Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇zh_TW
dc.contributor.advisorBing-Yu Chenen
dc.contributor.author許柏潁zh_TW
dc.contributor.authorPo-Ying Hsuen
dc.date.accessioned2025-08-05T16:13:39Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-26-
dc.identifier.citation[1] M. Achibet, A. Girard, A. Talvas, M. Marchal, and A. Lécuyer. Elastic-arm: Humanscale passive haptic feedback for augmenting interaction and perception in virtual environments. In 2015 IEEE Virtual Reality (VR), pages 63–68.
[2] M. Achibet, B. Le Gouis, M. Marchal, P.-A. Leziart, F. Argelaguet, A. Girard, A. Lecuyer, and H. Kajimoto. FlexiFingers: Multi-finger interaction in VR combining passive haptics and pseudo-haptics. In 2017 IEEE Symposium on 3D User Interfaces (3DUI), pages 103–106. IEEE. Place: Los Angeles, CA, USA.
[3] E. Brown and H. M. Jaeger. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Reports on Progress in Physics, 77(4):046602, 2014.
[4] L.-P. Cheng, T. Roumen, H. Rantzsch, S. Köhler, P. Schmidt, R. Kovacs, J. Jasper, J. Kemper, and P. Baudisch. TurkDeck: Physical virtual reality based on people. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, pages 417–426. Association for Computing Machinery. Place: New York, NY, USA.
[5] I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch, and S. Follmer. Wolverine: A wearable haptic interface for grasping in virtual reality. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), pages 986–993.
[6] S. Diller, C. Majidi, and S. H. Collins. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 682–689, 2016.
[7] A. Downey, L. Cao, S. Laflamme, D. Taylor, and J. Ricles. High capacity variable friction damper based on band brake technology. Engineering Structures, 113:287–298, 2016.
[8] D. S. Elvitigala, D. J. Matthies, L. David, C. Weerasinghe, and S. Nanayakkara. Gymsoles: Improving squats and dead-lifts by visualizing the user’s center of pressure. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA, 2019. Association for Computing Machinery.
[9] S. Follmer, D. Leithinger, A. Olwal, N. Cheng, and H. Ishii. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, page 519–528, New York, NY, USA, 2012. Association for Computing Machinery.
[10] K. Gerling, M. Ray, V. V. Abeele, and A. B. Evans. Critical reflections on technology to support physical activity among older adults: An exploration of leading hci venues. ACM Trans. Access. Comput., 13(1), Apr. 2020.
[11] B. Grace, S. Selinger, P. Wintersberger, and M. Kocur. Investigating the effects of sweating avatars on physiological and perceptual responses during low- and high-intensity cycling in virtual reality. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, CHI EA ’25, New York, NY, USA, 2025. Association for Computing Machinery.
[12] L. Gupta, S. Gurbuxani, and K. Madan. Virtual fitness trainer using artificial intelligence. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing, IC3-2024, page 226–233, New York, NY, USA, 2024. Association for Computing Machinery.
[13] P.-H. Han, T.-H. Wang, and C.-H. Chou. GroundFlow: Liquid-based haptics for simulating fluid on the ground in virtual reality. 29(5):2670–2679. IEEE Transactions on Visualization and Computer Graphics.
[14] H. Ishii, C. Wisneski, J. Orbanes, B. Chun, and J. Paradiso. Pingpongplus: design of an athletic-tangible interface for computer-supported cooperative play. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’99, page 394–401, New York, NY, USA, 1999. Association for Computing Machinery.
[15] D. Jain, M. Sra, J. Guo, R. Marques, R. Wu, J. Chiu, and C. Schmandt. Immersive scuba diving simulator using virtual reality. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 729–739. ACM.
[16] H. Kotte, F. Daiber, M. Kravcik, and N. Duong-Trung. Fitsight: Tracking and feedback engine for personalized fitness training. In Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’24, page 223–231, New York, NY, USA, 2024. Association for Computing Machinery.
[17] S.-P. Lai, C.-A. Hsieh, Y.-H. Lin, T. Harutaipree, S.-C. Lin, Y.-H. Peng, L.-P. Cheng, and M. Y. Chen. Strengthgaming: Enabling dynamic repetition tempo in strength training-based exergame design. 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services, 2020.
[18] S. Lee, M. M. Islam, M. E. Rogers, M. Kusunoki, A. Okada, and N. Takeshima. Effects of hydraulic-resistance exercise on strength and power in untrained healthy older adults. Journal of Strength and Conditioning Research, 25(4):1089–1097, 2011.
[19] N. Li, H.-J. Kim, L. Shen, F. Tian, T. Han, X.-D. Yang, and T.-J. Nam. HapLinkage: Prototyping haptic proxies for virtual hand tools using linkage mechanism. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, pages 1261–1274. Association for Computing Machinery. Place: New York, NY, USA.
[20] B. Liu, W. H. Li, P. B. Kosasih, and X. Z. Zhang. Development of an mr-brake-based haptic device. Smart Materials and Structures, 15(6):1960, nov 2006.
[21] L. Liu, C. Yao, Y. Liu, P. Wang, Y. Chen, and F. Ying. FlowGlove: A liquid-based wearable device for haptic interaction in virtual reality. In C. Stephanidis, V. G. Duffy, N. Streitz, S. Konomi, and H. Krömker, editors, HCI International 2020–Late Breaking Papers: Digital Human Modeling and Ergonomics, Mobility and Intelligent Environments, pages 316–331. Springer International Publishing. Place: Cham.
[22] A. Macvean and J. Robertson. Understanding exergame users’ physical activity, motivation and behavior over time. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, page 1251–1260, New York, NY, USA, 2013. Association for Computing Machinery.
[23] A. L. Martin-Niedecken, K. Rogers, L. Turmo Vidal, E. D. Mekler, and E. Márquez Segura. Exercube vs. personal trainer: Evaluating a holistic, immersive, and adaptive fitness game setup. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–15, New York, NY, USA, 2019. Association for Computing Machinery.
[24] M. Mauriello, M. Gubbels, and J. E. Froehlich. Social fabric fitness: the design and evaluation of wearable e-textile displays to support group running. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, page 2833–2842, New York, NY, USA, 2014. Association for Computing Machinery.
[25] A. Mazursky, J.-H. Koo, T. Mason, S.-Y. Woo, and T.-H. Yang. Design and experimental evaluation of an electrorheological haptic module with embedded sensing. Applied Sciences, 11(16), 2021.
[26] T. McDaniel, M. Goldberg, D. Villanueva, L. N. Viswanathan, and S. Panchanathan. Motor learning using a kinematic-vibrotactile mapping targeting fundamental movements. In Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, page 543–552, New York, NY, USA, 2011. Association for Computing Machinery.
[27] F. Mueller, F. Vetere, M. R. Gibbs, D. Edge, S. Agamanolis, and J. G. Sheridan. Jogging over a distance between europe and australia. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, page 189–198, New York, NY, USA, 2010. Association for Computing Machinery.
[28] J. Nishida, Y. Tanaka, R. Nith, and P. Lopes. DigituSync: A dual-user passive exoskeleton glove that adaptively shares hand gestures. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, pages 1–12. Association for Computing Machinery. Place: New York, NY, USA.
[29] T. Oba, H. Kadone, M. Hassan, and K. Suzuki. Robotic ankle–foot orthosis with a variable viscosity link using mr fluid. IEEE/ASME Transactions on Mechatronics, 24(2):495–504, 2019.
[30] X. Ren, B. Yu, Y. Lu, Y. Chen, and P. Pu. Healthsit: Designing posture-based interaction to promote exercise during fitness breaks. International Journal of Human–Computer Interaction, 35(10):870–885, 2018.
[31] C. Richards. Using an invisible coach to help players achieve fitness goals in exergames while retaining immersion. In Proceedings of the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’14, page 299–302, New York, NY, USA, 2014. Association for Computing Machinery.
[32] C. Richards and T. N. Graham. Brains & brawn: A strategy card game for muscle-strengthening exercises. In Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’15, page 783–786, New York, NY, USA, 2015. Association for Computing Machinery.
[33] C. Richards and T. N. Graham. Developing compelling repetitive-motion exergames by balancing player agency with the constraints of exercise. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems, DIS ’16, page 911–923, New York, NY, USA, 2016. Association for Computing Machinery.
[34] N. Ryu, W. Lee, M. J. Kim, and A. Bianchi. ElaStick: A handheld variable stiffness display for rendering dynamic haptic response of flexible object. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, UIST ’20, pages 1035–1045. Association for Computing Machinery. Place: New York, NY, USA.
[35] S. Saga and K. Deguchi. Dilatant fluid based tactile display -basic concept. In 2010 IEEE Haptics Symposium, pages 309–312, 2010.
[36] T. Sato, J. Pardomuan, Y. Matoba, and H. Koike. Claytricsurface: An interactive deformable display with dynamic stiffness control. IEEE Computer Graphics and Applications, 34(3):59–67, 2014.
[37] A. L. Simeone, E. Velloso, and H. Gellersen. Substitutional reality: Using the physical environment to design virtual reality experiences. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 3307–3316. ACM. Place: Seoul Republic of Korea.
[38] K. Stawarz, I.-J. Liang, L. Alexander, A. Carlin, A. Wijekoon, and M. Western. Exploring the potential of technology to promote “exercise snacking"for pre-frail older adults in the home setting: User-centered design study (preprint). JMIR Aging, 6, 08 2022.
[39] K. Stawarz, I. J. Liang, L. Alexander, A. Carlin, A. Wijekoon, and M. J. Western. Exploring the potential of technology to promote exercise snacking for older adults who are prefrail in the home setting: User-centered design study. JMIR Aging, 6:e41810, 2023.
[40] S.-Y. Teng, K. D. Wu, J. Chen, and P. Lopes. Prolonging VR haptic experiences by harvesting kinetic energy from the user. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, UIST ’22, pages 1–18. Association for Computing Machinery. Place: New York, NY, USA.
[41] E. Thompson. Demo: Towards non-newtonian organic user interfaces ferro-oobleck (patent pending). In Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW ’18 Companion, page 49–52, New York, NY, USA, 2018. Association for Computing Machinery.
[42] C.-Y. Tsai, I.-L. Tsai, C.-J. Lai, D. Chow, L. Wei, L.-P. Cheng, and M. Y. Chen. Airracket: Perceptual design of ungrounded, directional force feedback to improve virtual racket sports experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[43] H.-R. Tsai, J. Rekimoto, and B.-Y. Chen. ElasticVR: Providing multilevel continuously-changing resistive force and instant impact using elasticity for VR. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 1–10. Association for Computing Machinery. Place: New York, NY, USA.
[44] C.-A. Tsao, T.-C. Wu, H.-R. Tsai, T.-Y. Wei, F.-Y. Liao, S. Chapman, and B.-Y. Chen. Frictshoes: Providing multilevel nonuniform friction feedback on shoes in vr. IEEE Transactions on Visualization and Computer Graphics, 28(5):2026–2036, 2022.
[45] D. Tsetserukou, K. Sato, and S. Tachi. ExoInterfaces: novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. In Proceedings of the 1st Augmented Human International Conference, AH ’10, pages 1–6. Association for Computing Machinery. Place: New York, NY, USA.
[46] L. Turmo Vidal, E. Márquez Segura, L. Parrilla Bel, and A. Waern. Training technology probes across fitness practices: Yoga, circus and weightlifting. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI EA ’20, page 1–8, New York, NY, USA, 2020. Association for Computing Machinery.
[47] L. Turmo Vidal, H. Zhu, A. Waern, and E. Márquez Segura. The design space of wearables for sports and fitness practices. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[48] E. D. Vasquez, C. S. Simpson, G. Zhou, M. Lansberg, and A. M. Okamura. Evaluation of a passive wearable device for post-stroke shoulder abduction support. In 2023 International Conference on Rehabilitation Robotics (ICORR), pages 1–6.
[49] Y. Wu, L. Yu, J. Xu, D. Deng, J. Wang, X. Xie, H. Zhang, and Y. Wu. Ar-enhanced workouts: Exploring visual cues for at-home workout videos in ar environment. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New York, NY, USA, 2023. Association for Computing Machinery.
[50] S. Yamashita, X. Zhang, and J. Rekimoto. AquaCAVE: Augmented swimming environment with immersive surround-screen virtual reality. In Adjunct Proceedings of the 29th Annual ACM Symposium on User Interface Software and Technology, UIST ’16 Adjunct, pages 183–184. Association for Computing Machinery.
[51] T.-H. Yang, H. Son, S. Byeon, H. Gil, I. Hwang, G. Jo, S. Choi, S.-Y. Kim, and J. R. Kim. Magnetorheological fluid haptic shoes for walking in vr. IEEE Transactions on Haptics, 14(1):83–94, 2021.
[52] S. Yoshimoto, Y. Hamada, T. Tokui, T. Suetake, M. Imura, Y. Kuroda, and O. Oshiro. Haptic canvas: dilatant fluid based haptic interaction. In ACM SIGGRAPH 2010 Emerging Technologies, SIGGRAPH ’10, New York, NY, USA, 2010. Association for Computing Machinery.
[53] A. Zenner and A. Krüger. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 23(4):1285–1294, 2017.
[54] H. Zhao, B. Wang, and G. Chen. Numerical study on a rotational hydraulic damper with variable damping coefficient. Scientific Reports, 11:22515, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98401-
dc.description.abstract過去的研究中我們設計了DilaModule,一個透過脹流性流體提供被動阻力回饋的裝置。在該研究中我們除了透過脹流性流體來提供阻力回饋,此外我們也透過可變角度的葉片來進一步調整阻力大小。雖然我們透過技術評估得到要提供高阻力所需的最佳玉米澱粉與水的混合比例,以及葉片角度對於阻力的影響。但是對於該裝置的應用情境還缺乏討論。

在此次的研究中我們透過半結構式訪談討論參與者對該模組的體驗與想像。經由主題式分析,我們整理出使用者如何理解脹流性流體的阻力回饋以及可能的應用,並在最後根據使用者回饋將脹流性流體結合到數個與阻力訓練的相關的應用中。
zh_TW
dc.description.abstractIn our previous work, we developed the DilaModule, a device that provides passive resistive feedback through the use of a dilatant fluid. In addition to leveraging the fluid's shear-thickening properties, we also integrated adjustable blade angles to modulate resistance levels. Through technical evaluations, we identified the optimal cornstarch-to-water ratio required to achieve high resistance and examined how blade angle affects the resulting force. However, the potential application scenarios of the device remained underexplored.

In the current study, we conducted semi-structured interviews to investigate participants’ experiences and imaginations surrounding the DilaModule. Using thematic analysis, we identified how users perceived the resistive feedback provided by the dilatant fluid and explored possible applications. Based on user feedback, we proposed several use cases that integrate dilatant fluid into resistance training contexts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:13:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:13:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Exercise and Fitness Systems . . . . . . . . . . . . . . . . . . . . . 4
2.2 Passive and Semi-Passive Feedback Devices . . . . . . . . . . . . . 7
2.3 Viscosity and Friction-Based Haptic Feedback . . . . . . . . . . . . 10
2.4 Applications of Dilatant Fluid in HCI . . . . . . . . . . . . . . . . . 13
Chapter 3 DilaModule 15
3.1 Dilatant Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 DilaModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Shape-Changing Blades . . . . . . . . . . . . . . . . . . . . . . . . 17
Chapter 4 Potential Application Exploration 20
4.1 Semi-Structured Interview . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 User Feedback and Perception . . . . . . . . . . . . . . . . . . . . 21
4.2 Thematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Codes and Codebook . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Theme Development . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Synthesis and Implications . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5 Application Scenarios 36
5.1 Resistive Training With Daily Objects . . . . . . . . . . . . . . . . . 36
5.1.1 Triceps and Biceps Training . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Shoulder Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Back Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.4 Thigh Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.5 Chest Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.6 Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 VR Related Scenarios with 3D Printed Objects . . . . . . . . . . . . 45
5.2.1 Exoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Exergames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Chapter 6 Preliminary Study 50
6.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter 7 Limitation & Future Work 54
Chapter 8 Conclusion 56
References 57
Appendix A — Technical Evaluation from Previous Study 67
A.1 Dilatant-Water Mixture Ratio . . . . . . . . . . . . . . . . . . . . . 67
A.2 Blade Angles and Output Torque Force . . . . . . . . . . . . . . . . 68
-
dc.language.isoen-
dc.subject脹流性流體zh_TW
dc.subject觸覺回饋zh_TW
dc.subject具身互動zh_TW
dc.subject阻力訓練zh_TW
dc.subjectEmbodied Interactionen
dc.subjectDilatant Fluiden
dc.subjectHaptic Feedbacken
dc.subjectResistive Trainingen
dc.title探索脹流性流體結合日常用品之運動應用zh_TW
dc.titleExploring Exercise Applications Using Dilatant Fluid with Daily Objectsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹力韋;韓秉軒;蔡欣叡zh_TW
dc.contributor.oralexamcommitteeLi-Wei Chan;Han Ping-Hsuan;Hsin-Ruey Tsaien
dc.subject.keyword脹流性流體,觸覺回饋,具身互動,阻力訓練,zh_TW
dc.subject.keywordDilatant Fluid,Haptic Feedback,Embodied Interaction,Resistive Training,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202502446-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2030-07-24-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-24
7.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved