請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98403完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛熙于 | zh_TW |
| dc.contributor.advisor | Hsi-Yu Schive | en |
| dc.contributor.author | 吳志恆 | zh_TW |
| dc.contributor.author | Chi-Hang Ng | en |
| dc.date.accessioned | 2025-08-05T16:14:06Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | Abbas M. M., et al., 2004, The Astrophysical Journal, 614, 781
Ahles A. A., Emery J. D., Dunand D. C., 2021, Acta Astronautica, 189, 465 Arnold J. A., Weinberger A. J., Videen G., Zubko E. S., 2019, The Astronomical Journal, 157, 157 Baranov V. B., Malama Y. G., 1995, Journal of Geophysical Research, 100, 14755 Bhowmik T., et al., 2019, Astronomy & Astrophysics, 630, A85 Bockelee-Morvan D., 2015, Proceedings of the International Astronomical Union, 11, 401 Burns J. A., Lamy P. L., Soter S., 1979, Icarus, 40, 1 Castor J. I., Abbott D. C., Klein R. I., 1975, The Astrophysical Journal, 195, 157 Chiang E., Fung J., 2017, The Astrophysical Journal, 848, 4 Ciardi D. R., van Belle G. T., Akeson R. L., Thompson R. R., Lada E. A., Howell S. B., 2001, The Astrophysical Journal, 559, 1147 Czechowski A., Mann I., 2010, The Astrophysical Journal, 714, 89 DeMeo F. E., Carry B., 2014, Nature, 505, 629 Defrère D., et al., 2011, Astronomy & Astrophysics, 534, A5 Divine N., 1993, Journal of Geophysical Research, 98, 17029 Djurišić A. B., Li E. H., 1999, Journal of Applied Physics, 85, 7404 Dolginov A. Z., Mitrofanov I. G., 1976, Ap&SS, 43, 291 Draine B. T., Flatau P. J., 2008, Journal of the Optical Society of America A, 25, 2693 Draine B. T., Lazarian A., 1998, The Astrophysical Journal, 508, 157 Draine B. T., Weingartner J. C., 1997, The Astrophysical Journal, 480, 633 Egger R. J., Freyberg M. J., Morfill G. E., 1996, Space Science Reviews, 75, 511 Friedlander S. K., 2000, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edition edn. Oxford University Press, New York Geiss J., Gloeckler G., von Steiger R., 1996, Space Science Reviews, 78, 43 Gopalswamy N., Hasan S., Ambastha A., eds, 2010, Heliophysical Processes. Astrophysics and Space Science Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-11341-3, http://link.springer.com/10.1007/978-3-642-11341-3 Grün E., Zook H. A., Fechtig H., Giese R. H., 1985, Icarus, 62, 244 Grün E., et al., 2009, Experimental astronomy, 23, 981 Gundlach B., et al., 2018, Monthly Notices of the Royal Astronomical Society, 479, Haack D., Otto K., Gundlach B., Kreuzig C., Bischoff D., Kührt E., Blum J., 2020, Astronomy & Astrophysics, 642, A218 Harwit M., 1970, Bulletin of the Astronomical Institutes of Czechoslovakia, 21, 204 Henin B., 2018, Exploring the Ocean Worlds of Our Solar System. Springer Cham, Switzerland, doi:10.1007/978-3-319-93476-1, https://www.springer.com/gp/book/9783319934754 Herranen J., Lazarian A., Hoang T., 2019, The Astrophysical Journal, 878, 96 Herranen J., Lazarian A., Hoang T., 2021, The Astrophysical Journal, 913, 63 Hoang T., 2019, The Astrophysical Journal, 876, 13 Hoang T., Lazarian A., 2008, Monthly Notices of the Royal Astronomical Society, 388, 117 Hoang T., Lazarian A., 2014, Monthly Notices of the Royal Astronomical Society, 438, 680 Hoang T., Lazarian A., 2016, The Astrophysical Journal, 831, 159 Hoang T., Lee H., 2019, The Astrophysical Journal, 896, 144 Hoang T., Loeb A., 2017, The Astrophysical Journal, 848, 31 Hoang T., Tram L. N., 2020, The Astrophysical Journal, 891, 38 Hoang T., Vinh N.-A., Lan N. Q., 2016, The Astrophysical Journal, 824, 18 Hoang T., Tram L. N., Lee H., Ahn S.-H., 2019, Nature Astronomy, 3, 766 Hoang T., Lazarian A., Lee H., Cho K., Gu P.-G., Ng C.-H., 2021, The Astrophysical Journal, 919, 91 Hoang T., Minh Phan V. H., Tram L. N., 2023, The Astrophysical Journal, 954, 216 Horányi M., 1996, Annual Review of Astronomy and Astrophysics, 34, 383 Howatson A. M., Lund P. G., Todd J. D., 1972, Engineering Tables and Data. Springer Netherlands, Dordrecht, doi:10.1007/978-94-010-9314-9, http://link.springer.com/10.1007/978-94-010-9314-9 Hsieh H. H., Jewitt D., 2006, Science, 312, 561 Hsu H.-W., et al., 2018, Science, 362, eaat3185, Interstellar Probe Study Team 2021, Interstellar Probe Study 2019 Report. Johns Hopkins University Applied Physics Laboratory, Maryland, USA, https://interstellarprobe.jhuapl.edu/uploadedDocs/papers/588-ISP-Study-2019-Report_PR.pdf Ipatov S. I., Kutyrev A. S., Madsen G. J., Mather J. C., Moseley S. H., Reynolds R. J., 2008, Icarus, 194, 769 Izmodenov V. V., Kallenbach R., 2006, The physics of the heliospheric boundaries. ESA Publications Division, The Netherlands Jorgensen J. L., Benn M., Connerney J. E. P., Denver T., Jorgensen P. S., Andersen A. C., Bolton S. J., 2021, Journal of Geophysical Research: Planets, 126, e06509 Juhász A., Horányi M., 2013, Geophysical Research Letters, 40, 2500 Jäger J. A., Reissl S., Klessen R. S., 2024, Astronomy & Astrophysics, 692, A244 Kadish J., Barber J. R., Washabaugh P. D., 2005, International Journal of Solids and Structures, 42, 5322 Keller L. P., Flynn G. J., 2022, Nature Astronomy, 6, 731 Kempf S., 2008, Planetary and Space Science, 56, 378 Kimura H., Mann I., 1998, The Astrophysical Journal, 499, 454 Kimura H., et al., 2020, Monthly Notices of the Royal Astronomical Society, 496, 1667 Kitamura R., Pilon L., Jonasz M., 2007, Applied Optics, 46, 8118 Krivov A., Löhne T., Sremčević M., 2006, Astronomy & Astrophysics, 455, 509 LLera K., Burch J., Goldstein R., Goetz C., 2020, Geophysical Research Letters, 47, e2019GL086147 Lamers H. J. G. L. M., Cassinelli J. P., 1999, Introduction to Stellar Winds, 1 edn. Cambridge University Press, doi:10.1017/CBO9781139175012, https://www.cambridge.org/core/product/identifier/9781139175012/type/book Lazarian A., 2020, The Astrophysical Journal, 902, 97 Lazarian A., Draine B. T., 1999, The Astrophysical Journal, 520, L67 Lazarian A., Hoang T., 2007, Monthly Notices of the Royal Astronomical Society, 378, 910 Lebreton J., et al., 2013, Astronomy & Astrophysics, 555, A146 Leinert C., Richter I., Pitz E., Planck B., 1981, Astronomy and Astrophysics, 103, Lhotka C., Narita Y., 2019, Annales Geophysicae, 37, 299 Liang M., Harder R., Robinson I., 2018, Journal of Synchrotron Radiation, 25, 757 Love S., Brownlee D., 1993, Science, pp 550–553 Mann I., 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 Mann I., et al., 2004, Space Science Reviews, 110, 269 Mann I., Murad E., Czechowski A., 2007, Planetary and Space Science, 55, 1000 Mann G., Warmuth A., Vocks C., Rouillard A. P., 2023, Astronomy & Astrophysics, 679, A64 Mannel T., et al., 2019, Astronomy & Astrophysics, 630, A26 Mathis J., Mezger P., Panagia N., 1983, Astronomy and Astrophysics, 128, 212 McComas D. J., et al., 2015, The Astrophysical Journal, 801, 28 Meyer-Vernet N., et al., 2009, Solar Physics, 256, 463 Min M., Dullemond C., Kama M., Dominik C., 2011, Icarus, 212, 416 Minato T., Köhler M., Kimura H., Mann I., Yamamoto T., 2004, Astronomy & Astrophysics, 424, L13 Minato T., Köhler M., Kimura H., Mann I., Yamamoto T., 2006, Astronomy & Astrophysics, 452, 701 Morbidelli A., Chambers J., Lunine J. I., Petit J. M., Robert F., Valsecchi G. B., Cyr K. E., 2000, Meteoritics & Planetary Science, 35, 1309 Mukai T., Giese R. H., 1984, Astronomy and Astrophysics, 131, 355 Musiolik G., Beule C. d., Wurm G., 2017, Icarus, 296, 110 Nesvornỳ D., Jenniskens P., Levison H. F., Bottke W. F., Vokrouhlickỳ D., Gounelle M., 2010, The Astrophysical Journal, 713, 816 Ng C.-H., Gu P.-G., Hoang T., 2025, Monthly Notices of the Royal Astronomical Society, 538, 1944 O’Brien L., et al., 2014, Review of Scientific Instruments, 85, 035113 O’Brien L., Juhász A., Sternovsky Z., Horányi M., 2018, Planetary and Space Science, 156, 7 O’Shea E., Sternovsky Z., Malaspina D. M., 2017, Journal of Geophysical Research: Space Physics, 122, 11864 Owens M. J., Forsyth R. J., 2013, Living Reviews in Solar Physics, 10, 5 Pedersen B. M., Meyer-Vernet N., Aubier M. G., Zarka P., 1991, Journal of Geophysical Research, 96, 19187 Petrovic J. J., 2003, Journal of Materials Science, 38, 1 Podolak M., Zucker S., 2004, Meteoritics and Planetary Science, 39, 1859 Postberg F., Kempf S., Srama R., Green S., Hillier J., Mcbride N., Grun E., 2006, Icarus, 183, 122 Prockter L. M., 2005, Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 26, 175 E. M., 1979, The Astrophysical Journal, 231, 404 Rieke G. H., Gaspar A., Ballering N. P., 2016, The Astrophysical Journal, 816, 50 Rowan-Robinson M., May B., 2013, Monthly Notices of the Royal Astronomical Society, 429, 2894 Salaris M., Cassisi S., 2005, Evolution of stars and stellar populations. J. Wiley, Chichester, West Sussex, England ; Hoboken, NJ, USA Schippers P., et al., 2015, The Astrophysical Journal, 806, 77 Seki J., Hasegawa H., 1983, Astrophysics and Space Science, 94, 177 Slavin J. D., Frisch P. C., Müller H.-R., Heerikhuisen J., Pogorelov N. V., Reach W. T., Zank G., 2012, The Astrophysical Journal, 760, 46 Stamm J., Czechowski A., Mann I., Baumann C., Myrvang M., 2019, Astronomy & Astrophysics, 626, A107 Sterken V. J., Westphal A. J., Altobelli N., Malaspina D., Postberg F., 2019, Space Science Reviews, 215, 43 Su K. Y. L., et al., 2013, The Astrophysical Journal, 763, 118 Su K. Y. L., Rieke G. H., Melis C., Jackson A. P., Smith P. S., Meng H. Y. A., Gáspár A., 2020, The Astrophysical Journal, 898, 21 Tatsuuma M., Kataoka A., Tanaka H., 2019, The Astrophysical Journal, 874, 159 Tram L. N., Hoang T., 2022, Frontiers in Astronomy and Space Sciences, 9, 923927 Tsuchiyama A., Mashio E., Imai Y., Noguchi T., Miura Y., Yano H., Nakamura T., 2009, Meteoritics and Planetary Science Supplement, 72, 5189 Voshchinnikov N., 1990, Soviet Astronomy, 34, 429 Warren S. G., Brandt R. E., 2008, Journal of Geophysical Research, 113, D14220 Wehry A., Mann I., 1999, Astronomy and Astrophysics, 341, 296 Weingartner J. C., 2006, The Astrophysical Journal, 647, 390 Wetherill G. W., 1981, Icarus, 46, 70 Wilck M., Mann I., 1996, Planetary and Space Science, 44, 493 Wyatt M. C., Clarke C. J., Booth M., 2011, Celestial Mechanics and Dynamical Astronomy, 111, 1 Ye S., Gurnett D., Kurth W., 2016, Icarus, 279, 51 Zhang Y., Zhang Y., Guo R., Cui B., 2022, Water, 14, 1363 Ziegler J. F., Ziegler M., Biersack J., 2010, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1818 Zubko E., 2013, Earth, Planets and Space, 65, 139 van Lieshout R., Dominik C., Kama M., Min M., 2014, Astronomy & Astrophysics, 571, A51 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98403 | - |
| dc.description.abstract | 本論文探討了輻射扭矩破壞(Radiative Torque Disruption, RATD)機制在太陽系內將微米級塵埃顆粒破碎成奈米顆粒過程中的作用。通過分析在不同離心力應力下的破壞時間尺度,我們證明RATD是一種高效分解微米級顆粒的過程,其效果超越其他破碎機制。此外,RATD抑制了輻射壓力對微米級顆粒的驅逐,改變了它們在太陽系內的動力學行為。
研究揭示RATD顯著改變水雪線(water snow line)位置,使其超越熱力學定義的邊界,突顯溫度與顆粒尺寸對日球層動力學的雙重影響。對於較小的顆粒,由於RATD的影響,雪線可以延伸到其熱力學定義位置之外。此外,我們建立了一個簡化模型來描述由RATD修改後的顆粒大小分佈,揭示了微米級顆粒數密度的顯著減少以及次微米級顆粒數量的相應增加。然而研究顯示,若少於80\\%塵埃顆粒通過輻射扭矩作用於高$J$吸引子(high-$J$ attractors)達到定向排列,RATD對顆粒尺寸分布的影響將顯著減弱。 最後,我們提出了測試RATD機制的實驗方法,並討論了將我們的模型應用於太陽系塵埃研究時的不確定性。 | zh_TW |
| dc.description.abstract | This thesis investigates the role of the Radiative Torque Disruption (RATD) mechanism in the fragmentation of micrometer-sized dust grains into nanoparticles within the heliosphere. By analyzing the disruption timescales under varying centrifugal stresses, we demonstrate that RATD is an efficient process for breaking down micrometer-sized grains, surpassing other fragmentation mechanisms in its effectiveness. Additionally, RATD inhibits the expulsion of micrometer-sized grains by radiation pressure, altering their dynamical behavior within the heliosphere.
This study reveals that RATD significantly alters the water snow line's position beyond its thermally defined boundary, emphasizing the dual influence of temperature and grain size on heliospheric dynamics. For smaller grains, the snow line can extend beyond its thermally defined position due to the impact of RATD. Furthermore, we construct a simplified model to characterize the grain size distribution modified by RATD, revealing a substantial reduction in the number density of micrometer-sized grains and a corresponding increase in sub-micrometer-sized grains. However, we find that if fewer than 80\\% of dust grains are aligned at high-$J$ attractors by radiative torques, the impact of RATD on the grain size distribution is significantly weakened. Finally, we propose experimental approaches to test the RATD mechanism and discuss the uncertainties associated with applying our model to heliospheric dust studies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:14:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:14:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要iii
Abstract v Contents vii List of Figures xi Chapter 1 Introduction 1 Chapter 2 Theoretical Foundation of RATD 5 2.1 Radiation Field, Gas, and Dust Properties in the Heliosphere . . 6 2.2 Theory of Radiative Torque . . . . . . . . . . . . . . . . . . . . . 9 2.3 Rotational Damping Mechanisms and Timescales . . . . . . . . . 11 2.4 Tensile Strength of Dust Grains in the Heliosphere . . . . . . . . 14 2.5 Critical Rotational Velocity and Disruption Thresholds . . . . . . 15 2.6 RAT-Driven Grain Dynamics: High-J and Low-J Attractor . . . . 18 2.7 Impact of Ice Mantles on Rotational Disruption . . . . . . . . . . 22 2.8 Poynting-Robertson Drag and Its Effect . . . . . . . . . . . . . . 24 2.9 Trajectory of Dust Grains in a Magnetic Field . . . . . . . . . . . 27 2.10 Incorporating Rotational Disruption into Grain Size Distribution Models . . . . . . .. . . . . . . . . . . . . . . . . . 31 2.11 Modeling the Distribution of Dust Grains in high-J and low-J Attractor Points . . . . . . . . . . . . . . . . . . . . . . . 34 2.12 Incorporating the Lorentz Effect into Grain Size Distribution Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 3 Numerical Results 39 3.1 Disruption Sizes and Characteristic Times of Dust Grains . . . . 39 3.2 Effect of the Fraction of Grain Alignment on Grain Size Distribution 43 3.3 Effect of the Tensile Strength on Size Distribution . . . . . . . . 44 3.4 Timescale and Size Distribution Including the Lorentz Effect . . . 48 3.5 Water Snow Line of the Present Solar System . . . . . . . . . . . 50 3.6 Effects of Radiation Pressure on Particle Disruption . . . . . . . 52 3.7 Location of Disruption in the Presence of Radiation Pressure . . 56 Chapter 4 Discussion 61 4.1 Comparison of RAT Efficiency Models and Their Impact on Grain Disruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 In-Situ Dust Measurements and Future Missions . . . . . . . . . 62 4.3 Ground-Based Measurements . . . . . . . . . . . . . . . . . . . . 63 4.4 Dust Evolution in Debris Disks . . . . . . . . . . . . . . . . . . . 63 4.5 Limitations of Our Theoretical Investigation . . . . . . . . . . . . 65 Chapter 5 Summary 67 References 69 Appendix A — Characteristic Damping Time 79 Appendix B — Radiation Pressure Cross-Section Efficiency in the Rayleigh Regime 83 Appendix C — Effects of Interplanetary Magnetic Field on Grain Alignment and Disruption 85 C.1 Interplanetary magnetic fields . . . . . . . . . . . . . . . . . . . . 86 C.2 Interaction of magnetic fields with grain magnetic dipole moment 87 C.3 Interaction with grain electric dipole moment . . . . . . . . . . . 89 C.4 Relative effects of magnetic to electric torques . . . . . . . . . . . 91 C.5 k-RAT and relative effects of radiative to electric torques . . . . . 93 | - |
| dc.language.iso | en | - |
| dc.subject | 塵埃、消光 | zh_TW |
| dc.subject | 星際介質:演化 | zh_TW |
| dc.subject | 星際介質:一般情況 | zh_TW |
| dc.subject | 太陽風 | zh_TW |
| dc.subject | extinction | en |
| dc.subject | dust | en |
| dc.subject | solar wind | en |
| dc.subject | SM: general | en |
| dc.subject | SM: evolution | en |
| dc.title | 輻射力矩對塵埃的破壞及對日光層塵埃尺寸演變的影響的研究 | zh_TW |
| dc.title | Investigating the influence of the radiative torque disruption on the size evolution of dust in the heliosphere | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 辜品高 | zh_TW |
| dc.contributor.coadvisor | Pin-Gao Gu | en |
| dc.contributor.oralexamcommittee | Thiem Hoang;林明楷;李悅寧;葉永烜 | zh_TW |
| dc.contributor.oralexamcommittee | Thiem Hoang;Min-Kai Lin;Yueh-Ning Lee;Wing-Huen Ip | en |
| dc.subject.keyword | 塵埃、消光,星際介質:演化,星際介質:一般情況,太陽風, | zh_TW |
| dc.subject.keyword | dust, extinction,SM: evolution,SM: general,solar wind, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202501513 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
