macromolecules 2015, 48 (16), 5780-5790.
(67) Nafisi, V.; Hägg, M.-B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science 2014, 459, 244-255.
(68) Sun, W.-S.; Yin, M.-J.; Zhang, W.-H.; Li, S.; Wang, N.; An, Q.-F. Green Techniques for Rapid Fabrication of Unprecedentedly High-Performance PEO Membranes for CO2 Capture. ACS Sustainable Chemistry & Engineering 2021, 9 (30), 10167-10175.
(69) Zhang, X.; Rong, M.; Qin, P.; Tan, T. PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture. Journal of Membrane Science 2022, 644, 120111.
(70) Hirayama, Y.; Kase, Y.; Tanihara, N.; Sumiyama, Y.; Kusuki, Y.; Haraya, K. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science 1999, 160 (1), 87-99.
(71) Lin, H.; Freeman, B. D. Gas and Vapor Solubility in Cross-Linked Poly(ethylene Glycol Diacrylate). Macromolecules 2005, 38 (20), 8394-8407.
(72) Zhu, B.; Jiang, X.; He, S.; Yang, X.; Long, J.; Zhang, Y.; Shao, L. Rational design of poly (ethylene oxide) based membranes for sustainable CO2 capture. Journal of Materials Chemistry A 2020, 8 (46), 24233-24252.
(73) Zhu, B.; He, S.; Wu, Y.; Li, S.; Shao, L. One-Step Synthesis of Structurally Stable CO2-Philic Membranes with Ultra-High PEO Loading for Enhanced Carbon Capture. Engineering 2023, 26, 220-228.
(74) Hirayama, Y.; Tanihara, N.; Kusuki, Y.; Kase, Y.; Haraya, K.; Okamoto, K.-i. Permeation properties to hydrocarbons, perfluorocarbons and chlorofluorocarbons of cross-linked membranes of polymethacrylates with poly(ethylene oxide) and perfluorononyl moieties. Journal of Membrane Science 1999, 163 (2), 373-381.
(75) Du, N.; Yang, Z.; Liu, X. Y.; Li, Y.; Xu, H. Y. Structural origin of the strain‐hardening of spider silk. Advanced Functional Materials 2011, 21 (4), 772-778.
(76) Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Materials Today 2011, 14 (3), 80-86.
(77) Tokareva, O.; Jacobsen, M.; Buehler, M.; Wong, J.; Kaplan, D. L. Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomaterialia 2014, 10 (4), 1612-1626.
(78) Gosline, J. M.; DeMont, M. E.; Denny, M. W. The structure and properties of spider silk. Endeavour 1986, 10 (1), 37-43.
(79) Belbéoch, C.; Lejeune, J.; Vroman, P.; Salaün, F. Silkworm and spider silk electrospinning: a review. Environmental Chemistry Letters 2021, 19, 1737-1763.
(80) Hu, X.; Vasanthavada, K.; Kohler, K.; McNary, S.; Moore, A.; Vierra, C. Molecular mechanisms of spider silk. Cellular and Molecular Life Sciences CMLS 2006, 63, 1986-1999.
(81) Liu, Y.; Huang, W.; Meng, M.; Chen, M.; Cao, C. Progress in the application of spider silk protein in medicine. Journal of Biomaterials Applications 2021, 36 (5), 859-871.
(82) Gatesy, J.; Hayashi, C.; Motriuk, D.; Woods, J.; Lewis, R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001, 291 (5513), 2603-2605.
(83) An, B.; Hinman, M. B.; Holland, G. P.; Yarger, J. L.; Lewis, R. V. Inducing β-Sheets Formation in Synthetic Spider Silk Fibers by Aqueous Post-Spin Stretching. Biomacromolecules 2011, 12 (6), 2375-2381. DOI: 10.1021/bm200463e.
(84) Lewis, R. V. Spider Silk:  Ancient Ideas for New Biomaterials. Chemical Reviews 2006, 106 (9), 3762-3774.
(85) Zhang, Y.; Zhao, A.-C.; Sima, Y.-H.; Lu, C.; Xiang, Z.-H.; Nakagaki, M. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2013, 164 (3), 151-158.
(86) Han, L.; Zhang, L.; Zhao, T.; Wang, Y.; Nakagaki, M. Analysis of a new type of major ampullate spider silk gene, MaSp1s. International Journal of Biological Macromolecules 2013, 56, 156-161.
(87) Dao, A. T.; Nakayama, K.; Shimokata, J. i.; Taniike, T. Multilateral characterization of recombinant spider silk in thermal degradation. Polymer chemistry 2017, 8 (6), 1049-1060.
(88) Rising, A.; Johansson, J. Toward spinning artificial spider silk. Nature chemical biology 2015, 11 (5), 309-315.
(89) Bakhshandeh, B.; Nateghi, S. S.; Gazani, M. M.; Dehghani, Z.; Mohammadzadeh, F. A review on advances in the applications of spider silk in biomedical issues. International Journal of Biological Macromolecules 2021, 192, 258-271.
(90) Schmuck, B.; Greco, G.; Pessatti, T. B.; Sonavane, S.; Langwallner, V.; Arndt, T.; Rising, A. Strategies for making high‐performance artificial spider silk fibers. Advanced Functional Materials 2024, 34 (35), 2305040.
(91) Branković, M.; Zivic, F.; Grujovic, N.; Stojadinovic, I.; Milenkovic, S.; Kotorcevic, N. Review of spider silk applications in biomedical and tissue engineering. Biomimetics 2024, 9 (3), 169.
(92) Guessous, G.; Blake, L.; Bui, A.; Woo, Y.; Manzanarez, G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomaterials Science & Engineering 2024, 10 (9), 5412-5438.
(93) Ramezaniaghdam, M.; Nahdi, N. D.; Reski, R. Recombinant spider silk: promises and bottlenecks. Frontiers in Bioengineering and Biotechnology 2022, 10, 835637.
(94) Whittall, D. R.; Baker, K. V.; Breitling, R.; Takano, E. Host Systems for the Production of Recombinant Spider Silk. Trends in Biotechnology 2021, 39 (6), 560-573.
(95) Egelkrout, E.; Rajan, V.; Howard, J. A. Overproduction of recombinant proteins in plants. Plant Science 2012, 184, 83-101.
(96) Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nature biotechnology 2004, 22 (11), 1393-1398.
(97) Tokareva, O.; Michalczechen‐Lacerda, V. A.; Rech, E. L.; Kaplan, D. L. Recombinant DNA production of spider silk proteins. Microbial biotechnology 2013, 6 (6), 651-663.
(98) Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology Advances 2012, 30 (5), 1102-1107.
(99) Asakura, T.; Matsuda, H.; Naito, A.; Abe, Y. Formylation of recombinant spider silk in formic acid and wet spinning studied using nuclear magnetic resonance and infrared spectroscopies. ACS Biomaterials Science & Engineering 2022, 8 (6), 2390-2402.
(100) Suzuki, Y.; Higashi, T.; Yamamoto, T.; Okamura, H.; Sato, T. K.; Asakura, T. Presence of β-Turn Structure in Recombinant Spider Silk Dissolved in Formic Acid Revealed with NMR. Molecules 2022, 27 (2), 511.
(101) Yang, S.; Liu, Z.; Liu, Y.; Jiao, Y. Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. Journal of materials science 2015, 50, 1544-1552.
(102) Yang, S.; Liu, Z.; Jiao, Y.; Liu, Y.; Luo, W. Study on the compatibility and crystalline morphology of NBR/PEO binary blends. Journal of Materials Science 2013, 48, 6811-6817.
(103) Tang, Z.; Wang, J.; Chen, Q.; He, W.; Shen, C.; Mao, X.-X.; Zhang, J. A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries. Electrochimica acta 2007, 52 (24), 6638-6643.
(104) Abdelrazek, E. M.; Abdelghany, A. M.; Badr, S. I.; Morsi, M. A. Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of Materials Research and Technology 2018, 7 (4), 419-431.
(105) Farea, M.; Abdelghany, A.; Oraby, A. Optical and dielectric characteristics of polyethylene oxide/sodium alginate-modified gold nanocomposites. RSC advances 2020, 10 (62), 37621-37630.
(106) Yang, S.; Liu, Z.; Jiao, Y.; Liu, Y.; Ji, C.; Zhang, Y. New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. Journal of materials science 2014, 49, 4270-4278.
(107) Reijerkerk, S. R.; Knoef, M. H.; Nijmeijer, K.; Wessling, M. Poly (ethylene glycol) and poly (dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. Journal of membrane science 2010, 352 (1-2), 126-135.
(108) Taheri, P.; Raisi, A.; Maleh, M. S. CO2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures. Environmental Science and Pollution Research 2021, 28, 38274-38291.
(109) Wang, S.; Liu, Y.; Huang, S.; Wu, H.; Li, Y.; Tian, Z.; Jiang, Z. Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science 2014, 460, 62-70.
(110) Nobakht, D.; Abedini, R. Improved gas separation performance of Pebax® 1657 membrane modified by poly-alcoholic compounds. Journal of Environmental Chemical Engineering 2022, 10 (3), 107568.
(111) Bernardo, P.; Clarizia, G. Enhancing gas permeation properties of Pebax® 1657 membranes via polysorbate nonionic surfactants doping. Polymers 2020, 12 (2), 253.
(112) Rahman, M. M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Khan, M. M.; Neumann, S.; Abetz, V. Influence of poly (ethylene glycol) segment length on CO2 permeation and stability of polyactive membranes and their nanocomposites with PEG POSS. ACS Applied Materials & Interfaces 2015, 7 (23), 12289-12298.
(113) Shin, J. E.; Lee, S. K.; Cho, Y. H.; Park, H. B. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation. Journal of Membrane Science 2019, 572, 300-308.
(114) Yave, W.; Car, A.; Peinemann, K.-V. Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science 2010, 350 (1-2), 124-129.
(115) Kheirtalab, M.; Abedini, R.; Ghorbani, M. Pebax/poly (vinyl alcohol) mixed matrix membrane incorporated by amine‐functionalized graphene oxide for CO2 separation. Journal of Polymer Science 2024, 62 (3), 517-535.
(116) Huang, T.-H.; Feng, F.; Chung, T.-S. Pebax® 1657-based membranes with organic gatekeepers for effective CO2 capture. Chemical Engineering Journal 2025, 513, 162596.
(117) Li, J.; Wang, S.; Nagai, K.; Nakagawa, T.; Mau, A. W. Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes. Journal of membrane science 1998, 138 (2), 143-152.
(118) Sadeghi, M.; Pourafshari Chenar, M.; Rahimian, M.; Moradi, S.; Dehaghani, A. S. Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. Journal of applied polymer science 2008, 110 (2), 1093-1098.
(119) Nasirian, D.; Salahshoori, I.; Sadeghi, M.; Rashidi, N.; Hassanzadeganroudsari, M. Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polymer Bulletin 2020, 77, 5529-5552.
(120) Yu, S.; An, S. J.; Kim, K. J.; Lee, J. H.; Chi, W. S. High-loading poly (ethylene glycol)-blended poly (acrylic acid) membranes for CO2 separation. ACS omega 2023, 8 (2), 2119-2127.
(121) Dilshad, M. R.; Islam, A.; Sabir, A.; Shafiq, M.; Butt, M. T. Z.; Ijaz, A.; Jamil, T. Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Journal of industrial and engineering chemistry 2017, 55, 65-73.
(122) Kline, G. K.; Zhang, Q.; Weidman, J. R.; Guo, R. PEO-rich semi-interpenetrating polymer network (s-IPN) membranes for CO2 separation. Journal of Membrane Science 2017, 544, 143-150.
(123) Talakesh, M. M.; Sadeghi, M.; Chenar, M. P.; Khosravi, A. Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. Journal of Membrane Science 2012, 415-416, 469-477.
(124) Taniguchi, I.; Kinugasa, K.; Egashira, S.; Higa, M. Preparation of well-defined hyper-branched polymers and the CO2 separation performance. Journal of Membrane Science 2016, 502, 124-132.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98413-
dc.description.abstract  因應氣候變遷與碳排放問題,發展高效率且具選擇性的CO₂分離技術已成為綠色化工與能源領域的重要課題。有機高分子薄膜因具備能耗低、模組化程度高等優勢,是目前最具潛力的CO₂捕捉方式之一。然而,高分子薄膜材料普遍面臨滲透率與選擇性難以兼顧的瓶頸,限制其實際應用。本研究提出聚環氧乙烷 (PEO)與重組蜘蛛絲蛋白 (R2)之共混策略,藉由R2改善PEO的機械性質並降低其結晶度,同時保留PEO對CO₂的親和性,以開發兼具氣體分離性能與機械強度之高分子薄膜。實驗結果顯示,當R2含量為20 wt%時,薄膜之伸長率與韌性分別提升至1001%與180.9 MPa,結晶度則由76%降至58%;其氣體分離表現亦大幅改善,CO₂滲透率由22.6 Barrer提高至109.5 Barrer,CO₂/N₂選擇性由45升至64。此性能提升源於非晶區比例增加,以及R2中胺基或醯胺基對CO₂分子的選擇性吸附作用,進一步提供更多CO₂滲透通道與吸附位點。綜上所述,PEO/R2共混薄膜在機械強度與氣體分離效率間取得良好平衡,展現作為環境友善型CO₂分離薄膜材料之應用潛力。zh_TW
dc.description.abstractIn response to climate change and carbon emissions, the development of highly efficient and selective CO₂ separation technologies has become a critical issue in the fields of green chemistry and energy. Among various approaches, polymeric membranes are considered one of the most promising solutions for CO₂ capture due to their low energy consumption and high modularity. However, conventional polymer membranes often face a trade-off between permeability and selectivity, which limits their practical application. This study proposes a blending strategy using poly(ethylene oxide) (PEO) and recombinant spider silk protein (R2), aiming to enhance the mechanical properties of PEO and reduce its crystallinity while retaining its strong affinity for CO₂. Experimental results demonstrate that when the R2 content reaches 20 wt%, the resulting membrane exhibits a significant improvement in mechanical performance, with an elongation at break of 1001% and a toughness of 180.9 MPa, while the crystallinity decreases from 76% to 58%. Moreover, the gas separation performance is markedly enhanced, with CO₂ permeability increasing from 22.6 to 109.5 Barrer and CO₂/N₂ selectivity rising from 45 to 64. These improvements are attributed to the increased proportion of amorphous regions and the selective affinity of amino and amide groups in R2 for CO₂ molecules, which provide additional permeation channels and adsorption sites. In conclusion, the PEO/R2 blend membranes achieve a desirable balance between mechanical strength and gas separation efficiency, demonstrating strong potential as an environmentally friendly material for CO₂ separation applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:16:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:16:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 x
第一章 緒論 1
1.1 前言及研究動機 1
第二章 文獻回顧 2
2.1 二氧化碳捕捉 2
2.1.1 吸收法 (Absorption) 2
2.1.2 吸附法 (Adsorption) 3
2.1.3 低溫法 (Cryogenics Separation) 4
2.1.4 薄膜分離法 (Membrane Separation) 4
2.2 有機高分子薄膜 (Organic Polymer Membranes) 5
2.2.1 緻密薄膜之氣體傳輸理論 6
2.2.2 多孔薄膜之氣體傳輸理論 8
2.3 無機薄膜 (Inorganic Membranes) 9
2.4 混合基質薄膜 (Mixed Matrix Membranes) 10
2.5 聚環氧乙烷 (Polyethylene oxide, PEO) 11
2.6 天然蜘蛛絲 (Spider Silk) 13
2.7 重組蜘蛛絲蛋白 (Recombinant Spider Silk protein) 17
第三章 實驗內容 19
3.1 實驗材料 19
3.1.1 高分子 19
3.1.2 溶劑 21
3.2 實驗步驟 22
3.2.1 PEO/R2共混薄膜製備流程 22
3.2.2 Pebax薄膜製備流程 22
3.2.3 實驗樣品命名 23
3.3 實驗儀器及原理 24
3.3.1 衰減式全反射紅外光譜儀 (Attenuated total reflection infared spectroscopy, ATR-IR) 24
3.3.2 熱重分析儀 (Thermogravimetric analysis, TGA) 24
3.3.3 示差掃描熱量分析儀 (Differential scanning calorimetry, DSC) 25
3.3.4 拉伸試驗 (Tensile testing) 26
3.3.5 偏光顯微鏡 (Polarized optical microscope, POM) 27
3.3.6 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 28
3.3.7 小角及廣角X光散射 (Small- and Wide-Angle X-ray Scattering, SAXS/WAXS) 29
3.3.8 氣體吸附量分析 32
3.3.9 氣體滲透性分析儀 (Gas Permeability Analyzer, GPA) 33
第四章 實驗結果與討論 35
4.1 PEO/R2共混薄膜之鑑定 35
4.1.1 PEO與R2間交互作用之ATR-IR光譜分析 36
4.1.2 PEO/R2共混薄膜之熱穩定性分析 38
4.1.3 PEO/R2共混薄膜之熱性質分析 40
4.1.4 PEO/R2共混薄膜之機械性質分析 42
4.1.5 添加R2對結晶形貌之影響 45
4.1.6 PEO/R2共混薄膜之X光散射分析 51
4.1.7 添加R2對PEO層狀結構週期之影響 53
4.1.8 添加R2對PEO晶層厚度與層狀結構週期之影響 55
4.2 PEO/R2共混薄膜之氣體分離性能 57
4.2.1 PEO/R2共混薄膜之氣體吸附量分析 57
4.2.1.1 ATR-IR 57
4.2.1.2 TGA 60
4.2.2 PEO/R2共混薄膜之氣體滲透性分析 65
4.2.2.1 添加R2對氣體滲透性之影響 65
4.2.2.2 操作壓力對氣體滲透性之影響 68
4.3 含PEO或Pebax成分之氣體分離薄膜性能比較 70
第五章 結論 73
參考文獻 75
附錄 85
一、以HFIP為溶劑製成的薄膜之機械性能 85
二、以HFIP為溶劑製成的薄膜之形貌 88
-
dc.language.isozh_TW-
dc.subject二氧化碳捕捉zh_TW
dc.subject聚環氧乙烷zh_TW
dc.subject重組蜘蛛絲蛋白zh_TW
dc.subject高分子共混薄膜zh_TW
dc.subject氣體分離薄膜zh_TW
dc.subjectGas separation membraneen
dc.subjectCO₂ captureen
dc.subjectPoly(ethylene oxide)en
dc.subjectRecombinant spider silk proteinen
dc.subjectPolymer blend membraneen
dc.title聚環氧乙烷/重組蜘蛛絲共混薄膜於二氧化碳分離之應用zh_TW
dc.titlePEO/Recombinant Spider Silk Blend Membranes for CO2 Separation Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡蒨傑;楊大毅;吳亘承zh_TW
dc.contributor.oralexamcommitteeChien-Chieh Hu;Ta-I Yang;Hsuan-Chen Wuen
dc.subject.keyword二氧化碳捕捉,聚環氧乙烷,重組蜘蛛絲蛋白,高分子共混薄膜,氣體分離薄膜,zh_TW
dc.subject.keywordCO₂ capture,Poly(ethylene oxide),Recombinant spider silk protein,Polymer blend membrane,Gas separation membrane,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202501989-
dc.rights.note未授權-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved